292 research outputs found
Quantitative infrared thermography resolved leakage current problem in cathodic protection system
Leakage current problem can happen in Cathodic Protection
(CP) system installation. It could affect the performance of
underground facilities such as piping, building structure, and
earthing system. Worse can happen is rapid corrosion where
disturbance to plant operation plus expensive maintenance
cost. Occasionally, if it seems, tracing its root cause could be
tedious. The traditional method called line current
measurement is still valid effective. It involves isolating one
by one of the affected underground structures. The recent
methods are Close Interval Potential Survey and Pipeline
Current Mapper were better and faster. On top of the
mentioned method, there is a need to enhance further by
synthesizing with the latest visual methods. Therefore, this
paper describes research works on Infrared Thermography
Quantitative (IRTQ) method as resolution of leakage current
problem in CP system. The scope of study merely focuses on
tracing the root cause of leakage current occurring at the CP
system lube base oil plant. The results of experiment
adherence to the hypothesis drawn. Consequently, res
Optical source of individual pairs of colour-conjugated photons
We theoretically demonstrate that Kerr nonlinearity in optical circuits can lead to both resonant four-wave mixing and photon blockade, which can be used for high-yield generation of high-fidelity individual photon pairs with conjugated frequencies. We propose an optical circuit, which, in the optimal pulsed-drive regime, would produce photon pairs at the rate up to 5 × 105 s−1 (0.5 pairs per pulse) with g(2)(0)<10–2g(2)(0)<10−2 for one of the conjugated frequencies. We show that such a scheme can be utilised to generate colour-entangled photons
Internet Gaming Disorder Behaviors in emergent adulthood: a pilot study examining the interplay between anxiety and family cohesion
Understanding risk and protective factors associated with Internet Gaming Disorder (IGD) has been highlighted as a research priority by the American Psychiatric Association, (2013). The present study focused on the potential IGD risk effect of anxiety and the buffering role of family cohesion on this association. A sample of emerging adults all of whom were massively multiplayer online (MMO) gamers (18–29 years) residing in Australia were assessed longitudinally (face-to-face: N = 61, Mage = 23.02 years, SD = 3.43) and cross-sectionally (online: N = 64, Mage = 23.34 years, SD = 3.39). IGD symptoms were assessed using the nine-item Internet Gaming Disorder Scale-Short Form (IGDS-SF9; Pontes & Griffiths Computers in Human Behavior, 45, 137–143. https://doi.org/10.1016/j.chb.2014.12.006, 2015). The Beck Anxiety Inventory (BAI; Beck and Steer, 1990) and the balanced family cohesion scale (BFC; Olson Journal of Marital & Family Therapy, 3(1) 64–80. https://doi.org/10.1111/j.1752-0606.2009.00175.x, 2011) were applied to assess anxiety and BFC levels, respectively. Linear regressions and moderation analyses confirmed that anxiety increased IGD risk and that BFC weakened the anxiety-related IGD risk
Do distribution volumes and clearances relate to tissue volumes and blood flows? A computer simulation
BACKGROUND: Kinetics of inhaled agents are often described by physiological models. However, many pharmacokinetic concepts, such as context-sensitive half-times, have been developed for drugs described by classical compartmental models. We derived classical compartmental models that describe the course of the alveolar concentrations (F(A)) generated by the physiological uptake and distribution models used by the Gas Man(® )program, and describe how distribution volumes and clearances relate to tissue volumes and blood flows. METHODS: Gas Man(® )was used to generate F(A )vs. time curves during the wash-in and wash-out period of 115 min each with a high fresh gas flow (8 L.min(-1)), a constant alveolar minute ventilation (4 L.min(-1)), and a constant inspired concentration (F(I)) of halothane (0.75%), isoflurane (1.15%), sevoflurane (2%), or desflurane (6%). With each of these F(I), simulations were ran for a 70 kg patient with 5 different cardiac outputs (CO) (2, 3, 5, 8 and 10 L.min(-1)) and for 5 patients with different weights (40, 55, 70, 85, and 100 kg) but the same CO (5 L.min(-1)). Two and three compartmental models were fitted to F(A )of the individual 9 runs using NONMEM. After testing for parsimony, goodness of fit was evaluated using median prediction error (MDPE) and median absolute prediction error (MDAPE). The model was tested prospectively for a virtual 62 kg patient with a cardiac output of 4.5 L.min(-1 )for three different durations (wash-in and wash-out period of 10, 60, and 180 min each) with an F(I )of 1.5% halothane, 1.5% isoflurane, sevoflurane 4%, or desflurane 12%. RESULTS: A three-compartment model fitted the data best (MDPE = 0% and MDAPE ≤ 0.074%) and performed equally well when tested prospectively (MDPE ≤ 0.51% and MDAPE ≤ 1.51%). The relationship between CO and body weight and the distribution volumes and clearances is complex. CONCLUSION: The kinetics of anesthetic gases can be adequately described e by a mammilary compartmental model. Therefore, concepts that are traditionally thought of as being applicable to the kinetics of intravenous agents can be equally well applied to anesthetic gases. Distribution volumes and clearances cannot be equated to tissue volumes and blood flows respectively
An Assessment of the Use of Rotary Wing Aircraft for Primary and Medical Emergency Care Service – Sabah State Experience
Introduction: Rotary wing aircraft (RWA) or the helicopter has been used in Primary Health Care and Medical Emergency Services in the state of Sabah since the seventies. The use of RWA has distinct advantages in terms of speed, ability to access remote areas and in the transportation of patients to tertiary care. Single engine RWA was used for the last forty years which has now been replaced with twin engine RWA. The objective of this study is to compare the different type of RWA which was used and the suitability of these machines for health services in Sabah. Methods: A detailed analysis and comparison of manufacturers’ specifications which include the performance, size, the number of power plant, passenger capacity, safety track record, aircraft manufacturer’ s support, maintenance and operational costs of different types of RWA available in Sabah taking into account current and future demands as well as functional requirements and the capability of the aircraft service providers were considered. Results: The choice of aircrafts depends on the type of service and its suitability. From the assessment, a single engine RWA would be adequate to support the current and future need in Sabah. Conclusion: Adequate technical knowledge in choosing the type of aircraft to provide an effective health service is vital. These also contribute to the cost effectiveness of the program and significantly determine efficiency of the service and the interest of the rural people with poor accessibility to health care
IL-33-mediated protection against experimental cerebral malaria is linked to induction of Type 2 innate lymphoid cells, M2 macrophages and regulatory T cells
Author Summary Cerebral malaria (CM) caused by the parasite Plasmodium sp . is a fatal disease, especially in children. Currently there is no effective treatment. We report here our investigation on the role of a recently discovered cytokine IL-33, in treating experimental cerebral malaria (ECM) in the susceptible C57BL/6 mice. IL-33 protects the mice against ECM. The protection is accompanied by a reduction of Th1 response and the enhancement of type 2 cytokine response. We also found that IL-33 mediates its protective effect by inducing a population of type 2 innate lymphoid cells (ILC2), which then polarize macrophages to alternatively-activated phenotypes (M2). M2 in turn expand regulatory T cells (Tregs) which suppress the deleterious Th1 response. Our report therefore reveals hitherto unrecognised mechanisms of the regulation of ECM and provide a novel function of IL-33
Interpretable machine learning models for classifying low back pain status using functional physiological variables.
PURPOSE:To evaluate the predictive performance of statistical models which distinguishes different low back pain (LBP) sub-types and healthy controls, using as input predictors the time-varying signals of electromyographic and kinematic variables, collected during low-load lifting. METHODS:Motion capture with electromyography (EMG) assessment was performed on 49 participants [healthy control (con) = 16, remission LBP (rmLBP) = 16, current LBP (LBP) = 17], whilst performing a low-load lifting task, to extract a total of 40 predictors (kinematic and electromyographic variables). Three statistical models were developed using functional data boosting (FDboost), for binary classification of LBP statuses (model 1: con vs. LBP; model 2: con vs. rmLBP; model 3: rmLBP vs. LBP). After removing collinear predictors (i.e. a correlation of > 0.7 with other predictors) and inclusion of the covariate sex, 31 predictors were included for fitting model 1, 31 predictors for model 2, and 32 predictors for model 3. RESULTS:Seven EMG predictors were selected in model 1 (area under the receiver operator curve [AUC] of 90.4%), nine predictors in model 2 (AUC of 91.2%), and seven predictors in model 3 (AUC of 96.7%). The most influential predictor was the biceps femoris muscle (peak [Formula: see text] = 0.047) in model 1, the deltoid muscle (peak [Formula: see text] = 0.052) in model 2, and the iliocostalis muscle (peak [Formula: see text] = 0.16) in model 3. CONCLUSION:The ability to transform time-varying physiological differences into clinical differences could be used in future prospective prognostic research to identify the dominant movement impairments that drive the increased risk. These slides can be retrieved under Electronic Supplementary Material
Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy
Helminth parasites such as the nematode Heligmosomoides polygyrus strongly inhibit T helper type 2 (Th2) allergy, as well as colitis and autoimmunity. Here, we show that the soluble excretory/secretory products of H. polygyrus (HES) potently suppress inflammation induced by allergens from the common fungus Alternaria alternata. Alternaria extract, when administered to mice intranasally with ovalbumin (OVA) protein, induces a rapid (1–48 h) innate response while also priming an OVA-specific Th2 response that can be evoked 14 days later by intranasal administration of OVA alone. In this model, HES coadministration with Alternaria/OVA suppressed early IL-33 release, innate lymphoid cell (ILC) production of IL-4, IL-5, and IL-13, and localized eosinophilia. Upon OVA challenge, type 2 ILC (ILC2)/Th2 cytokine production and eosinophilia were diminished in HES-treated mice. HES administration 6 h before Alternaria blocked the allergic response, and its suppressive activity was abolished by heat treatment. Administration of recombinant IL-33 at sensitization with Alternaria/OVA/HES abrogated HES suppression of OVA-specific responses at challenge, indicating that suppression of early Alternaria-induced IL-33 release could be central to the anti-allergic effects of HES. Thus, this helminth parasite targets IL-33 production as part of its armory of suppressive effects, forestalling the development of the type 2 immune response to infection and allergic sensitization
COVID-19 vaccine perceptions and uptake: results from the COVID-19 Global Rheumatology Alliance Vaccine Survey
Funding Information: MP, KK, and ES contributed equally and are co-first authors. JHS, JASp, and JFS contributed equally and are co-senior authors. The authors thank Berk Degirmenci, Christele Feliix, Shangyi Jin, Candace A Palmerlee, Andrea Peirce, Lisa G Rider, Esra Sari, Robert Tseng, and Leslie Wang for their invaluable contributions to the GRA Vax Survey. MP, KK, ES, SES, and JWL contributed to data collection, data quality control, and data analysis and interpretation. AAA, DA-R, SA, RPB, FB, IB, YPEC, RC, AD-G, ED, KLD, TAG, CLH, RH, BFH, EH, LK, AK, AHJK, DFLL, CL, EFM, BM, SM, MN, ADS, JASi, NS, MFU-G, JW, KJY, and EAZ-T, critically revised the manuscript and provided intellectual content. TTM, CH, MJL, ML, GF, and LT contributed to planning and data collection, reviewed the manuscript, and provided important intellectual content. SB, WC, RG, PMM, PCR, PS, ZSW, and JY contributed to the acquisition, analysis, and interpretation of the data. JASp, JFS, and JSH directed the work, designed the data collection methods, and contributed to the analysis and interpretation of the data. MP, KK, ES, SES, JWL, SB, WC, RG, PMM, PCR, PS, ZSW, JY, JASp, JFS, and JSH drafted and revised the manuscript critically for important intellectual content and gave final approval of the version to be published. SES, JWL, KK, JFS, and JASp had full access to the data and verify the credibility of the underlying data. All authors have read, revised, and approved this manuscript and take final responsibility for the decision to submit for publication. MP reports clinical trials participation with AbbVie and grants from Rheumatology Research Foundation, outside the submitted work. ES is a board member of the Canadian Arthritis Patient Alliance, a patient run, volunteer-based organisation whose activities are primarily supported by independent grants from pharmaceutical companies. JWL has received research grant funding from Pfizer unrelated to this work. SES reports research funding related to clinical trials from AstraZeneca (MANDARA), outside of the submitted work and is supported by the Vasculitis Clinical Research Consortium and Vasculitis Foundation outside of the submitted work. DA-R is a scientific advisor for GlaxoSmithKilne unrelated to this work. RC reports speaker fees from Janssen, Roche, Sanofi, and AbbVie, outside of the submitted work. AD-G reports grants from the Center for Disease Control and Prevention, Rheumatology Research Foundation, and Mayo Clinic, outside the submitted work. KLD is an unpaid volunteer president of the Autoinflammatory Alliance and reports grants from Novartis, Sobi, National Institutes of Health (NIH), and Horizon Bio, all received by the non-profit organisation outside of the submitted work. CLH received funding under a sponsored research agreement unrelated to the data in the paper from Vifor Pharmaceuticals. RH reports grants from AbbVie, Amgen, Boehringer Ingleheim, Johnson and Johnson, Lilly, Novartis, Pfizer, and Union Chimique Belge, all paid to Spondylitis Association of America, consultant fees from GlaxoSmithKline and Novartis, outside the submitted work. RH also owns stocks (<20 shares and representing <4% of personal investments) in AbbVie, Amgen, Bristol Myers Squibb, GlaxoSmithKline, Johnson & Johnson, Eli Lilly, Merck, Novartis, Pfizer, Teva, and Union Chimique Belge. AHJK reports personal fees from Exagen Diagnostics, Alexion Pharmaceuticals, and Aurinia Pharmaceuticals, grants from National Institutes of Health, Rheumatology Research Foundation, and Helmsley Charitable Trust, grants and personal fees from GlaxoSmithKline, outside the submitted work. EFM reports personal fees from Boehringer Ingelheim, and that Liga Portuguesa Contra as Doenças Reumaticas has received grants from AbbVie, Novartis, Lilly Portugal, Amgen Biofarmacêutica, Grünenthal, Merck Sharp & Dohme, Medac and from A Menarini Portugal–Farmacêutica; grants and non-financial support from Pfizer and Grünenthal, outside the submitted work. JASi has received consultant fees from Crealta/Horizon, Medisys, Fidia, PK Med, Two labs, Adept Field Solutions, Clinical Care options, Clearview healthcare partners, Putnam associates, Focus forward, Navigant consulting, Spherix, MedIQ, Jupiter Life Science, United BioMed, Trio Health, Medscape, WebMD, and Practice Point communications; and the National Institutes of Health, and the American College of Rheumatology. JASi owns stock options in TPT Global Tech, Vaxart pharmaceuticals, and Charlotte's Web Holdings and previously owned stock options in Amarin, Viking and Moderna pharmaceuticals. JASi is on the speaker's bureau of Simply Speaking and is a member of the executive of Outcomes Measures in Rheumatology, an organisation that develops outcome measures in rheumatology and receives funding from eight companies . JASi also serves on the FDA Arthritis Advisory Committee and is the chair of the Veterans Affairs Rheumatology Field Advisory Committee. JASi is also the editor and the Director of the University of Alabama at Birmingham Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis. MFU-G has received research support from Pfizer and Janssen, unrelated to this work. SB reports non-branded consulting fees from Novartis, AbbVie, Pfizer, and Horizon Pharma, outside the submitted work, and is a Pfizer employee as of September, 2021. RG reports personal fees from AbbVie New Zealand, Cornerstones, Janssen New Zealand, and Novartis, and personal fees and non-financial support Pfizer Australia (all <AU$10,000) outside the submitted work. PMM reports personal fees from AbbVie, Eli Lilly, Janssen, Novartis, Pfizer, and Union Chimique Belge; and grants and personal fees from Orphazyme, outside the submitted work. PCR reports personal fees from AbbVie, Gilead, Lilly, and Roche; grants and personal fees from Novartis, Union Chimique Belge, Janssen, and Pfizer; and non-financial support from Bristol Myers Squibb, outside the submitted work. PS reports honoraria from bring the social media editor for the American College of Rheumatology journals, outside the submitted work. ZSW reports grants from NIH, Bristol Myers Squibb, and Principia/Sanofi; and personal fees from Viela Bio and MedPace, outside the submitted work. JY reports personal fees from Pfizer and Eli Lilly, and grants and personal fees from AstraZeneca, outside the submitted work. CH reports personal fees from AstraZeneca and Aurinia Pharmaceuticals, outside the submitted work. MJL reports grants from American College of Rheumatology, during the conduct of the study and consulting fees from AbbVie, Amgen, Actelion, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Gilead, Johnson and Johnson, Mallinckrodt, Novartis, Pfizer, Roche, Sandoz, Sanofi, Sobi, and Union Chimique Belge, outside the submitted work. JSH reports grants from Childhood Arthritis and Rheumatology Research Alliance and Rheumatology Research Alliance, and personal fees from Novartis, Pfizer, and Biogen, outside the submitted work. JASp reports grants from National Institute of Arthritis and Musculoskeletal and Skin Diseases, Rheumatology Research Foundation, and R Bruce and Joan M Mickey Research Scholar Fund; and consulting fees for AbbVie, Boehringer Ingelheim, Bristol Myers Squibb, Gilead, Inova Diagnostics, Optum, and Pfizer, unrelated to this work. JFS received research grant funding from the National Institutes of Health unrelated to this work (NIAMS R01 AR077103, and NIAID R01 AI154533). All other authors report no competing interests. This study was funded by the American College of Rheumatology (ACR). The ACR was not involved in any aspect of study design, collection, analysis, or interpretation of data, writing of the report, or the decision to submit the paper for publication. The views expressed here are those of the authors and participating members of the COVID-19 Global Rheumatology Alliance and do not necessarily represent the views of the ACR, the European Alliance of Associations for Rheumatology, the UK National Health Service, the National Institute for Health Research, or the UK Department of Health, or any other organisation. Researchers interested in performing additional analyses from survey data are invited to submit proposals through the COVID-19 Global Rheumatology Alliance at rheumcovid.org . For approved projects, we will provide summary tables and data analyses as requested. We do not currently have institutional review board approval to make the raw data available to other researchers.publishersversionpublishe
Ultrasonic characterization of ultrasound contrast agents
The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at the subharmonic, ultraharmonic and higher harmonic frequencies. This harmonic energy is exploited for contrast enhanced imaging to discriminate the contrast agent from surrounding tissue. The amount of harmonic energy that the contrast agent bubbles generate depends on the bubble characteristics in combination with the ultrasound field applied. This paper summarizes different strategies to characterize the UCAs. These strategies can be divided into acoustic and optical methods, which focus on the linear or nonlinear responses of the contrast agent bubbles. In addition, the characteristics of individual bubbles can be determined or the bubbles can be examined when they are part of a population. Recently, especially optical methods have proven their value to study individual bubbles. This paper concludes by showing some examples of optically observed typical behavior of contrast bubbles in ultrasound fields
- …
