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Optical source of individual pairs of 
colour-conjugated photons
Yury Sherkunov1, David M. Whittaker2 & Vladimir I. Fal’ko1,3

We theoretically demonstrate that Kerr nonlinearity in optical circuits can lead to both resonant four-
wave mixing and photon blockade, which can be used for high-yield generation of high-fidelity 
individual photon pairs with conjugated frequencies. We propose an optical circuit, which, in the 
optimal pulsed-drive regime, would produce photon pairs at the rate up to 5 × 105 s−1 (0.5 pairs per 
pulse) with −g (0) < 10(2) 2 for one of the conjugated frequencies. We show that such a scheme can be 
utilised to generate colour-entangled photons.

The use of individual photons1 is one of the key elements in the implementation of quantum technologies in com-
munications security2, 3 and quantum computation4, which stimulated a great progress in designing solid state 
single-photon sources5–12. Single photon generation can be achieved either by the generation of a correlated photon 
pair in nonlinear media, with detecting one photon of the pair providing the arrival time of the remaining heralded 
single photon8, 9, 11, 12, or by radiative decay of a single quantum emitter, such as quantum dot or diamond colour 
centre5–7, triggered by an optical pulse. Alternatively, a triggered single photon source could be realised with the 
help of photon blockade13–15, where a single photon in a non-linear cavity blocks the transmission of the second 
one due to strong photon-photon interaction. Significant progress in the realisation of quantum security protocols, 
e.g. based on Ekert91 quantum key distribution16, has been made using pairs of entangled photons, such as gen-
erated by the bi-exciton decay17, spontaneous parametric down-conversion (SPDC) in nonlinear crystals18, 19, or 
four-wave mixing (FWM)11, 12, 20–22. To guarantee that only a pair of entangled photons is produced, low pumping 
intensities had to be used in all of the above methods, leading to a low output of photon pairs9, 10, 18–22.

Spontaneous FWM is a process that converts two photons from a coherent light source into a pair of pho-
tons with up- and down-shifted (conjugated) frequencies. In fibres and waveguides, such a process generates 
two-photon states, and additional challenge in developing devices suitable for the generation of correlated photon 
pairs with high fidelity and high efficiency is related to the noise due to the multi-photon generation1 associated 
with the increasing excitation power required for a high output of the device.

Recent progress in generating strong optical nonlinearities at a few-photon level in the systems, e.g., where 
atoms are coupled with a small-mode-volume microcavities23, 24, exciton-polariton microcavities25, or artificial 
two-level atoms based on Josephson junctions embedded in microwave resonators26, 27, has paved the way for 
quantum-by-quantum control of light fields. Strong Kerr-type nonlinearity in selectively tuned microcavity- 
resonators may result in emission of photon pairs in spectrally well-defined modes with tuneable frequencies28, 
with the photon blockade suppressing multiple occupation of conjugated modes15, 28. Hence, we propose an optical 
circuit design depicted in Fig. 1, where non-linear coupling of three photon modes with conjugated frequencies ω± 
and ω ω ω≈ ++ −( )0

1
2

 can be used for the resonant excitation of pure two-photon pairs with optimised high-yield 
output, followed by the Rabi-type mixing29 of the two-photon states |20, 0+, 0−〉 and 00, 1+, 1−〉 corresponding to 
the double occupation of the mode with the frequency ω0 and single occupation of each of the modes with the 
frequencies ω± respectively, which might be used to produce entangled states of colour-conjugated photon pairs30.

The most promising system to address this physics are high-quality toroidal or microrod microcav-
ities, well described by single mode approximation31, 32 coupled with an optically dressed atomic gas in 
electromagnetically-induced transparency regime13, 33, in which non-linearity is expected to significantly exceed 
the losses31, 33, 34.

Model
The proposed circuit, as shown in Fig. 1, can be envisaged as three coupled non-linear cavity resonators, each 
characterised by a single photonic mode: the resonators 2 and 3 have equal frequencies, Ω, and the resonator 1 has 
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frequency Ω′. The two cavities with equal frequencies are coupled with the cavity 1 by hopping amplitude J and by 
hopping amplitude J′ with each other thanks to spatial overlap of the photon modes in the adjacent resonators, as 
described by the Hamiltonian ( = =c 1 ):
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where aiˆ  (aiˆ †) are the annihilation (creation) operators of photons in each resonator, frequency detuning, 
δ = (Ω′ − Ω)/J, and hopping amplitude mismatch x = J′/J. Energies ω0,± correspond to extended eigenmodes of 
H(0),
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Resonators 2 and 3 are driven by a coherent pump (at frequency ω close ω0) with the amplitudes ± F2 , which 
provides coupling to the mode β̂0,

β= − + . .ωH Fe H c (4)i t(1)
0

ˆ ˆ

Then, we take into account Kerr-type nonlinearity, which, for simplicity, will have the same strength, u J , 
on each cavity. It can be described by a Bose-Hubbard model13

Figure 1. Proposed optical circuit. Coherent pumping with frequency ω and amplitudes F2±  is applied to 
single-mode resonators 2 and 3 characterised by frequency Ω. The resonators are coupled with each other by 
hopping amplitude J′ and with resonator 1, which hosts a single photonic mode with frequency Ω′, by hopping 
amplitude J. The system emits correlated photon pairs, with each photon occupying extended conjugated modes 
ω+ and ω− (see text).



www.nature.com/scientificreports/

3Scientific REPORtS | 7: 11418  | DOI:10.1038/s41598-017-11740-w

H u a a a a

H c H( ) ,
(5)

i
i i i i

k k
kk k k k k

(2)

0
2

,

^ ^ ^ ^ ^

^ ^ ^ ^ ^ ^ ^ ^

† †

† † † †

∑

∑κ β β β α β β β β δ

=

= + . . + ++ −
′

′ ′ ′

where

u
s

s
s

s x

s
s x s

2 ,
2 2

, 6
2

,

2 2
[ ( )],

4 2
[3 12 ( ) ]

(6)

00

0 0

2





κ α κ α κ

α α κ δ

α κ δ

= = =

= = −

= − ± − .

±

± ±

±±

The second line in H
(2)ˆ  represents interaction between the extended modes, β0,±. Here, the first term describes 

resonant four-wave mixing of two ω0 photons with the pair of photons at the conjugated frequencies, ω± described 
by the FWM coupling constant κ. The second term produces occupancy-dependent shifts in the photon frequen-
cies. The rest of the terms generated by the canonical transformation from the single-cavity to the extended 
modes are combined into a perturbation Ĥδ ; under conditions which will be identified below, these terms are 
non-resonant for the production process of the photon pairs with conjugated frequencies, hence, they give only a 
small contribution. However, in our numerical analysis below we take this contribution into account.

Now let us consider the two photon states in the system corresponding to n0 + 2 photons in the mode ω0 and 
n+ (n−) photons in the mode ω+ (ω−)
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and n0 photons in the mode ω0 and n+ + 1 (n− + 1) photons in the mode ω+ (ω−)
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The probability of FWM between the states given by Eqs (7) and (8) peaks when the resonance condition
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35, making the states (7) and (8) degenerate. In this case, generation of 

pairs of ω±-photons is promoted by the resonance conditions for converting them from the pairs of pumped 
photons. Condition (9) can be obtained by tuning the frequency detuning δ in Ĥ to the value
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which can be easily seen by substituting Eqs (1), (2), (5) and (6) into Eq. (9). The latter expression was obtained by 
neglecting terms δĤ in H

(2)ˆ . This indicates that the resonance conditions for the states involving different occupa-
tion numbers n± can be separated, whereas the resonance conditions for the processes |n0 + 2, 0+, 0−〉 ⇔ |n0, 1+, 
1−〉 generating a single pair of photons at conjugated frequencies ω±,
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is the same for all values of n0. This condition sets the values of the parameters in Eqs (1) and (5) to
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Results
Preliminary analysis. To get an idea about spectral properties of this optical circuit under the resonance 
conditions (11)–(12), we neglect the non-resonant term ˆδH  in H(2) (see discussion below Eq. (6)) and 
diagonalise

ˆ ˆ ˆH H H (13)(0) (2)
= +

in the basis of the Fock states with total photon number in the system not exceeding N = 4. This approximation 
of the Hilbert space is justified in the case of weak pumping we consider in this article. Then, the spectrum of 
N −photon states is:
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Here, upper/lower signs correspond to the states A/B among |Nα〉 (N = 0, 1, 2, 3; α = A, B) marked in Fig. 2. In 
a pumped system, absorption of photons by the system would be resonantly favoured when N incident photons 
have the same energy as N photons in the cavity, Nω = E(Nα). Thus, Eq. (14) and Fig. 2 provide information about 
resonant pumping frequencies required to excite corresponding photon states |Nα〉 in the system. Note that such 
multi-photon resonances can also be found in weakly dissipating systems.

Numerical analysis. Now we turn our attention to a more realistic system, with coherent pumping with 
amplitudes ± F2  and frequency ω applied to resonators 2 and 3 (see Fig. 1), and described by the Hamiltonian

ˆ ˆ ˆ ˆ= + + .H H H H (15)(0) (1) (2)

We also take into account photon losses in the system due to finite mirror transmittivity quantified by 
frequency-independent decay rate γ. The evolution of such a system can be described using the master equation,
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for the density matrix, ρ, which we write in a Fock basis
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Figure 2. Energy spectrum of the system. Resonant mixing and splitting of N-photon states |n0, n+, n−〉 
(N = n0 + n+  + n−) coupled by the FWM described by the truncated Hamiltonian H

(2)ˆ . The frequency detuning 
δ = (Ω′ − Ω)/J is chosen in such a way that the energy levels corresponding to the states |n0 + 2, 0+, 0−〉 and |n0, 
1+, 1−〉 are in resonance, while the energy levels of the states with multiple occupation of the modes ω+ and ω− 
are red-shifted. Energies of relevant states with N = 0, 1, 2, 3 photons are given in Eq. (14).
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By solving this master equation numerically using the basis that includes states with up to Nmax ≤ 10 photons 
in each mode, we calculate the occupation numbers N Tr[ ]i i iβ β ρ= ˆ ˆ ˆ

†
, zero time-delay pair correlation functions 

for each mode ω0,±, ˆ ˆ†
g NTr[( ) ]/i i i i

(2) 2 2 2β β ρ=  and the probabilities P(20) and P(1+, 1−) to find a photon pair in the 
mode ω0 or the conjugated modes, respectively. We checked the consistency of our calculations by converging the 
results upon increasing Nmax and by comparing the results of modelling where we include and neglect the inter-
action terms Ĥδ .

First, we solved Eq. (16) for a circuit with J′ = J (x = 1) and γ = κ or γ = 8κ (which is typical for GaAs polari-
tonic microcavities25), with weak anti-bunching in the low-flux of ω± photons demonstrated by 

+g (2) shown in 
Fig. 3. In contrast, for the resonant conditions set for J′ = J (x = 1) and with γ = 0.1κ in the system continuously 
pumped with amplitude F, we find a much higher efficiency of production of pure two-photon states. The numer-
ically found steady-state solutions of Eq. (16) display resonances corresponding to the transitions in the spectrum 
in Fig. 2. This is illustrated in Fig. 4 by the pump-frequency ω dependence of probabilities P(1+, 1−) and P(20) to 
find one ω± pair or two ω0 photons in the circuit, occupation numbers for the excited ω0 photons, and the 
two-photon correlation function 

+g (2). For κF  , P(20) and P(1+, 1−) have pronounced resonances at 2ω = E(2A) 
and 2ω = E(2B), corresponding to the two-photon transitions |0〉 → |2A〉 and |0〉 → |2B〉. Resonant excitation of 
individual ω± pairs is also reflected by the dips in g (2)

+
. For larger F, we identify additional resonances in the vicin-

ity of 3ω = E(3A) and 3ω = E(3B), corresponding to the three-photon transitions |0〉 → |3A〉 and |0〉 → |3B〉. Note 
that, at a larger F, the pump induces shifts in the resonance conditions to create multi-photon states, Eq. (14), and 
the maxima, e.g. in N0 shown in Fig. 4, are additionally shifted by power-dependent broadening of |0〉 → |1〉 res-
onance. These pump-induced shifts can be estimated under the assumptions that F κ, Fγ  , and γ κ. 
Solving Eq. (16) analytically in the Fock basis truncated at the total number of photons N = 3, we find

E A E A F
E B E B F
E A E A F
E B E B F

(2 ) (2 ) 1 34 / ,
(2 ) (2 ) 0 23 / ,
(3 ) (3 ) 0 32 / ,
(3 ) (3 ) 2 03 / , (18)

2

2

2

2

κ
κ
κ
κ

→ − .

→ − .

→ + .

→ + .

which is in good qualitative agreement with the numerical results shown in Fig. 4.
As the pumping amplitude grows, the two-photon resonances |0〉 → |2A〉 and |0〉 → |2B〉 become more pro-

nounced, accompanied by increasing P(1+, 1−). However, as shown in the two top panels of Fig. 5, the joint prob-
ability P(1+, 1−) demonstrates saturation at κ~F  for the circuit pumped at resonance frequencies of |0〉 → |2A〉 
and |0〉 → |2B〉 transitions. At the same time 

+g (2) increases signifying the pollution of photon pairs at conjugated 
frequencies with individual ω± photons. This suggests that a mere increase of pumping does not improve the 
output of correlated photon pairs.

Discussion
The insight into how one can increase the output of individual photon pairs comes from the pronounced beatings 
in the temporal evolution of P(1+, 1−) and 

+g (2), which follow switching-on of the excitation source F = θ(t) × const 
(θ is the Heaviside function), Fig. 5. These beatings are the results of two-photon Rabi oscillations29, generated by 
resonance mixing of |n0 + 2, 0+, 0−〉 ⇔ |n0, 1+, 1−〉 states. Hence, we suggest to implement pulsed excitations, 
harvesting photon pairs within optimally chosen delay-time windows. Note that, for the FWM coupling constant 
κ  J, the period, π κ/ 2 , of Rabi oscillations |2, 0+, 0−〉 ⇔ |0, 1+, 1−〉, is long enough for harvesting correlated 
photon pairs at the time interval around the optimal delay tmax at the maximum of P(1+, 1−), without undermin-
ing their spectral identity. Hence, we identify time intervals of the maximal probability to find a high-fidelity 

Figure 3. The system with large losses. Steady state under continuous pumping, as a function of pump 
frequency ω. (a) γ = κ, F = 2κ; (b) γ = 8κ, F = 10κ.
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conjugated photon pair (in those intervals, N+ ≈ P(1+, 1−)). An example of time-dependent P(1+, 1−) and g (2)
+

, 
produced by a Gaussian pulse of duration τ, is shown in the bottom panels in Fig. 5, and in Fig. 6 we show the 
dependence of the size of the maximum output P(1+, 1−) and g (2)

+
, at tmax. The optimal choice of the duration and 

amplitude of the pulse offers a high yield, ~P(1 , 1 ) 0 5.+ −  of an almost pure two-photon state with g (0) 10(2) 2≈+
− .

To achieve the desirable regime of κ γ/ 1, one needs to use materials with a large non-linearity and cavities 
with a high quality factor, Q. Depending on the operational frequency range, these may be ~Q 109 superconduct-
ing microwave resonators26, 27, coupled with superconducting qbits to provide strong Kerr-nonlinearity for micro-
wave frequencies, or trapped atoms in the electromagnetically-induces-transparency regime13, 33 resonantly 
coupled to Q 107 8−~  toroidal31 or microrod32 microcavities to provide strong non-linearity for visible or infrared 
frequencies. In the latter systems31, 33, 34, non-linearity can reach κ . × −~ s1 25 107 1, with γ −s106 1~ , and the 
optimised pulses with repetition rate γ would produce pairs of colour-conjugated photons with ~g (0) 10s

(2) 2−  at 
the rate of up to 0.5 × 106 s−1 or 0.5 photon pairs per an excitation pulse, higher than that achievable for the para-
metric down-conversion process. Indeed, the state at the output of the down-conversion process in a non-linear 
crystal generated by a laser pulse is a two-mode squeezed state36

Figure 4. The system with small losses. Dependence of steady state values of P(1+, 1−), 
+g (2), N0 and P(20) on the 

pump frequency ω for γ = 0.1κ and various amplitudes of the pump. Relevant resonance conditions correspond 
to multi-photon transitions sketched in Fig. 2.
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∞

where |n〉s (|n〉i) is an n-photon Fock state of the signal (idler) mode and μ is the squeezing parameter, which 
depends on the parameters of the laser pulse incident on the crystal. The purity of the source is characterised by 
the normalised zero-time-delay idler-triggered second-order autocorrelation function of the signal mode37

α α
α α

=
〈 〉
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g (0) ( )

( )
,

(20)s
s s i

s s i

(2)
2 2

2
ˆ ˆ
ˆ ˆ

†

†

where postselection is taken into account by the projection of the idler states α α α α〈 〉 = 〈 〉 〈 〉ˆ ˆ ˆ ˆ ˆ ˆ† †x x /i i i i i . Here, αiˆ  
( ˆsα ) is the annihilation operator of a photon in the idler (signal) mode. Thus, for the state generated by the SPDC 
process (19) and µ  1, one finds g (0)s

(2)  ≈ 4μ(1 − 2μ2). At the same time, the average number of photon pairs per 
pulse can be found as37 ˆ ˆ†n (1 5 /2)s s s i

2α α µ µ〈 〉 = 〈 〉 ≈ +  leading to 〈ns〉 ≈ 2.5 × 10−3 pairs per pulse with purity 
gs

(2)(0) = 10−2. Thus, the proposed setup would produce correlated photon pairs with the yield 200 times larger 
then a conventional SPDC source provided the purity is gs

(2)(0) = 10−2. The purity and yield of the proposed 
source of correlated photons would also be better than what has been predicted theoretically38 and achieved 
experimentally10 for the parametric down-conversion process in the cavity-waveguide based systems. Indeed, 
Pomarico et al.38 have theoretically demonstrated that the optimal production rate per pump power in 
narrow-band integrated cavity-waveguide systems based on the parametric down-conversion is 4.8 × 107(smW)−1, 
which, with experimentally available powers not exceeding 2.2 μW (for photon pair generation with 

.~g (0) 0 1s
(2) )10, limits the production rate to 105 s−1.

Finally, the proposed non-linear optical circuit can be used as a colour-entangled photon source30 by connect-
ing one waveguide L to resonator 1 and another waveguide R equally coupled to both resonators 2 and 3 used 
for the excitation pulse. The escape of the two-photon state |1+, 1−〉 into the waveguides L/R, with couplings ~γ, 
would deliver signals to the recipients at the L and R ends,

Figure 5. Steady state parameters and time evolution of the system with small losses. Steady-state parameters 
computed in the system with γ = 0.1κ under continuous pumping as a function of pumping amplitude F 
for resonance frequencies of |0〉 → |2A〉 and |0〉 → |2B〉 transitions marked on Fig. 5 (top). Time evolution 
of pumped circuit, following the switching-on of the pump F = 0.8κ (middle). Rabi-type oscillations of 
two-photon states in a circuit pumped by a Gaussian pulse (dashed line) with parameters indicated in Fig. 6 
(τ = 0.5/κ and F0 = 2.6κ) (bottom).
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who would detect arrival of photons, distinguishing their colour. Projecting the wave function Eq. (21) onto the 
subspace with one photon at L and one at R, recipients L and R would be able to use the colour-entangled photon 
pairs similarly to what was suggested for the polarisation-entangled photon pairs1, 17, 18. Then, optimal output of 
the colour-entangled states would be achieved in a circuit with hopping amplitude mismatch x → 0 ( ′ J J, cor-
responding to a simple linear chain of three cavity-resonators with ω ω≈ ±± J20 , well separated from both ω0 
mode and the pumping field). Indeed, for a typical value J = 0.5 meV achievable for a system of coupled toroidal 
or microrod microcavities39, the frequency separation is of order s100

12 1ω ω−±
−~ , which significantly exceeds 

the value of available FWM coupling constant ~κ . × −s1 25 107 1. In this case, the first two lines of Eq. (21) would 
describe nothing but a Bell pair.
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Figure 6. Parameters of the system pumped by a Gaussian pulse. P(1+, 1−) (top) and 
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