1,198 research outputs found
Does magnetic pressure affect the ICM dynamics?
A possible discrepancy found in the determination of mass from gravitational
lensing data, and from X-rays observations, has been largely discussed in the
latest years (for instance, Miralda-Escude & Babul (1995)). Another important
discrepancy related to these data is that the dark matter is more centrally
condensed than the X-ray-emitting gas, and also with respect to the galaxy
distribution (Eyles et al. 1991). Could these discrepancies be consequence of
the standard description of the ICM, in which it is assumed hydrostatic
equilibrium maintained by thermal pressure? We follow the evolution of the ICM,
considering a term of magnetic pressure, aiming at answering the question
whether or not these discrepancies can be explained via non-thermal terms of
pressure. Our results suggest that the magnetic pressure could only affect the
dynamics of the ICM on scales as small as < 1kpc. Our models are constrained by
the observations of large and small scale fields and we are successful at
reproducing available data, for both Faraday rotation limits and inverse
Compton limits for the magnetic fields. In our calculations the radius (from
the cluster center) in which magnetic pressure reaches equipartition is smaller
than radii derived in previous works, as a consequence of the more realistic
treatment of the magnetic field geometry and the consideration of a sink term
in the cooling flow.Comment: 8 pages with 7 figures included. MNRAS accepted. Minor changes in the
section of discussions and conclusions. Also available at
http://www.iac.es/publicaciones/preprints.htm
The XMM-LSS survey: the Class 1 cluster sample over the extended 11 deg and its spatial distribution
This paper presents 52 X-ray bright galaxy clusters selected within the 11
deg XMM-LSS survey. 51 of them have spectroscopic redshifts
(), one is identified at , and all together make
the high-purity "Class 1" (C1) cluster sample of the XMM-LSS, the highest
density sample of X-ray selected clusters with a monitored selection function.
Their X-ray fluxes, averaged gas temperatures (median keV),
luminosities (median ergs/s) and total mass
estimates (median ) are measured, adapting to
the specific signal-to-noise regime of XMM-LSS observations. The redshift
distribution of clusters shows a deficit of sources when compared to the
cosmological expectations, regardless of whether WMAP-9 or Planck-2013 CMB
parameters are assumed. This lack of sources is particularly noticeable at . However, after quantifying uncertainties due to small
number statistics and sample variance we are not able to put firm (i.e. ) constraints on the presence of a large void in the cluster
distribution. We work out alternative hypotheses and demonstrate that a
negative redshift evolution in the normalization of the relation
(with respect to a self-similar evolution) is a plausible explanation for the
observed deficit. We confirm this evolutionary trend by directly studying how
C1 clusters populate the space, properly accounting for selection
biases. We point out that a systematically evolving, unresolved, central
component in clusters and groups (AGN contamination or cool core) can impact
the classification as extended sources and be partly responsible for the
observed redshift distribution.[abridged]Comment: 33 pages, 21 figures, 3 tables ; accepted for publication in MNRA
An improved method of supercharged transposed latissimus dorsi flap with the skin paddle for the management of a complicated lumbosacral defect
OBJECTIVE: Treatment of nonhealing wounds of lower back often poses a powerful challenge. We present one of the first
report of treatment of a lumbosacral defect with a supercharged latissimus dorsi flap with the skin paddle.
CASE REPORT: We report a case of a 59 yearold man with myeloma of the sacral spine who underwent radiotherapy and chemotherapy and subsequently, laminectomies and placement of hardware for ongoing paresis and spine instability. Then, he developed an open wound and osteomyelitis of the spine with culture positive tuberculous granulomas. After multiple surgical debridement, he presented to our service and was treated with a single stage debridement followed by the performance of a latissimus dorsi musculocutaneous flap based on paraspinal perforators and supercharged.
RESULTS: This solution, allowed for augmentation of blood flow to the muscle with the inferior gluteal artery, provided coverage of the defect resistant to the pressure, and simplified post-operative management of the patient.
CONCLUSIONS: Alternative treatment options, including free tissue transfer, posed difficulties in finding suitable recipient vessels near the defect, in inserting the flap so as to restore its original length without compromising blood flow, and in postoperative care of the patient. Treatment of a lumbosacral defect with a supercharged latissimus dorsi flap with the skin paddle may represent a milestone procedure for complicated lower spine wounds
Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO
published_or_final_versio
Cosmological implications of the KATRIN experiment
The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put
unprecedented constraints on the absolute mass of the electron neutrino,
\mnue. In this paper we investigate how this information on \mnue will
affect our constraints on cosmological parameters. We consider two scenarios;
one where \mnue=0 (i.e., no detection by KATRIN), and one where
\mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect
estimates of some important cosmological parameters significantly. For example,
the significance of and the inferred value of depend
on the results from the KATRIN experiment.Comment: 13 page
The XXL Survey X: K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies
We present the K-band luminosity-halo mass relation, ,
for a subsample of 20 of the 100 brightest clusters in the XXL Survey observed
with WIRCam at the Canada-France-Hawaii Telescope (CFHT). For the first time,
we have measured this relation via weak-lensing analysis down to . This allows us to investigate whether the slope
of the relation is different for groups and clusters, as seen in other
works. The clusters in our sample span a wide range in mass, , at . The K-band luminosity
scales as with and an
intrinsic scatter of . Combining our
sample with some clusters in the Local Cluster Substructure Survey (LoCuSS)
present in the literature, we obtain a slope of and an
intrinsic scatter of . The flattening in the seen
in previous works is not seen here and might be a result of a bias in the mass
measurement due to assumptions on the dynamical state of the systems. We also
study the richness-mass relation and find that group-sized halos have more
galaxies per unit halo mass than massive clusters. However, the brightest
cluster galaxy (BCG) in low-mass systems contributes a greater fraction to the
total cluster light than BCGs do in massive clusters; the luminosity gap
between the two brightest galaxies is more prominent for group-sized halos.
This result is a natural outcome of the hierarchical growth of structures,
where massive galaxies form and gain mass within low-mass groups and are
ultimately accreted into more massive clusters to become either part of the BCG
or one of the brighter galaxies. [Abridged]Comment: A&A, in pres
Responding to Vaccine Safety Signals during Pandemic Influenza: A Modeling Study
Background: Managing emerging vaccine safety signals during an influenza pandemic is challenging. Federal regulators must balance vaccine risks against benefits while maintaining public confidence in the public health system. Methods: We developed a multi-criteria decision analysis model to explore regulatory decision-making in the context of emerging vaccine safety signals during a pandemic. We simulated vaccine safety surveillance system capabilities and used an age-structured compartmental model to develop potential pandemic scenarios. We used an expert-derived multi-attribute utility function to evaluate potential regulatory responses by combining four outcome measures into a single measure of interest: 1) expected vaccination benefit from averted influenza; 2) expected vaccination risk from vaccine-associated febrile seizures; 3) expected vaccination risk from vaccine-associated Guillain-Barre Syndrome; and 4) expected change in vaccine-seeking behavior in future influenza seasons. Results: Over multiple scenarios, risk communication, with or without suspension of vaccination of high-risk persons, were the consistently preferred regulatory responses over no action or general suspension when safety signals were detected during a pandemic influenza. On average, the expert panel valued near-term vaccine-related outcomes relative to long-term projected outcomes by 3∶1. However, when decision-makers had minimal ability to influence near-term outcomes, the response was selected primarily by projected impacts on future vaccine-seeking behavior. Conclusions: The selected regulatory response depends on how quickly a vaccine safety signal is identified relative to the peak of the pandemic and the initiation of vaccination. Our analysis suggested two areas for future investment: efforts to improve the size and timeliness of the surveillance system and behavioral research to understand changes in vaccine-seeking behavior
Fluid phonons and inflaton quanta at the protoinflationary transition
Quantum and thermal fluctuations of an irrotational fluid are studied across
the transition regime connecting a protoinflationary phase of decelerated
expansion to an accelerated epoch driven by a single inflaton field. The
protoinflationary inhomogeneities are suppressed when the transition to the
slow roll phase occurs sharply over space-like hypersurfaces of constant energy
density. If the transition is delayed, the interaction of the quasi-normal
modes related, asymptotically, to fluid phonons and inflaton quanta leads to an
enhancement of curvature perturbations. It is shown that the dynamics of the
fluctuations across the protoinflationary boundaries is determined by the
monotonicity properties of the pump fields controlling the energy transfer
between the background geometry and the quasi-normal modes of the fluctuations.
After corroborating the analytical arguments with explicit numerical examples,
general lessons are drawn on the classification of the protoinflationary
transition.Comment: 30 pages, 3 figure
Time Uncertainty in Quantum Gravitational Systems
It is generally argued that the combined effect of Heisenberg principle and
general relativity leads to a minimum time uncertainty. Most of the analyses
supporting this conclusion are based on a perturbative approach to
quantization. We consider a simple family of gravitational models, including
the Einstein-Rosen waves, in which the (non-linearized) inclusion of gravity
changes the normalization of time translations by a monotonic energy-dependent
factor. In these circumstances, it is shown that a maximum time resolution
emerges non-perturbatively only if the total energy is bounded. Perturbatively,
however, there always exists a minimum uncertainty in the physical time.Comment: (4 pages, no figures) Accepted for publication in Physical Review
- …
