1,198 research outputs found

    Does magnetic pressure affect the ICM dynamics?

    Get PDF
    A possible discrepancy found in the determination of mass from gravitational lensing data, and from X-rays observations, has been largely discussed in the latest years (for instance, Miralda-Escude & Babul (1995)). Another important discrepancy related to these data is that the dark matter is more centrally condensed than the X-ray-emitting gas, and also with respect to the galaxy distribution (Eyles et al. 1991). Could these discrepancies be consequence of the standard description of the ICM, in which it is assumed hydrostatic equilibrium maintained by thermal pressure? We follow the evolution of the ICM, considering a term of magnetic pressure, aiming at answering the question whether or not these discrepancies can be explained via non-thermal terms of pressure. Our results suggest that the magnetic pressure could only affect the dynamics of the ICM on scales as small as < 1kpc. Our models are constrained by the observations of large and small scale fields and we are successful at reproducing available data, for both Faraday rotation limits and inverse Compton limits for the magnetic fields. In our calculations the radius (from the cluster center) in which magnetic pressure reaches equipartition is smaller than radii derived in previous works, as a consequence of the more realistic treatment of the magnetic field geometry and the consideration of a sink term in the cooling flow.Comment: 8 pages with 7 figures included. MNRAS accepted. Minor changes in the section of discussions and conclusions. Also available at http://www.iac.es/publicaciones/preprints.htm

    The XMM-LSS survey: the Class 1 cluster sample over the extended 11 deg2^2 and its spatial distribution

    Full text link
    This paper presents 52 X-ray bright galaxy clusters selected within the 11 deg2^2 XMM-LSS survey. 51 of them have spectroscopic redshifts (0.05<z<1.060.05<z<1.06), one is identified at zphot=1.9z_{\rm phot}=1.9, and all together make the high-purity "Class 1" (C1) cluster sample of the XMM-LSS, the highest density sample of X-ray selected clusters with a monitored selection function. Their X-ray fluxes, averaged gas temperatures (median TX=2T_X=2 keV), luminosities (median LX,500=5×1043L_{X,500}=5\times10^{43} ergs/s) and total mass estimates (median 5×1013h1M5\times10^{13} h^{-1} M_{\odot}) are measured, adapting to the specific signal-to-noise regime of XMM-LSS observations. The redshift distribution of clusters shows a deficit of sources when compared to the cosmological expectations, regardless of whether WMAP-9 or Planck-2013 CMB parameters are assumed. This lack of sources is particularly noticeable at 0.4z0.90.4 \lesssim z \lesssim 0.9. However, after quantifying uncertainties due to small number statistics and sample variance we are not able to put firm (i.e. >3σ>3 \sigma) constraints on the presence of a large void in the cluster distribution. We work out alternative hypotheses and demonstrate that a negative redshift evolution in the normalization of the LXTXL_{X}-T_X relation (with respect to a self-similar evolution) is a plausible explanation for the observed deficit. We confirm this evolutionary trend by directly studying how C1 clusters populate the LXTXzL_{X}-T_X-z space, properly accounting for selection biases. We point out that a systematically evolving, unresolved, central component in clusters and groups (AGN contamination or cool core) can impact the classification as extended sources and be partly responsible for the observed redshift distribution.[abridged]Comment: 33 pages, 21 figures, 3 tables ; accepted for publication in MNRA

    An improved method of supercharged transposed latissimus dorsi flap with the skin paddle for the management of a complicated lumbosacral defect

    Get PDF
    OBJECTIVE: Treatment of nonhealing wounds of lower back often poses a powerful challenge. We present one of the first report of treatment of a lumbosacral defect with a supercharged latissimus dorsi flap with the skin paddle. CASE REPORT: We report a case of a 59 yearold man with myeloma of the sacral spine who underwent radiotherapy and chemotherapy and subsequently, laminectomies and placement of hardware for ongoing paresis and spine instability. Then, he developed an open wound and osteomyelitis of the spine with culture positive tuberculous granulomas. After multiple surgical debridement, he presented to our service and was treated with a single stage debridement followed by the performance of a latissimus dorsi musculocutaneous flap based on paraspinal perforators and supercharged. RESULTS: This solution, allowed for augmentation of blood flow to the muscle with the inferior gluteal artery, provided coverage of the defect resistant to the pressure, and simplified post-operative management of the patient. CONCLUSIONS: Alternative treatment options, including free tissue transfer, posed difficulties in finding suitable recipient vessels near the defect, in inserting the flap so as to restore its original length without compromising blood flow, and in postoperative care of the patient. Treatment of a lumbosacral defect with a supercharged latissimus dorsi flap with the skin paddle may represent a milestone procedure for complicated lower spine wounds

    Cosmological implications of the KATRIN experiment

    Full text link
    The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put unprecedented constraints on the absolute mass of the electron neutrino, \mnue. In this paper we investigate how this information on \mnue will affect our constraints on cosmological parameters. We consider two scenarios; one where \mnue=0 (i.e., no detection by KATRIN), and one where \mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect estimates of some important cosmological parameters significantly. For example, the significance of ns<1n_s<1 and the inferred value of ΩΛ\Omega_\Lambda depend on the results from the KATRIN experiment.Comment: 13 page

    The XXL Survey X: K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies

    Get PDF
    We present the K-band luminosity-halo mass relation, LK,500M500,WLL_{K,500}-M_{500,WL}, for a subsample of 20 of the 100 brightest clusters in the XXL Survey observed with WIRCam at the Canada-France-Hawaii Telescope (CFHT). For the first time, we have measured this relation via weak-lensing analysis down to M500,WL=3.5×1013MM_{500,WL} =3.5 \times 10^{13}\,M_\odot. This allows us to investigate whether the slope of the LKML_K-M relation is different for groups and clusters, as seen in other works. The clusters in our sample span a wide range in mass, M500,WL=0.3512.10×1014MM_{500,WL} =0.35-12.10 \times 10^{14}\,M_\odot, at 0<z<0.60<z<0.6. The K-band luminosity scales as log10(LK,500/1012L)βlog10(M500,WL/1014M)\log_{10}(L_{K,500}/10^{12}L_\odot) \propto \beta log_{10}(M_{500,WL}/10^{14}M_\odot) with β=0.850.27+0.35\beta = 0.85^{+0.35}_{-0.27} and an intrinsic scatter of σlnLKM=0.370.17+0.19\sigma_{lnL_K|M} =0.37^{+0.19}_{-0.17}. Combining our sample with some clusters in the Local Cluster Substructure Survey (LoCuSS) present in the literature, we obtain a slope of 1.050.14+0.161.05^{+0.16}_{-0.14} and an intrinsic scatter of 0.140.07+0.090.14^{+0.09}_{-0.07}. The flattening in the LKML_K-M seen in previous works is not seen here and might be a result of a bias in the mass measurement due to assumptions on the dynamical state of the systems. We also study the richness-mass relation and find that group-sized halos have more galaxies per unit halo mass than massive clusters. However, the brightest cluster galaxy (BCG) in low-mass systems contributes a greater fraction to the total cluster light than BCGs do in massive clusters; the luminosity gap between the two brightest galaxies is more prominent for group-sized halos. This result is a natural outcome of the hierarchical growth of structures, where massive galaxies form and gain mass within low-mass groups and are ultimately accreted into more massive clusters to become either part of the BCG or one of the brighter galaxies. [Abridged]Comment: A&A, in pres

    Responding to Vaccine Safety Signals during Pandemic Influenza: A Modeling Study

    Get PDF
    Background: Managing emerging vaccine safety signals during an influenza pandemic is challenging. Federal regulators must balance vaccine risks against benefits while maintaining public confidence in the public health system. Methods: We developed a multi-criteria decision analysis model to explore regulatory decision-making in the context of emerging vaccine safety signals during a pandemic. We simulated vaccine safety surveillance system capabilities and used an age-structured compartmental model to develop potential pandemic scenarios. We used an expert-derived multi-attribute utility function to evaluate potential regulatory responses by combining four outcome measures into a single measure of interest: 1) expected vaccination benefit from averted influenza; 2) expected vaccination risk from vaccine-associated febrile seizures; 3) expected vaccination risk from vaccine-associated Guillain-Barre Syndrome; and 4) expected change in vaccine-seeking behavior in future influenza seasons. Results: Over multiple scenarios, risk communication, with or without suspension of vaccination of high-risk persons, were the consistently preferred regulatory responses over no action or general suspension when safety signals were detected during a pandemic influenza. On average, the expert panel valued near-term vaccine-related outcomes relative to long-term projected outcomes by 3∶1. However, when decision-makers had minimal ability to influence near-term outcomes, the response was selected primarily by projected impacts on future vaccine-seeking behavior. Conclusions: The selected regulatory response depends on how quickly a vaccine safety signal is identified relative to the peak of the pandemic and the initiation of vaccination. Our analysis suggested two areas for future investment: efforts to improve the size and timeliness of the surveillance system and behavioral research to understand changes in vaccine-seeking behavior

    Fluid phonons and inflaton quanta at the protoinflationary transition

    Full text link
    Quantum and thermal fluctuations of an irrotational fluid are studied across the transition regime connecting a protoinflationary phase of decelerated expansion to an accelerated epoch driven by a single inflaton field. The protoinflationary inhomogeneities are suppressed when the transition to the slow roll phase occurs sharply over space-like hypersurfaces of constant energy density. If the transition is delayed, the interaction of the quasi-normal modes related, asymptotically, to fluid phonons and inflaton quanta leads to an enhancement of curvature perturbations. It is shown that the dynamics of the fluctuations across the protoinflationary boundaries is determined by the monotonicity properties of the pump fields controlling the energy transfer between the background geometry and the quasi-normal modes of the fluctuations. After corroborating the analytical arguments with explicit numerical examples, general lessons are drawn on the classification of the protoinflationary transition.Comment: 30 pages, 3 figure

    Time Uncertainty in Quantum Gravitational Systems

    Get PDF
    It is generally argued that the combined effect of Heisenberg principle and general relativity leads to a minimum time uncertainty. Most of the analyses supporting this conclusion are based on a perturbative approach to quantization. We consider a simple family of gravitational models, including the Einstein-Rosen waves, in which the (non-linearized) inclusion of gravity changes the normalization of time translations by a monotonic energy-dependent factor. In these circumstances, it is shown that a maximum time resolution emerges non-perturbatively only if the total energy is bounded. Perturbatively, however, there always exists a minimum uncertainty in the physical time.Comment: (4 pages, no figures) Accepted for publication in Physical Review
    corecore