28 research outputs found

    An inter-comparison exercise on the application of ICP-MS techniques for measurement of long-lived radionuclides

    Get PDF
    Inductively coupled plasma (ICP) spectrometry techniques are widely used in the fields related to environmental monitoring, nuclear waste disposal and management, radioecology and tracer studies, as well as nuclear forensics and nuclear emergency preparedness. Especially ICP mass spectrometry (ICP-MS) is playing an important role for determination of low-level long-lived radionuclides and their isotopic ratios. ICP optical emission spectrometry (ICP-OES) is commonly used for determining stable elements (Al, Fe, Ca, etc.) and cannot perform isotopic ratio measurement with desirable precision and at low analyte concentrations. Therefore ICP-OES is often used as a supplementary technique to ICP-MS in the analysis, for instance, to screen the matrix composition of a sample, or to determine Sr and Y chemical yield in the Sr-90 analysis, etc. Among the Nordic countries, there are probably less than 20 ICP-MS instruments which are currently applied in the nuclear field for the measurement of radionuclides and their isotopic ratios. Due to different application purposes and technical background of the analysts, each ICP lab has different set-ups and experiences in running these instruments. More efficient application of ICP-MS will be achieved when these experiences are well shared among these labs. Also, for newly established ICP labs or scientists/students in the Nordic countries to quickly build up the competence in operating their instruments in practice, hands-on experience is very valuable. Therefore, within the Nordic-ICP project, an inter-comparison exercise was performed during 2016, which was focused on the measurement of uranium and plutonium isotopes in certified reference material by ICP-MS in combination with radiochemical separation. This report summarizes the results and conclusions obtained base on this inter-comparison exercise

    Blood and feather concentrations of toxic elements in a Baltic and an Arctic seabird population

    Get PDF
    We report blood and feather concentrations of elements in the Baltic Sea and Arctic population of common eiders (Somateria mollissima). The endangered Baltic Sea population of eiders was demonstrably affected by element pollution in the 1990s. While blood concentrations of Hg were higher in Baltic breeding eiders, blood Se, As and Cd concentrations were higher in Arctic eiders. Blood concentrations of Pb, Cr, Zn and Cu did not differ between the two populations. While blood Pb concentrations had declined in Baltic eiders since the 1990s, Hg concentrations had not declined, and were above concentrations associated with adverse oxidative effects in other bird species. Inconsistent with blood concentrations, feather concentrations suggested that Pb, Zn, and Cd exposure was higher in Baltic eiders, and that Hg exposure was higher in Arctic eiders. Our study thus emphasizes the need for comprehensive evaluation of toxic element status, covering the annual cycle of a species. (C) 2016 Elsevier Ltd. All rights reserved.Peer reviewe

    Lead concentrations in blood from incubating common eiders (Somateria mollissima) in the Baltic Sea

    Get PDF
    Here we investigate if lead may be a contributing factor to the observed population decline in a Baltic colony of incubating eiders (Somateria mollissima). Body mass and blood samples were obtained from 50 incubating female eiders at the Baltic breeding colony on Christiansø during spring 2017 (n = 27) and 2018 (n = 23). All the females were sampled twice during early (day 4) and late (day 24) incubation. The full blood was analysed for lead to investigate if the concentrations exceeded toxic thresholds or changed over the incubation period due to remobilisation from bones and liver tissue. Body mass, hatch date and number of chicks were also analysed with respect to lead concentrations. The body mass (mean ± SD g) increased significantly in the order: day 24 in 2018 (1561 ± 154 g) Peer reviewe

    Elemental content of brown crab (Cancer pagurus) - Is it safe for human consumption? A recent case study from Mausund, Norway

    No full text
    The brown crab (Cancer pagurus; the edible crab) is consumed worldwide and greatly appreciated for the essential elements (e.g., Zn, Se) that it contains. However, alongside these, it contains toxic elements that can pose serious risks for human health. For the brown meat parts of the brown crab, which contain considerable Cd concentrations, official legal limits of exposure are still lacking by regulatory bodies, rendering its consumption a potential food safety threat. In this study, a survey was conducted during 2016–2018 in a major Mid-Norway commercial crab fishing area of Mausund in Frøya municipality, Norway, where brown crab media samples were collected to assess the occurrence and profile of select elements, including toxic elements (Cd, Pb, Hg, Sr, As). A yearly median concentration ranging from 6.75 (2016) to 14.0 (2017) mg Cd/kg dry weight (est.: 2.11 (2016) to 4.37 (2017) mg Cd/kg wet weight) indicated high Cd concentrations, which were alarming when compared to the maximum allowed concentration of 0.5 mg/kg wet weight set by the E.U. for raw white crab meat. Human exposures were assessed by estimating intakes of elements per 100 g serving portion of dry edible media (white/brown meat), and the tolerable upper intake levels (ULs) (as specified by the United States National Academy of Sciences) were exceeded for Fe, Cu, Ni, Se, Ca, Mg and P. The median Se and Cd estimated human dietary intakes (EDIs) (from brown crab) were 8.21–8.59 and 9.64–20.0 μg/kg body weight, respectively. The human intake dose (ID) of Cd (from brown crab) reached the order of a few tens of milligrams (mg). In addition, 33% of brown crab samples were found to be suitable for human consumption when the Se:Cd concentration ratio was applied and a stoichiometric excess of Se over Cd was indicated

    Graphs of experimental results given in concentration of trace metals versus time in days

    No full text
    The impact of CO2 leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), “dissolved” (<0.2 µm) concentrations of all elements increased substantially in the water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO2 seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO2 chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (MeDGT) of all metals increased substantially during the first phase of CO2 seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO2 chamber than that of in the control chamber. AlDGT, CrDGT, NiDGT, and PbDGT continued to increase during the second phase of the experiment. There was no change in CdDGT during the second phase, while CuDGT and ZnDGT decreased by 30% and 25%, respectively in the CO2 chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO2 chamber. Our results show that CO2 leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO2 acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota

    Lead isotopic signatures in blood from incubating common eiders (Somateria mollissima) in the central Baltic Sea

    No full text
    The Christiansø colony of common eiders (Somateria mollissima) in the central Baltic Sea were exposed to high levels of Pb during the 2018 breeding season that were not present in 2017. Due to these high Pb blood levels, the present study investigated possible Pb sources and Pb dynamics within this vulnerable colony. We analyzed body mass and lead isotopic ratios (Pb-IRs) in blood taken from the same incubating eiders at the early (day 4) and late (day 24) stages of incubation during the 2018 breeding season (n = 23). Pb-IRs 208/207, 208/206, 206/207, and 207/206 were analyzed using high resolution inductively coupled mass spectrometry. We found largely similar Pb-IRs from the different stages of incubation indicating a predominantly constant endogenous source of Pb exposure. We suggest the increasing Pb levels come from pre-nesting and nesting foraging and from medullary bone release. The similar Pb-IRs also indicate continued metabolization of the medullary bone to meet the nutritional and energy demands of incubation. Comparisons to Pb-IR reports from the Baltic Sea showed multiple sources of pollution distinguished by a difference between Pb-IRs in individuals with Pb blood concentrations >500 μg/kg ww and <500 μg/kg ww. The most highly contaminated individuals in the present study had Pb-IRs similar to those of Pb ammunition indicating shot pellet uptake. This study further emphasizes the need for continued biomonitoring of the Christiansø colony, including fecal sampling and environmental field sampling to identify the origin and extent of dietary Pb exposure on Christiansø. As a representative unit of the Baltic Flyway population; the Christiansø colony provides an important opportunity for continued investigation into Pb contamination, population dynamics, and declines

    Characterization and bioaccessibility assessment of elements in urban aerosols by extraction with simulated lung fluids

    Get PDF
    Airborne particulate matter (PM) size fractions PM2.5–10 (coarse), PM0.1–2.5 (fine) and PM0.1 (ultrafine) were collected from a site affected by high traffic and a city background site within the city of Trondheim, Norway during spring and winter periods. Concentrations of a range of elements in the different size fractions were determined using high-resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS), and bioaccessibility of the elements was assessed by extraction in Gamble's solution (GMB) and artificial lysosomal fluid (ALF). Samples from the trafficked site generally showed higher PM and HNO3 soluble element concentrations than those from the background site. Concentrations of the typical crustal elements Sc, Al, and W were higher in PM collected in spring (March–April) than in winter (December–January), whereas concentrations of most of the assumed primarily vehicle-derived elements, namely As, Cd, and Cu were highest in winter. Principal component analysis (PCA) indicated re-suspension of soil-derived elements and motor vehicle emissions as the major sources of most elements. Enrichment factor values were particularly high for Sb, indicating this element as a valuable marker for vehicular road traffic emissions. The solubility was highly variable among the elements, but overall considerably higher in ALF compared to GMB. Interestingly, most elements had lower solubility in the ultrafine than in the fine size fraction. In conclusion, the levels of PM and its elemental components are generally quite low in Trondheim, but certain elements including Tl, As, W, Sb, and Cu may be readily soluble within the lung and thereby bioaccessible and of potential toxicological concern

    Characterization and bioaccessibility assessment of elements in urban aerosols by extraction with simulated lung fluids

    Get PDF
    Airborne particulate matter (PM) size fractions PM2.5–10 (coarse), PM0.1–2.5 (fine) and PM0.1 (ultrafine) were collected from a site affected by high traffic and a city background site within the city of Trondheim, Norway during spring and winter periods. Concentrations of a range of elements in the different size fractions were determined using high-resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS), and bioaccessibility of the elements was assessed by extraction in Gamble's solution (GMB) and artificial lysosomal fluid (ALF). Samples from the trafficked site generally showed higher PM and HNO3 soluble element concentrations than those from the background site. Concentrations of the typical crustal elements Sc, Al, and W were higher in PM collected in spring (March–April) than in winter (December–January), whereas concentrations of most of the assumed primarily vehicle-derived elements, namely As, Cd, and Cu were highest in winter. Principal component analysis (PCA) indicated re-suspension of soil-derived elements and motor vehicle emissions as the major sources of most elements. Enrichment factor values were particularly high for Sb, indicating this element as a valuable marker for vehicular road traffic emissions. The solubility was highly variable among the elements, but overall considerably higher in ALF compared to GMB. Interestingly, most elements had lower solubility in the ultrafine than in the fine size fraction. In conclusion, the levels of PM and its elemental components are generally quite low in Trondheim, but certain elements including Tl, As, W, Sb, and Cu may be readily soluble within the lung and thereby bioaccessible and of potential toxicological concern
    corecore