377 research outputs found

    Instability and Chaos in Spatially Homogeneous Field Theories

    Full text link
    Spatially homogeneous field theories are studied in the framework of dynamical system theory. In particular we consider a model of inflationary cosmology and a Yang-Mills-Higgs system. We discuss also the role of quantum chaos and its application to field theories.Comment: 28 pages, 4 figures, to be published in J. Math. Phy

    Simulation of ion behavior in an open three-dimensional Paul trap using a power series method

    Full text link
    Simulations of the dynamics of ions trapped in a Paul trap with terms in the potential up to the order 10 have been carried out. The power series method is used to solve numerically the equations of motion of the ions. The stability diagram has been studied and the buffer gas cooling has been implemented by a Monte Carlo method. The dipole excitation was also included. The method has been applied to an existing trap and it has shown good agreement with the experimental results and previous simulations using other methods

    Estrella lausannensis, a new star in the Chlamydiales order.

    Get PDF
    Originally, the Chlamydiales order was represented by a single family, the Chlamydiaceae, composed of several pathogens, such as Chlamydia trachomatis, Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia abortus. Recently, 6 new families of Chlamydia-related bacteria have been added to the Chlamydiales order. Most of these obligate intracellular bacteria are able to replicate in free-living amoebae. Amoebal co-culture may be used to selectively isolate amoeba-resisting bacteria. This method allowed in a previous work to discover strain CRIB 30, from an environmental water sample. Based on its 16S rRNA gene sequence similarity with Criblamydia sequanensis, strain CRIB 30 was considered as a new member of the Criblamydiaceae family. In the present work, phylogenetic analyses of the genes gyrA, gyrB, rpoA, rpoB, secY, topA and 23S rRNA as well as MALDI-TOF MS confirmed the taxonomic classification of strain CRIB 30. Morphological examination revealed peculiar star-shaped elementary bodies (EBs) similar to those of C. sequanensis. Therefore, this new strain was called "Estrella lausannensis". Finally, E. lausannensis showed a large amoebal host range and a very efficient replication rate in Acanthamoeba species. Furthermore, E. lausannensis is the first member of the Chlamydiales order to grow successfully in the genetically tractable Dictyostelium discoideum, which opens new perspectives in the study of chlamydial biology

    Crescent and star shapes of members of the Chlamydiales order: impact of fixative methods.

    Get PDF
    Members of the Chlamydiales order all share a biphasic lifecycle alternating between small infectious particles, the elementary bodies (EBs) and larger intracellular forms able to replicate, the reticulate bodies. Whereas the classical Chlamydia usually harbours round-shaped EBs, some members of the Chlamydia-related families display crescent and star-shaped morphologies by electron microscopy. To determine the impact of fixative methods on the shape of the bacterial cells, different buffer and fixative combinations were tested on purified EBs of Criblamydia sequanensis, Estrella lausannensis, Parachlamydia acanthamoebae, and Waddlia chondrophila. A linear discriminant analysis was performed on particle metrics extracted from electron microscopy images to recognize crescent, round, star and intermediary forms. Depending on the buffer and fixatives used, a mixture of alternative shapes were observed in varying proportions with stars and crescents being more frequent in C. sequanensis and P. acanthamoebae, respectively. No tested buffer and chemical fixative preserved ideally the round shape of a majority of bacteria and other methods such as deep-freezing and cryofixation should be applied. Although crescent and star shapes could represent a fixation artifact, they certainly point towards a diverse composition and organization of membrane proteins or intracellular structures rather than being a distinct developmental stage

    Development of a new chlamydiales-specific real-time PCR and its application to respiratory clinical samples.

    Get PDF
    Originally composed of the single family Chlamydiaceae, the Chlamydiales order has extended considerably over the last several decades. Chlamydia-related bacteria were added and classified into six different families and family-level lineages: the Criblamydiaceae, Parachlamydiaceae, Piscichlamydiaceae, Rhabdochlamydiaceae, Simkaniaceae, and Waddliaceae. While several members of the Chlamydiaceae family are known pathogens, recent studies showed diverse associations of Chlamydia-related bacteria with human and animal infections. Some of these latter bacteria might be of medical importance since, given their ability to replicate in free-living amoebae, they may also replicate efficiently in other phagocytic cells, including cells of the innate immune system. Thus, a new Chlamydiales-specific real-time PCR targeting the conserved 16S rRNA gene was developed. This new molecular tool can detect at least five DNA copies and show very high specificity without cross-amplification from other bacterial clade DNA. The new PCR was validated with 128 clinical samples positive or negative for Chlamydia trachomatis or C. pneumoniae. Of 65 positive samples, 61 (93.8%) were found to be positive with the new PCR. The four discordant samples, retested with the original test, were determined to be negative or below detection limits. Then, the new PCR was applied to 422 nasopharyngeal swabs taken from children with or without pneumonia; a total of 48 (11.4%) samples were determined to be positive, and 45 of these were successfully sequenced. The majority of the sequences corresponded to Chlamydia-related bacteria and especially to members of the Parachlamydiaceae family

    Prevalence and diversity of Chlamydiales and other amoeba-resisting bacteria in domestic drinking water systems.

    Get PDF
    A growing number of human infections incriminate environmental bacteria that have evolved virulent mechanisms to resist amoebae and use them as a replicative niche. These bacteria are designated amoeba-resisting bacteria (ARB). Despite the isolation of these ARB in various human clinical samples, the possible source of infection remains undetermined in most cases. However, it is known that the ARB Legionella pneumophila, for instance, causes a respiratory infection in susceptible hosts after inhalation of contaminated water aerosols from various sources. The Chlamydiales order contains many ARB, such as Parachlamydia acanthamoebae or Simkania negevensis, previously implicated in human respiratory infections with no identified contamination sources. We thus investigated whether domestic water systems are a potential source of transmission of these Chlamydiales to humans by using amoebal culture and molecular methods. Other important ARB such as mycobacteria and Legionella were also investigated, as were their possible amoebal hosts. This work reports for the first time a very high prevalence and diversity of Chlamydiales in drinking water, being detected in 35 (72.9%) of 48 investigated domestic water systems, with members of the Parachlamydiaceae family being dominantly detected. Furthermore, various Legionella and mycobacteria species were also recovered, some species of which are known to be causal agents of human infections

    Undressing of Waddlia chondrophila to enrich its outer membrane proteins to develop a new species-specific ELISA.

    Get PDF
    Waddlia chondrophila, an obligate intracellular bacterium of the Chlamydiales order, is considered as an agent of bovine abortion and a likely cause of miscarriage in humans. Its role in respiratory diseases was questioned after the detection of its DNA in clinical samples taken from patients suffering from pneumonia or bronchiolitis. To better define the role of Waddlia in both miscarriage and pneumonia, a tool allowing large-scale serological investigations of Waddlia seropositivity is needed. Therefore, enriched outer membrane proteins of W. chondrophila were used as antigens to develop a specific ELISA. After thorough analytical optimization, the ELISA was validated by comparison with micro-immunofluorescence and it showed a sensitivity above 85% with 100% specificity. The ELISA was subsequently applied to human sera to specify the role of W. chondrophila in pneumonia. Overall, 3.6% of children showed antibody reactivity against W. chondrophila but no significant difference was observed between children with and without pneumonia. Proteomic analyses were then performed using mass spectrometry, highlighting members of the outer membrane protein family as the dominant proteins. The major Waddlia putative immunogenic proteins were identified by immunoblot using positive and negative human sera. The new ELISA represents an efficient tool with high throughput applications. Although no association with pneumonia and Waddlia seropositivity was observed, this ELISA could be used to specify the role of W. chondrophila in miscarriage and in other diseases

    Statistics of multipath component clustering in an office environment

    Get PDF
    In this paper, directional MIMO measurements in an indoor office environment are presented. A 5-D ESPRIT estimation algorithm is used to extract parameters associated with discrete propagation paths, such as their azimuth of arrival, azimuth of departure, delay, and power. The estimated path parameters are grouped into clusters using the statistical K-power-means algorithm. Statistical distributions are determined for the path parameters within individual clusters and for their change between clusters. To validate the distributional choices, the goodness-of-fit to the proposed distributions is verified using statistical hypothesis tests with sufficient power

    Systeme de tatouage audio informe et iteratif

    Get PDF
    é -Le tatouage d'audio est une méthode qui permet l'insertion d'un message imperceptible dans un flux audio. Bien que le tatouage soit souvent utilisé pour garantir les droits d'auteur, il peut être aussi utilisé pour augmenter l'information transmise dans un contexte de communications. Dans les applications typiques de tatouage, le signal audio qui sert de support est considéré comme du « bruit », néanmoins, ce signal n'est pas aléatoire mais complètement connu lors de la transmission. L'idée principale de ce papier est d'utiliser cette propriété pour à la fois réduire l'imperceptibilité et augmenter la robustesse du système de tatouage. A partir de cette idée, nous proposons un model à partir d'une technique classique de modulation puis nous profitons de la connaissance du signal support pour réaliser la conception un système de tatouage « informé ». Nous avons modifié notre système à l'aide d'un contrôle itératif de puissance et d'un filtrage optimal. Nos avons testé ce système de tatouage informé face à différents traitements et nous l'avons comparé aux systèmes non informés fondés sur le filtrage adapté
    corecore