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Abstract—In this paper, directional MIMO measurements in
an indoor office environment are presented. A 5-D ESPRIT
estimation algorithm is used to extract parameters associated
with discrete propagation paths, such as their azimuth of arrival,
azimuth of departure, delay, and power. The estimated path
parameters are grouped into clusters using the statistical K-
power-means algorithm. Statistical distributions are determined
for the path parameters within individual clusters and for their
change between clusters. To validate the distributional choices,
the goodness-of-fit to the proposed distributions is verified using
statistical hypothesis tests with sufficient power.

I. INTRODUCTION

The last decade, the demand for high throughput wireless

communication has increased enormously. To meet the ever

increasing requirements for reliable communication with high

throughput, novel wireless technologies have to be consi-

dered. A promising approach to increase wireless capaci-

ty is to exploit the spatial structure of wireless channels

through multiple-input multiple-output (MIMO) techniques.

High throughput MIMO specifications are already being inclu-

ded in wireless standards, most notably IEEE 802.11n, IEEE

802.16e, and 3GPP Long Term Evolution (LTE).

The potential benefits of implementing MIMO are highly

dependent on the sort of propagation environment. Therefore,

the development of propagation channel models is indispensa-

ble. In this paper, the geometry-based stochastic type of MIMO

channel model is considered. This kind of model presents

a statistical distribution for the propagation path parameters

(e.g., their direction of arrival, direction of departure, delay,

etc.). Geometry-based stochastic channel models use propa-

gation path clusters in their description: paths with similar

propagation parameters are grouped into clusters. An example

of this type of channel model is the COST 273 model [1].

This work investigates the statistics of path powers, azi-

muths of arrival (AoA), azimuths of departure (AoD), and

delays in an indoor office environment. For this, MIMO

channel sounding measurements with a virtual antenna ar-

ray are carried out on a typical office floor. Parameters of

propagation paths are extracted from measurement data and

are subsequently grouped into clusters using an automatic

clustering algorithm. In this paper, statistical distributions are

provided for the clustered propagation path parameters.

II. MEASUREMENTS

The measurement setup for the MIMO measurements is

shown in Fig. 1. A network analyzer is used to measure the

complex channel frequency response for a set of transmitting

and receiving antenna positions. The channel is probed at 1601

evenly spaced frequency points in a range from 3 GHz to

3.5 GHz. As transmitting (Tx) and receiving antenna (Rx),

broadband omnidirectional biconical antennas with a nominal

gain of 1 dBi are used. To be able to perform measurements for

large Tx-Rx separations, one port of the network analyzer is

connected to the Tx through an RF/optical link with an optical

fiber of length 500 m. The RF signal sent into the Tx and the

RF signal coming from the Rx are both amplified using an

amplifier with an average gain of 37 dB.

Measurements are performed using a virtual MIMO array.

The virtual array is created by moving the antennas to prede-

fined positions along rails in two directions in the horizontal

plane using stepper motors. Both Tx and Rx are moved along

10 by 4 virtual uniform rectangular arrays (URAs), and are

polarized vertically and positioned at a height of 1.80 m during

measurements. The URA elements are spaced 4.29 cm apart,

which is equal to half a wavelength at 3.5 GHz in order to

avoid spatial aliasing. The stepper motor controllers, as well

as the network analyzer, are controlled by a personal computer

(PC). At each of the 1600 (10× 4× 10× 4) combinations of

Tx and Rx positioning along the URAs, the network analyser

measures the S21 scattering parameter ten times (i.e., 10 time
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Fig. 1. Measurement setup
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observations).

The measurements are carried out on the first floor of an

office building. Fig. 2 presents a floor plan of the measurement

environment, along with some relevant dimensions. Most inner

walls are plasterboard. Fig. 2 also shows locations of the Tx

and Rx during measurements. A total of 9 MIMO measure-

ments are performed, their Tx and Rx locations indicated

by couples of Txi and Rxi (i = 1, . . . , 9). Measurements

are executed in both line-of-sight (LoS) and non line-of-sight

(nLoS) conditions: measurement locations 1, 5, and 6 are LoS.
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Fig. 2. Floor plan of the measurement environment with Tx and Rx locations

III. DATA PROCESSING

A. Extraction of specular paths

The power, azimuth of arrival (AoA), azimuth of departure

(AoD), and delay parameters of propagation paths or multipath

components (MPCs) are extracted from measurement data

using the 5-D unitary ESPRIT (Estimation of Signal Parame-

ters via Rotational Invariance Techniques) algorithm [2]. The

coordinate system with respect to which AoA and AoD are

defined is shown in Fig. 2.

URAs allow easy application of the spatial smoothing

technique to increase the number of observations [3]. We

choose sub-URAs with dimensions 2/3 of the length in each

direction of the original 10 by 4 URA, i.e., 7 by 3 sub-URAs.

In total at both link ends, 64 different 7 by 3 sub-URAs

can be found, thereby increasing the number of observations

by a factor of 64. Together with the previously mentioned

10 time observations, the total number of available observa-

tions per measurement location is 640. From the measured

frequency points, 10 equally spaced frequencies are selected

from 3.5 GHz down for use with the ESPRIT algorithm.

The considered constant spacing between these frequencies

is 4 MHz. With this choice, the maximum resolvable path

length is 75 m, which is expected to be large enough to

limit possible aliasing in the delay domain. Summarizing, 5-D

unitary ESPRIT is applied to 640 observations of a 5-D vector

space of size 7 × 3 × 7 × 3 × 10.

The ESPRIT algorithm is used to estimate the 100 most

strongest paths from measurement data. The estimated MPCs

are postprocessed in the delay domain by considering the

power delay profile (PDP). For a typical PDP, power is

concentrated at small delays while at large delays only the

noise floor remains. In our measurements, the noise floor is

set to the power of the MPC with the largest delay. Following,

all MPCs with power less than the noise floor plus a noise

threshold of 6 dB are omitted from further analysis. Fig. 3(a)

shows a scatter plot of detected MPCs versus their AoA, AoD,

and delay for measurement location 7 (nLoS). The power on

a dB-scale of each MPC is indicated by a color.

B. Clustering of specular paths

For our data, automatic joint clustering of AoA, AoD, and

delay is performed using the K-power-means algorithm [4].

The K-power-means algorithm result is in agreement with the

COST 273 definition of a cluster as a set of MPCs with similar

propagation characteristics [1]. Because some parameters for

clustering are circular, multipath component distance (MCD)

is used as the distance measure for clustering [4].

For each measurement location, the number of clusters for

the K-power-means algorithm is varied between 2 and 10.

The optimal number of clusters is selected using the Kim-

Parks index [5]. The number of clusters according to Kim-

Parks index varies from 3 to 8 between measurement locations,

and for all MIMO measurements combined, a total of 45

clusters are found (16 clusters from LoS and 29 clusters from

nLoS measurements). Next, to ease the statistical analysis,

clearly outlying MPCs are removed from each cluster using

the shapeprune algorithm detailed in [4]. Fig. 3(b) shows

clustering results for measurement location 7 (nLoS). MPCs

grouped into different clusters are shown with different marker

shapes and colors (in total 4 clusters).

IV. SIGNAL MODEL

For the analysis of the within-cluster and between-cluster

propagation path parameters, the following basic signal model

is used. For one of the measurement locations, the complex

received envelope h
(

φA, φD, τ
)

is written as function of the

propagation path parameters: φA denotes the AoA, φD the

AoD, and τ is the path delay. The use of MPC clusters is

reflected in the complex envelope’s notation:

h
(

φA, φD, τ
)

=

nC
∑

c=1

nP,c
∑

k=1

Ac,k · δ
(

φA − ΦA
c,k

)

· δ
(

φD − ΦD
c,k

)

· δ (τ − Tc,k) (1)

In (1), nC is the number of clusters and nP,c is the number

of MPCs within cluster c. For the k-th propagation path in

cluster c, Ac,k is its received complex amplitude, ΦA
c,k and

ΦD
c,k are its AoA and AoD, and Tc,k is its delay. δ (.) denotes

the Dirac delta function. We also define Pc,k as the power

of path k in cluster c, i.e., Pc,k = E
[

|Ac,k|
2
]

where the

expectation operator E [·] is taken over all 640 observations of

Ac,k. To allow statistical analysis of propagation parameters

of all measurement locations collectively, the dependence of

power Pc,k and delay Tc,k on distance is removed. Power is
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Fig. 3. MPC scatter plot (a) and clustering (b) for measurement location 7

rescaled such that the total received MPC power equals one

and the origin of the delay axis is set to coincide with the first

arriving MPC. Assuming larger values of c or k mean later

arriving paths:

nC
∑

c=1

nP,c
∑

k=1

Pc,k = 1 and T1,1 = 0 ns (2)

Each of the propagation path parameters Pc,k, ΦA
c,k, ΦD

c,k,

and Tc,k are split up into a between-cluster and a within-cluster

part as follows:

Pc,k = pc pc,k ΦA
c,k = φA

c + φA
c,k

ΦD
c,k = φD

c + φD
c,k Tc,k = τc + τc,k

(3)

In (3), the parameters pc, φA
c , φD

c , and τc denote between-

cluster propagation parameters, and are representative for

the location of each cluster in the power/AoA/AoD/delay

parameter space. Also in (3), pc,k, φA
c,k, φD

c,k, and τc,k are

within-cluster propagation parameters. The within-cluster pa-

rameters can be seen as the deviations of individual paths

from the cluster’s location as dictated by the between-cluster

parameters. The within-cluster parameters are therefore fully

determined by the spread of power, AoA, AoD, and delay in

each of the clusters. The following sections will work towards

a statistical description of the between-cluster and within-

cluster propagation parameters.

V. STATISTICAL DISTRIBUTIONS PER CLUSTER

This section discusses the statistical distributions of Pc,k,

ΦA
c,k, ΦD

c,k, and Tc,k within each cluster. The proposed distri-

butions are location-scale distributions: they are parameterized

by a location parameter, which determines the distribution’s

location or shift, and a scale parameter, which determines the

distribution’s dispersion or spread.

A. Power Pc,k

A natural model for the fading of MPC powers Pc,k in

cluster c is the lognormal fading model. For cluster c, it is

investigated if the samples Pc,k on a dB-scale could originate

from a normal distribution. This normal distribution is parame-

terized by the mean µc (location parameter) and the standard

deviation σc (scale parameter) of Pc,k in dB.

Composite normality of Pc,k [dB] is assessed with a few

statistical tests in literature such as the Anderson-Darling (AD)

test, the Shapiro-Wilk (SW) test, and the Henze-Zirkler (HZ)

test. Multiple tests for normality are executed as no uniformly

most powerful test exists against all possible alternative dis-

tributions. Of the 45 clusters in this measurement campaign,

normality of Pc,k [dB] is retained at the 5% significance level

for 39, 38, and 40 clusters with the AD, SW, and HZ tests,

respectively. For the 45 clusters, average p-values are 0.38

(AD), 0.43 (SW), and 0.44 (HZ). Concluding, normality for

Pc,k [dB] is assumed in the following, as the majority of

clusters pass the different goodness-of-fit tests.

B. Azimuths of arrival ΦA
c,k and departure ΦD

c,k

In literature, various distributions are proposed for the

azimuth angles ΦA
c,k and ΦD

c,k within a certain cluster c, among

which the normal distribution and the Laplacian distribution.

Additionally, we consider the von Mises distribution. The von

Mises distribution can be thought of as an analogue of the

normal distribution for circular data. For the AoAs ΦA
c,k in

cluster c, the von Mises probability density function (pdf)

pvM

(

ΦA
c,k ; αA

c , κA
c

)

is given as:

pvM

(

ΦA
c,k ; αA

c , κA
c

)

=
exp

(

κA
c cos

(

ΦA
c,k − αA

c

))

2πI0 (κA
c )

(4)

In (4), I0 (·) is the modified Bessel function of the zeroth order.

The two parameters that characterize the von Mises pdf are

αA
c , the circular mean of ΦA

c,k (location parameter), and κA
c ,

which is a measure of concentration of ΦA
c,k angles around

αA
c (scale parameter). For the von Mises pdf of AoDs ΦD

c,k

in cluster c, an expression analogous to (4) can be written.

The most fit distribution is determined by performing simple

likelihood ratio tests (LRTs): the statistical distribution which

renders the largest likelihood is most appropriate for describing

the azimuth angle statistics for that cluster. For the 45 clusters

in this measurement campaign, all LRTs decided in favor



of the von Mises distribution for both ΦA
c,k and ΦD

c,k. We

therefore conclude that the von Mises distribution is most fit

for describing the statistics of azimuth angles within clusters.

C. Delay Tc,k

Delays Tc,k within cluster c are modeled according the

principle laid out by the well-known, cluster-based Saleh-

Valuenzuela (SV) model [6]. Herein, the waiting time bet-

ween the arrival of two consecutive MPCs within a certain

cluster is modeled by an exponential distribution. For the

MPCs in cluster c (assuming the delays are ordered such

that Tc,1 < Tc,2 < . . . < Tc,nP,c
), the exponential pdf

pexp (Tc,k | Tc,k−1 ; λc) as function of the delay Tc,k of the

k-th MPC, given that the (k − 1)-th MPC arrived at known

delay Tc,k−1, is written as:

pexp (Tc,k | Tc,k−1 ; λc) =
1

λc

exp

(

−
Tc,k − Tc,k−1

λc

)

(5)

In (5), the exponential distribution has the parameter λc which

corresponds to the mean waiting time between consecutive

MPCs in cluster c (scale parameter). An additional distributi-

onal parameter θc is defined as the delay of the first arriving

path in cluster c, i.e., θc = Tc,1 (location parameter).

The plausibility of an exponential distribution for the arrival

times Tc,k is then validated by executing an Anderson-Darling

(AD) goodness-of-fit test for composite exponentiality. For the

45 clusters in the measurement campaign, the minimum, aver-

age, and maximum p-values associated with the AD test are

equal to 0.06, 0.40, and 0.92, respectively. This means that, at

the 5% significance level, all 45 clusters retain exponentiality.

VI. STATISTICS OF THE DISTRIBUTIONAL PARAMETERS

This section models the between-cluster and within-cluster

propagation parameters as defined in (3). The propagation

parameters are fully determined by the distributional para-

meters of the location-scale distributions of Section V. In

the following, the between-cluster propagation parameters are

identified with the location parameters of these distributions,

i.e., for cluster c:

φA
c , αA

c φD
c , αD

c τc , θc pc , µc (6)

The within-cluster propagation parameters are characterized

by the scale parameters of the distributions, i.e., for the MPCs

in cluster c:

φA
c,k → κA

c φD
c,k → κD

c τc,k → λc pc,k → σc (7)

In the following, the statistics of the distributional pa-

rameters are discussed. In this section, distinction is made

between distributional parameters originating from LoS and

nLoS measurements.

A. Location parameters (between-cluster)

1) Cluster angular means φA
c and φD

c : The suitability

of a uniform distribution in (−π, π] for modeling φA
c and

φD
c is investigated. No distinction is made between LoS and

nLoS, as the uniform distribution is not parameterized by any

distributional parameter (which could change between these

two circumstances). The premise of a uniform distribution is

validated through a statistical hypothesis test, namely Rao’s

spacing test for uniformity. For both the 45 cluster mean AoAs

φA
c and the 45 cluster mean AoDs φD

c , Rao’s spacing test

retained the null hypothesis of a uniform distribution at the

5% significance level (p-values of 0.67 and 0.14, respectively).

2) Cluster onset τc: We adopt the Saleh-Valenzuela model

for the between-cluster delay: the waiting time between the

onsets τc − τc−1 of two consecutively arriving clusters is

modeled by an exponential distribution [6]. This exponential

distribution is fully parameterized by the mean of waiting

times τc − τc−1.

Under the assumption of an exponential distribution, it is

first investigated if the mean waiting time between clusters

differs between LoS and nLoS measurements. This done by

executing the two-sample Anderson-Darling (AD) test, which

assesses if τc−τc−1 grouped according to LoS or nLoS could

both originate from the same statistical distribution. This test

results in a p-value of 0.04, which is borderline significant

at the 5% level and prompts us to distinguish between LoS

and nLoS. Next, for LoS and nLoS separately, composite

exponentiality of τc − τc−1 is verified using the one-sample

AD test. An exponential distribution is accepted for both LoS

and nLoS at the 5% significance level (p-values of 0.13 and

0.12, respectively). The mean of waiting times τc − τc−1 is

estimated at 2.30 ns for LoS and 1.21 ns for nLoS.

3) Cluster mean power pc: Significant correlation is found

between cluster mean power pc and cluster onset τc: Spear-

man’s rank correlation coefficient is equal to −0.80 for LoS

and −0.58 for nLoS, both are significant at the strict 1% level

with p-values of 1.8 · 10−4 for LoS and 9.7 · 10−4 for nLoS.

The Saleh-Valenzuela model proposes a linear decrease of the

average pc of MPC powers in dB with the cluster onset τc in

ns [6]:

pc = a0 + a1 · τc + a2 · Dc + a3 · τc · Dc + ǫc (8)

In the linear model (8), pc is made dependent on τc and the

dummy variable Dc. The value of Dc is one for clusters stem-

ming from LoS measurements and is zero for nLoS clusters.

As such, Dc accounts for possible changes in the intercept and

slope of (8) between LoS and nLoS situations. Furthermore, a0

through a3 are regression parameters, and the term ǫc denotes

the model’s error for cluster c and is generally assumed to

be zero-mean normally distributed. The regression parameters

in (8) are estimated using a backward elimination procedure:

simple t-tests are carried out on a0 through a3 to determine

which of these regression parameters can assumed to be zero at

the 5% significance level. The backward elimination procedure

resulted in the following estimated regression parameters:

a0 = −20.14 a1 = −0.81 a2 = 0 a3 = 0 (9)

The standard deviation of ǫc in (8) is estimated at 4.72 dB.

The coefficient of determination of the fitted model is equal

to 0.42. In (9), it is noted that the regression parameters a2

and a3 associated with the dummy variable Dc are assumed



to be zero by the backward elimination procedure. This means

that the form of the exponential and power law models is not

significantly different between LoS and nLoS measurements.

Fig. 4 shows a scatter plot of pc versus τc along with the fitted

linear model.
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Fig. 4. Scatter plot of pc versus τc and fitted linear model

B. Scale parameters (within-cluster)

To our knowledge, no examples of possible statistical dis-

tributions for the scale parameters exist in literature. We will

therefore use the entropy-maximizing normal distribution to

model these parameters. As the scale parameters can only take

on positive values, they are first log-transformed to match the

support of the normal distribution (i.e., any positive or non-

positive number).

1) Cluster angular concentrations κA
c and κD

c : It is first

investigated if the statistical distribution of κA
c (κD

c ) differs

significantly between LoS and nLoS measurements. For this,

the two-sample Anderson-Darling (AD) test is used on obtai-

ned values of κA
c (κD

c ) grouped according to LoS or nLoS. For

both κA
c and κD

c , this test detects no difference between LoS

and nLoS distributions at the 5% significance level (p-values

of 0.16 and 0.20, respectively). Without making distinction

between LoS and nLoS, the assumptions of normality for

log
(

κA
c

)

and log
(

κD
c

)

are validated using the Anderson-

Darling (AD), Shapiro-Wilk (SW), and Henze-Zirkler (HZ)

tests. For log
(

κA
c

)

, all three tests accepted normality at the

5% level with p-values of 0.37 (AD), 0.46 (SW), and 0.31

(HZ). The sample mean and sample standard deviation of

log
(

κA
c

)

are equal to 0.50 and 0.33, respectively. Furthermore,

normality is also accepted for log
(

κD
c

)

with p-values of

0.09 (AD), 0.14 (SW), and 0.59 (HZ). The sample mean

and standard deviation of log
(

κD
c

)

equal 0.36 and 0.32,

respectively.

2) Cluster mean waiting time between MPCs λc: It is

first assessed whether λc (in ns) originating from LoS or

nLoS measurements could have been drawn from the same

statistical distribution. A two-sample AD test on λc grouped

according to LoS or nLoS results in a p-value of 0.19,

indicating no significant difference between LoS and nLoS

at the 5% level. Next, normality for log (λc) without making

distinction between LoS and nLoS is considered: AD, SW, and

HZ hypothesis tests accepted normality at the 5% level with

p-values of 0.13, 0.21, and 0.13, respectively. We therefore

assume a normal distribution for log (λc): the sample mean

and sample standard deviation of log (λc) are equal to 0.03

and 0.35, respectively.

3) Cluster standard deviation of power σc: For σc (in dB),

a two-sample AD test decides there is no significant change in

the statistical distribution of this parameter between LoS and

nLoS measurements (p-value of 0.34). Normality for log (σc)
is assessed with the AD, SW, and HZ hypothesis tests, all of

which accepted normality at the 5% level (p-values of 0.61,

0.78, and 0.41, respectively). The sample mean and sample

standard deviation of log (σc) are equal to 0.88 and 0.14,

respectively.

VII. CONCLUSIONS

In this paper, the statistics of propagation path parameters

including their azimuth of arrival, azimuth of departure, delay,

and power, are determined in an indoor office environment.

Path parameters are grouped into clusters. Statistical distri-

butions and correlations are determined for the path parame-

ters within individual clusters and for their change between

clusters. As validation for the distributional choices, statistical

goodness-of-fit tests are used.
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