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Abstract  

Originally composed of the single family Chlamydiaceae, the Chlamydiales order has 1 

extended considerably in the last decades. Chlamydia-related bacteria were added and 2 

classified in 6 different families and family-level lineages: the Criblamydiaceae, 3 

Parachlamydiaceae, Piscichlamydiaceae, Rabdochlamydiaceae, Simkaniaceae and 4 

Waddliaceae. While several members of the Chlamydiaceae family are known pathogens, 5 

recent studies showed diverse associations of Chlamydia-related bacteria with human and 6 

animal infections. Some of these latter bacteria are preoccupying since, given their ability to 7 

replicate in free-living amoebae, they may also replicate efficiently in other phagocytic cells, 8 

including cells of the innate immune system. Thus, a new Chlamydiales-specific real-time 9 

PCR targeting the conserved 16S rRNA gene was developed. This new molecular tool can 10 

detect at least 5 DNA copies and show very high specificity without cross-amplification 11 

from other bacterial clade DNA. The new PCR was validated with 128 clinical samples 12 

positive or negative for Chlamydia trachomatis or C. pneumoniae. Among 65 positive 13 

samples, 61 (93.8%) were found positive with the new PCR. The 4 discordant samples, re-14 

tested with the original test, were negative or below detection limits. Then, the new PCR 15 

was applied to 422 nasopharyngeal swabs taken from children with and without 16 

pneumonia: 48 (11.4%) samples were positive, of which 45 were successfully sequenced. 17 

The majority of the sequences corresponded to Chlamydia-related bacteria and especially to 18 

members of the Parachlamydiaceae family.19 
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 20 

INTRODUCTION 21 

The Chlamydiales order contains obligate intracellular bacteria separated in 7 different 22 

families and family-level lineages, the Chlamydiaceae, the Criblamydiaceae, the 23 

Parachlamydiaceae, the Piscichlamydiaceae, the Rhabdochlamydiaceae, the Simkaniaceae 24 

and the Waddliaceae (16, 23-25). Some of these bacteria are established pathogens and for 25 

instance, Chlamydia trachomatis, C. psittaci and C. pneumoniae from the Chlamydiaceae 26 

family can cause significant human infections. The others families constitute a group called 27 

Chlamydia-related bacteria (also referred as Chlamydia-like organisms), which has been yet 28 

poorly investigated. Like the Chlamydiaceae, these Chlamydia-related bacteria are obligate 29 

intracellular bacteria that also exhibit a biphasic developmental cycle. Serological and 30 

molecular studies have implicated some species in various human and animal infections. 31 

Parachlamydia acanthamoebae is associated with human pneumonia (6, 12, 26, 27) and 32 

might cause bovine abortions (5, 38, 39), Simkania negevensis is responsible of respiratory 33 

infections, especially in children (18, 20, 22, 28, 32-35) whereas Waddlia chondrophila has 34 

been reported to cause abortion in bovines (14, 40) and is strongly suspected as an agent of 35 

miscarriage in human (3, 4). Some of these newly discovered Chlamydia-related bacteria 36 

that resist digestion by several environmental amoebae are also resistant to professional 37 

phagocytes of the innate immune system such as macrophages. Considering their potential 38 

threat on human health, it is important to be able to detect these obligate intracellular 39 

bacteria, since classical culture methods are ineffective. Thus, quantitative real-time PCRs 40 

have been developed (6, 21, 26, 31, 42), however they target specifically only one single 41 

species. Moreover, the only “broad-range” quantitative real-time PCR previously developed 42 
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in the field is a family-specific PCR amplifying DNA from members of the Chlamydiaceae 43 

family, which will not allow detection of Chlamydia-related bacteria (17). Since the 44 

biodiversity of Chlamydiales appears to be much larger than previously expected and new 45 

chlamydial strains are constantly discovered (7-9, 29, 30, 41), a molecular diagnostic tool 46 

able to detect any member of the Chlamydiales order is needed. Such a molecular tool would 47 

help in identifying the potential pathogenic role of Chlamydia-related bacteria and in 48 

specifying the true diversity of Chlamydiales, which is likely yet underestimated. 49 

Thus, we developed a Chlamydiales-specific real-time Taqman PCR (hereafter named pan-50 

Chlamydiales PCR), that we validated using 128 clinical samples available from previous 51 

studies. We also applied this new PCR to 422 nasopharyngeal swabs samples taken from 52 

children with and without pneumonia, to investigate for the presence of chlamydial DNA. 53 

 54 

MATERIAL AND METHODS 55 

DNA extraction. Nasopharyngeal swabs samples were extracted automatically with the LC 56 

automated system (Roche, Rotkreuz, Switzerland) and the MagNA Pure LC DNA isolation kit 57 

I (Roche). Extracted DNAs were re-suspended in 100 µl of the provided elution buffer. One 58 

negative extraction control was included for each extraction run (32 wells/extraction run). 59 

Primers and probe. Based on an alignment of the 16S ribosomal RNA sequences available 60 

in Genbank database (http://www.ncbi.nlm.nih.gov/genbank/), specific primers and probe 61 

were designed using the Geneious software 5.0.3 and primer3Plus (37). Locked Nucleic 62 

Acids (underlined below) were added to ensure a higher specificity. We chose a primer 63 

forward panCh16F2 (5’-CCGCCAACACTGGGACT-3’), a primer reverse panCh16R2 (5’-64 

GGAGTTAGCCGGTGCTTCTTTAC-3’) and a probe panCh16S (5’-FAM [6-carboxyfluorescein]-65 
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CTACGGGAGGCTGCAGTCGAGAATC-BHQ1 [Black Hole Quencher]-3’), targeting a fragment 66 

of about 207 to 215 bp in the 16S ribosomal RNA gene (length variable according to the 67 

species). 68 

Real-time PCR assay. PCR assays were performed in 20 µl, with iTaq supermix with ROX 69 

(BioRad, Reinach, Switzerland), 0.1 µM of each primer (Eurogentec, Seraing, Belgium), 0.1 70 

µM of probe (Eurogentec), molecular biology grade water (Sigma-Aldrich, Buchs, 71 

Switzerland) and 5 µl of DNA sample. Cycling conditions were 3 min at 95°C, followed by 50 72 

3-steps cycles of 15 s at 95°C, 15 s at 67°C and 15 s at 72°C. PCR products, tested in 73 

duplicate, were detected with a StepOne instrument (Applied Biosystems, Zug, Switzerland) 74 

for children nasopharyngeal swabs and with a ABI 7900 (Applied Biosystems) for analytic 75 

validation on samples from the retrospective study. Water was used as a negative PCR 76 

control.  77 

Quantification and positive recombinant plasmid control. DNA from Parachlamydia 78 

acanthamoebae strain Hall’s coccus was isolated from a purified bacterial culture available 79 

in our laboratory, using the Wizard Genomic DNA purification kit (Promega, Duebendorf, 80 

Switzerland). A PCR reaction was performed using the polymerase AmpliTaq Gold (Applied 81 

Biosystems) and the primers Pacstd16SF2 (5'-GCTGACGGCGTGGATGAGGC-3') and 82 

Pacstd16SR2 (5'-CCTACGCGCCCTTTACGCCC-3'). The PCR products were purified with the 83 

MSB Spin PCRapace kit (Invitek, Berlin, Germany) and cloned according to the 84 

manufacturer’s protocol, in the pCR2.1-TOPO vector (Invitrogen, Basel, Switzerland) 85 

containing ampicilin and tetracycline resistance genes. Isolation of plasmidic DNA was 86 

performed with the QIAprep Spin Miniprep Kit (Qiagen, Kombrechtikon, Switzerland). The 87 

construction was checked by sequencing, using primers of the pCR2.1-TOPO vector 88 
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provided in the kit. Quantification of the recombinant plasmid was done on a Nanodrop ND-89 

1000 (Witech, Littau, Switzerland), and serial dilutions (105 to 100 copies/µl) were used as 90 

positive controls, to establish a standard curve for quantification and to check the 91 

reproducibility and efficiency of detection (see below). Negative controls, standard curve 92 

and samples were all analyzed in duplicate.  93 

Analytical specificity, efficiency and reproducibility of the PCR 94 

The specificity of the new quantitative PCR was tested using DNA extracted from different 95 

bacteria commonly found in respiratory tract samples (Table 1). DNAs were diluted at 105 96 

copies of the 16S rRNA gene per reaction. Using the positive control plasmid, the analytical 97 

sensitivity and the reproducibility of the PCR was assessed on duplicates with 10-fold 98 

dilutions (5x105 to 5x100 copies/reaction) in 12 independent runs. The efficiency of 99 

detection was performed with the positive control plasmid diluted at 50, 20, 5, 1 and 0.5 100 

DNA copies per reaction; each concentration tested in 20 replicates. The range of the PCR 101 

was also evaluated with chlamydial DNA from 15 different strains (Table 2). 102 

Clinical samples. The new pan-Chlamydiales PCR was validated on 128 clinical samples. 103 

Different clinical samples including urines, cervico-vaginal, anorectal and nasopharyngeal 104 

swabs were collected and DNA was extracted between 2004 and 2010 by the diagnostic 105 

laboratory of the Institute of Microbiology, Lausanne, Switzerland (Table 3). These samples 106 

were originally tested with a real-time PCR specific of Chlamydia trachomatis (113 samples) 107 

(2, 13) and with a multiplex real-time PCR (42) detecting specifically Chlamydia 108 

pneumoniae but also Mycoplasma pneumoniae and Legionella pneumophila (15 samples). 109 

Positive samples for M. pneumoniae (5 samples) or L. pneumophila (3 samples) were 110 

included to confirm the high specificity of the new real-time PCR. We then applied our new 111 
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pan-Chlamydiales PCR to 422 nasopharyngeal swabs prospectively collected between 2008 112 

and 2010 at the University Hospitals of Geneva from children with (n=265) or without 113 

(n=157) pneumonia. Pneumonia was defined by the presence of at least one of the 114 

following symptoms: fever (>38°C), cough, dyspnea, tachypnea and an infiltrate or a 115 

consolidation at the lung X-ray. All samples were systematically tested for the following 116 

viruses by PCR: respiratory syncytial virus A, B, adenovirus A, B, C and E, coronavirus 117 

HKU1, OC43, 229E, NL63, parainfluenzae virus 1, 2 and 3, HMPV A, B, enterovirus A, B, C, D, 118 

rhinovirus A, B, influenza virus A, B and H1N1 for some samples during the 2009 epidemics. 119 

In addition, the nasopharyngeal samples were tested by PCR for the presence of 120 

Streptococcus pneumoniae and by real-time PCR for Mycoplasma pneumoniae and Legionella 121 

pneumophila. Children were aged between 1 and 15 years old: median age in the group of 122 

pneumonia was 4.6 years old and 6.2 years old for the control group. All DNA samples were 123 

tested in duplicate. Positive samples were systematically confirmed in a second run. To test 124 

for potential false negative results due to PCR inhibitors, an inhibition test was 125 

systematically performed with 4 µl of clinical DNA samples and 1 µl of the positive control 126 

at a concentration of 200 DNA copies/µl. The PCR was considered inhibited when the 127 

quantification was below 50 DNA copies per reaction (four-fold reduction). Moreover, a 128 

total of 60 non inoculated swabs (Copan, Brescia, Italy) were used as an additional negative 129 

control, to check that the commercial swabs used in the prospective study were not 130 

contaminated with any chlamydial DNA. 131 

Sequencing of positive samples. Amplicons of positive samples were purified using the 132 

MSB Spin PCRapace kit (Invitek). A sequencing PCR was performed with specifically 133 

designed inner primers panFseq (5’-CCAACACTGGGACTGAGA-3’) and panRseq (5’-134 
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GCCGGTGCTTCTTTAC-3’). The sequencing PCR assay was done using the BigDye® 135 

Terminator v 1.1 Cycle seq kit (Applied Biosystems). Sequences of positive nasopharyngeal 136 

samples taken from children have been deposited on the NCBI website. Accession numbers 137 

are HQ721193 to HQ721240. 138 

 139 

RESULTS 140 

Sensitivity and specificity of the pan-Chlamydiales quantitative PCR  141 

No cross-reaction was observed with the different bacterial or amoebal strains tested 142 

(Table 1). A competition test was also performed by testing an increasing amount of DNA 143 

from Protochlamydia naegleriophila strain KNic (from 0 to 103 copies of the 16S rRNA gene 144 

per reaction) in the presence of an increasing amount of a mixture of non chlamydial DNA 145 

(Table 1) (from 0 to 106 copies of the 16S rRNA gene per reaction). The amplification of the 146 

DNA from P. naegleriophila strain KNic was not affected by competing non chlamydial DNA 147 

up to 105 copies of the 16S rRNA gene of non targeted bacteria, demonstrating the high 148 

specificity of the PCR. The range of the new PCR was evaluated with 15 DNAs from different 149 

chlamydial strains (Table 2). As expected, all the different members of the Chlamydiales 150 

order tested were detected, confirming the large range of the PCR. Despite the presence of 1 151 

mismatch with the probe in the 16S rDNA sequence of C. psittaci and C. abortus, both 152 

species were successfully amplified. Alignment of all other sequences available from 153 

members of the Chlamydiales order demonstrated that 1 mismatch is also present for C. 154 

caviae, C. felis, and Candidatus Clavochlamydia salmonicola in the probe or for 155 

Rhabdochlamydia porcellionis and R. crassificans in the forward primer. These species are 156 

nevertheless likely all amplified with our new pan-Chlamydiales PCR. Indeed, numerous 157 
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DNAs somehow related to Rhabdochlamydiaceae have been successfully amplified from 158 

clinical samples (see below). The only known member of the Chlamydiales order likely not 159 

amplified using our pan-Chlamydiales PCR is Piscichlamydia salmonis, since as many as 6 160 

mismatches are present 161 

Reproducibility and efficiency of the pan-Chlamydiales real-time PCR 162 

The inter-run and intra-run reproducibility was assessed respectively on 12 independent 163 

runs and 72 duplicates, which results are shown in Figure 1 (A and B). All duplicates were 164 

amplified for 50 and more DNA copies per reaction and 18 replicates out of 24 (75%) for 5 165 

DNA copies per reaction. The Bland-Altman graph clearly indicates that differences 166 

between duplicates were below 1 cycle threshold (Ct) for DNA copies above 50 per 167 

reaction, demonstrating a high reproducibility. The efficiency of detection was evaluated on 168 

20 replicates for 50, 20, 5, 1 and 0.5 DNA copies per reaction. The PCR showed 100% 169 

detection for 50 and 20 DNA copies, 75%, 30% and 5% for 5, 1 and 0.5 DNA copies per 170 

reaction respectively (Fig. 1C). 171 

Analytical validation of the new PCR 172 

Over the 65 samples positive for Chlamydia trachomatis or C. pneumoniae, 61 (93.8%) 173 

samples were found positive with the new PCR (Table 3A and B). The 4 discordant samples 174 

were originally positive for C. trachomatis, from anorectal swabs (n=2), urine (n=1) and 175 

ascitis liquid (n=1). These 4 samples were tested a second time with the original test (C. 176 

trachomatis real-time PCR) and were found negative (n=1) or positive with only 0.2, 6 and 177 

1.2 copies per reaction, which was most certainly below the detection limits of the pan-178 

Chlamydiales PCR. Seven positive samples with the pan-Chlamydiales PCR (cycle threshold 179 

values from 23.6 to 41.3) were sequenced to confirm the results. All the sequences obtained 180 
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showed 100% similarity with the expected species (Supplementary table S1), confirming 181 

the specificity of the new PCR and the possible identification by sequencing even with later 182 

cycle threshold values. Positive samples for Mycoplasma pneumoniae (n=5) and Legionella 183 

pneumophila (n=3) were all found negative with the new PCR (Table 3A). On the total of 63 184 

samples negative for C. trachomatis or C. pneumoniae, only 1 sample was amplified, showing 185 

92% with the closest previously described Protochlamydia naegleriophila strain CRIB 41 186 

(FJ532294.1) (Table 3B).  187 

Application of the quantitative PCR  188 

The application of the new pan-Chlamydiales PCR was on 422 nasopharyngeal swabs 189 

samples taken from children revealed 48 positive samples: 31 (7.3%) samples with 1/4 190 

positive wells, 6 (1.4%) samples with 2/4 positive wells, 4 (0.9%) samples with 3/4 191 

positive wells and 7 (1.7%) samples with 4/4 positive wells (Supplementary Table S2). A 192 

correlation between the cycle threshold value (Ct) and the number of positive wells was 193 

observed (Supplementary figure S1). Samples with <5 DNA copies per reaction (high Ct 194 

values) were amplified in 3/4, 2/4 and 1/4 wells. The 48 positive samples were sequenced 195 

and 48 sequences were obtained from 45 different patients (Supplementary Table S2). 196 

Indeed, the sequencing of 3 samples failed and for 3 others samples, 2 different sequences 197 

were obtained (Patients GE10169, HE210023, HE210045, see Table S2). Thus 94% of the 198 

positive samples were successfully sequenced. Patients’ characteristics and sequencing 199 

results for patients with pneumonia are presented in Table 4. Among these 25 patients 200 

listed in Table 4, another etiology was identified for only 8 patients.  201 

A percentage of similarity for the best BLAST greater than 90% was observed for all the 48 202 

sequences obtained, allowing identification at least at the family level. On the 48 sequences 203 
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obtained, 26 belonged to the Parachlamydiaceae family, 7 to the Chlamydiaceae family, 5 to 204 

the Simkaniaceae family, 5 to the Criblamydiaceae family, 3 to the Rhabdochlamydiaceae 205 

family, 1 seemed to belong to the novel E6-lineage (7, 11) and 1 other sequence 206 

corresponded to an unclassified Chlamydiales (Table S2). Among the 7 sequences 207 

corresponding to a Chlamydiaceae species, 6 showed 100% similarity with Chlamydia 208 

pneumoniae: 5 samples were taken from children with pneumonia (Table 4) whereas 1 was 209 

taken from an apparently healthy child (Supplementary Table S2). This latter patient had a 210 

previous history of obstructive bronchitis and chronic otitis media. The remaining 211 

Chlamydiaceae sequence showed 100% similarity with C. trachomatis (the sample was 212 

taken from a child with pneumonia) (Table 4). Among the 26 sequences corresponding to a 213 

member of the Parachlamydiaceae family, 10 (40%) were taken from 10 patients with 214 

pneumonia and 16 (60%) from 15 patients from the control group (patient HE210023 215 

being positive for 2 different bacteria). These latter patients were positive in 4/4, 3/4, 2/4 216 

and 1/4 positive wells, respectively for 2, 2, 3 and 18 nasopharyngeal swabs (Table S2). 217 

Criblamydiaceae species were recovered from 4 patients with pneumonia (all with 1/4 218 

positive well) and 1 patient from the control group (4/4 positive wells). Simkaniaceae 219 

species were found in 5 patients (3 control patients and 2 children with pneumonia). 220 

Finally, Rhabdochlamydiaceae species were identified in 1 case of pneumonia and 2 control 221 

subjects. Thus, 17 and 20 children with and without pneumonia respectively, were positive 222 

for a Chlamydia-related bacterium. In addition, a sample taken from a control subject could 223 

not be affiliated in any range of family-level lineage (unclassified Chlamydiales).  224 

All 60 non inoculated Copan swabs were found negative with the pan-Chlamydiales PCR, 225 

demonstrating that the positive samples were not false positive. Furthermore, no absence 226 
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of the internal amplification control was observed, excluding false negative results due to 227 

PCR inhibitors. 228 

 229 

DISCUSSION 230 

In this work, we developed a new Chlamydiales-specific PCR that proves to be specific to the 231 

Chlamydiales order, to be sensitive for at least 5 DNA copies per reaction of the positive 232 

control (with an efficiency of 75%) and to be highly reproducible. Moreover, its application 233 

to clinical samples taken from children with and without pneumonia demonstrated the 234 

common exposure of humans to various Chlamydia-related bacteria. This new PCR showed 235 

a broad range of targeted species since it detected the 15 different chlamydial strains tested 236 

and the DNAs of 36 never described species-level lineages (<97% similarity of the 16S 237 

rDNA sequence) of the Chlamydiales order (>80% similarity of the 16S rDNA sequence) 238 

(16, 25) present in nasopharyngeal swabs samples (Supplementary Table S2). Furthermore, 239 

this new PCR could detect chlamydial DNA from samples of various origins (Table 3).  240 

Previous classical pan-Chlamydiales PCRs have already been developed (10, 36, 43) but they 241 

detected from 1000 DNA copies compared to real-time PCRs that can detect about 200 to 242 

1000-fold less DNA copies per reaction. This higher sensitivity is likely due to the shorter 243 

reads (about 200 bp) and the read-out thank to a fluorescent Taqman probe. Considering 244 

this high sensitivity, DNA extraction, real-time PCR and sequencing reactions were 245 

processed in separate rooms to avoid contaminations between samples. In addition, 246 

automated DNA extraction located outside from our research laboratory was preferred. 247 

Moreover, since no sequence obtained showed more than 97% similarity with bacteria 248 

grown in our laboratory, a contamination may not explain the obtained results. The 249 
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sequencing of most positive samples was possible and results were informative at the 250 

family-level. A previous study using short sequences of Chlamydiales also successfully 251 

identified strains at the family-level with similar length sequences (140 to 195 bp) (43). 252 

Further identification, at the species-level, may be performed using complementary 253 

methods (PCR targeting a more discriminative core gene such as rpoB or gyrA). 254 

As previous studies on nasal and/or nasopharyngeal samples have already allowed the 255 

recovery of Chlamydia-related bacteria or the amplification of DNA of these obligate 256 

intracellular bacteria (1, 12, 15, 36), we chose similar samples for the first application of the 257 

new PCR. The sequencing results on these nasopharyngeal swabs confirmed previous 258 

studies on the occurrence of Chlamydia-related bacteria in nasal mucosa of healthy 259 

individuals (1). They also clearly showed that the biodiversity of Chlamydia-related bacteria 260 

is far from being established: among the 48 sequences, 36 were from putative new species, 261 

when considering the Everett cut-off of < 97% 16S rRNA similarity to define species-level 262 

lineages and all were belonging to the Chlamydiales order (>80% similarity of the 16S rDNA 263 

sequence) (16, 23, 24). Thus, our work clearly demonstrates the common exposure of 264 

children to different Chlamydiales, since around 11.4% of patients were positive with the 265 

new PCR. When a Chlamydiaceae species was amplified, it was generally from a sample 266 

taken from a child with pneumonia (6/7). Noteworthy, DNA of Criblamydiaceae were also 267 

mainly amplified from patients with pneumonia (4/5), whereas other Chlamydia-related 268 

bacteria were amplified from nasopharyngeal swabs taken from both children with and 269 

without pneumonia. Thus, although our study demonstrated a common exposure to 270 

Parachlamydiaceae, (amplified from 5.9% of all samples), these were not over-expressed in 271 

the pneumonia group.  Nonetheless, since the sequencing does not allow identification at 272 
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the species level, a significant correlation with a given species may not be excluded. 273 

Similarly, our work did not bring any argument in favor of an association of Simkaniaceae 274 

with pneumonia in children. This was somehow expected, since initial studies that 275 

suggested an association of Simkania negevensis with diverse respiratory infections in 276 

children (15, 18-20, 22, 32, 33, 35) were not confirmed in more recent works (34). Further 277 

research is now needed to specify the pathogenic role of each representing species in the 278 

Chlamydiales order.  279 

In conclusion, this work provides a new diagnostic approach to specify the biodiversity and 280 

pathogenic role of Chlamydia-related bacteria and highlights the common exposure of 281 

children to Parachlamydiaceae.282 

14 
 



 283 

Acknowledgments 284 

J. Lienard is working at the Center for Research on Intracellular Bacteria (CRIB) thank to 285 

financial support from SUEZ-Environment (CIRSEE). G. Greub is supported by the Leenards 286 

Foundation through a career award entitled ‘Bourse Leenards pour la relève académique en 287 

médecine clinique à Lausanne’.  288 

We thank René Brouillet for technical help. 289 

15 
 



 290 

REFERENCES 291 

1. Amann, R., N. Springer, W. Schonhuber, W. Ludwig, E. N. Schmid, K. D. Muller, 292 
and R. Michel. 1997. Obligate intracellular bacterial parasites of acanthamoebae related 293 
to Chlamydia spp. Appl Environ Microbiol 63:115-21. 294 

2. Baud, D., K. Jaton, C. Bertelli, J. P. Kulling, and G. Greub. 2008. Low prevalence of 295 
Chlamydia trachomatis infection in asymptomatic young Swiss men. BMC Infect Dis 296 
8:45. 297 

3. Baud, D., L. Regan, and G. Greub. 2008. Emerging role of Chlamydia and Chlamydia-298 
like organisms in adverse pregnancy outcomes. Curr Opin Infect Dis 21:70-6. 299 

4. Baud, D., V. Thomas, A. Arafa, L. Regan, and G. Greub. 2007. Waddlia 300 
chondrophila, a potential agent of human fetal death. Emerg Infect Dis 13:1239-43. 301 

5. Borel, N., S. Ruhl, N. Casson, C. Kaiser, A. Pospischil, and G. Greub. 2007. 302 
Parachlamydia spp. and related Chlamydia-like organisms and bovine abortion. Emerg 303 
Infect Dis 13:1904-7. 304 

6. Casson, N., K. M. Posfay-Barbe, A. Gervaix, and G. Greub. 2008. New diagnostic 305 
real-time PCR for specific detection of Parachlamydia acanthamoebae DNA in clinical 306 
samples. J Clin Microbiol 46:1491-3. 307 

7. Corsaro, D., V. Feroldi, G. Saucedo, F. Ribas, J. F. Loret, and G. Greub. 2009. Novel 308 
Chlamydiales strains isolated from a water treatment plant. Environ Microbiol 11:188-309 
200. 310 

8. Corsaro, D., R. Michel, J. Walochnik, K. D. Muller, and G. Greub. 2010. 311 
Saccamoeba lacustris, sp. nov. (Amoebozoa: Lobosea: Hartmannellidae), a new lobose 312 
amoeba, parasitized by the novel chlamydia 'Candidatus Metachlamydia lacustris' 313 
(Chlamydiae: Parachlamydiaceae). Eur J Protistol 46:86-95. 314 

9. Corsaro, D., and D. Venditti. 2009. Detection of Chlamydiae from freshwater 315 
environments by PCR, amoeba coculture and mixed coculture. Res Microbiol 160:547-316 
52. 317 

10. Corsaro, D., D. Venditti, A. Le Faou, P. Guglielmetti, and M. Valassina. 2001. A new 318 
chlamydia-like 16S rDNA sequence from a clinical sample. Microbiology 147:515-6. 319 

11. Corsaro, D., D. Venditti, and M. Valassina. 2002. New chlamydial lineages from 320 
freshwater samples. Microbiology 148:343-4. 321 

12. Corsaro, D., D. Venditti, and M. Valassina. 2002. New parachlamydial 16S rDNA 322 
phylotypes detected in human clinical samples. Res Microbiol 153:563-7. 323 

16 
 



13. Dang, T., K. Jaton-Ogay, M. Flepp, H. Kovari, J. M. Evison, J. Fehr, P. Schmid, E. 324 
Boffi El Amari, M. Cavassini, M. Odorico, P. E. Tarr, and G. Greub. 2009. High 325 
prevalence of anorectal chlamydial infection in HIV-infected men who have sex with men 326 
in Switzerland. Clin Infect Dis 49:1532-5. 327 

14. Dilbeck-Robertson, P., M. M. McAllister, D. Bradway, and J. F. Evermann. 2003. 328 
Results of a new serologic test suggest an association of Waddlia chondrophila with 329 
bovine abortion. J Vet Diagn Invest 15:568-9. 330 

15. Don, M., M. Paldanius, L. Fasoli, M. Canciani, and M. Korppi. 2006. Simkania 331 
negevensis and pneumonia in children. Pediatr Infect Dis J 25:470-1; author reply 471-2. 332 

16. Everett, K. D., R. M. Bush, and A. A. Andersen. 1999. Emended description of the 333 
order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. 334 
nov., each containing one monotypic genus, revised taxonomy of the family 335 
Chlamydiaceae, including a new genus and five new species, and standards for the 336 
identification of organisms. Int J Syst Bacteriol 49 Pt 2:415-40. 337 

17. Everett, K. D., L. J. Hornung, and A. A. Andersen. 1999. Rapid detection of the 338 
Chlamydiaceae and other families in the order Chlamydiales: three PCR tests. J Clin 339 
Microbiol 37:575-80. 340 

18. Fasoli, L., M. Paldanius, M. Don, F. Valent, L. Vetrugno, M. Korppi, and M. 341 
Canciani. 2008. Simkania negevensis in community-acquired pneumonia in Italian 342 
children. Scand J Infect Dis 40:269-72. 343 

19. Friedman, M. G., A. Galil, S. Greenberg, and S. Kahane. 1999. Seroprevalence of IgG 344 
antibodies to the chlamydia-like microorganism 'Simkania Z' by ELISA. Epidemiol Infect 345 
122:117-23. 346 

20. Friedman, M. G., S. Kahane, B. Dvoskin, and J. W. Hartley. 2006. Detection of 347 
Simkania negevensis by culture, PCR, and serology in respiratory tract infection in 348 
Cornwall, UK. J Clin Pathol 59:331-3. 349 

21. Goy, G., A. Croxatto, K. M. Posfay-Barbe, A. Gervaix, and G. Greub. 2009. 350 
Development of a real-time PCR for the specific detection of Waddlia chondrophila in 351 
clinical samples. Eur J Clin Microbiol Infect Dis 28:1483-6. 352 

22. Greenberg, D., A. Banerji, M. G. Friedman, C. H. Chiu, and S. Kahane. 2003. High 353 
rate of Simkania negevensis among Canadian inuit infants hospitalized with lower 354 
respiratory tract infections. Scand J Infect Dis 35:506-8. 355 

23. Greub, G. 2010. International Committee on Systematics of Prokaryotes. Subcommittee 356 
on the taxonomy of the Chlamydiae: minutes of the closed meeting, 21 June 2010, Hof 357 
bei Salzburg, Austria. Int J Syst Evol Microbiol 60:2694. 358 

17 
 



24. Greub, G. 2010. International Committee on Systematics of Prokaryotes. Subcommittee 359 
on the taxonomy of the Chlamydiae: minutes of the inaugural closed meeting, 21 March 360 
2009, Little Rock, AR, USA. Int J Syst Evol Microbiol 60:2691-3. 361 

25. Greub, G. 2009. Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clin 362 
Microbiol Infect 15:18-28. 363 

26. Greub, G., P. Berger, L. Papazian, and D. Raoult. 2003. Parachlamydiaceae as rare 364 
agents of pneumonia. Emerg Infect Dis 9:755-6. 365 

27. Greub, G., I. Boyadjiev, B. La Scola, D. Raoult, and C. Martin. 2003. Serological hint 366 
suggesting that Parachlamydiaceae are agents of pneumonia in polytraumatized intensive 367 
care patients. Ann N Y Acad Sci 990:311-9. 368 

28. Heiskanen-Kosma, T., M. Paldanius, and M. Korppi. 2008. Simkania negevensis may 369 
be a true cause of community acquired pneumonia in children. Scand J Infect Dis 40:127-370 
30. 371 

29. Horn, M. 2008. Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62:113-31. 372 

30. Horn, M., and M. Wagner. 2001. Evidence for additional genus-level diversity of 373 
Chlamydiales in the environment. FEMS Microbiol Lett 204:71-4. 374 

31. Jaton, K., J. Bille, and G. Greub. 2006. A novel real-time PCR to detect Chlamydia 375 
trachomatis in first-void urine or genital swabs. J Med Microbiol 55:1667-74. 376 

32. Kahane, S., D. Greenberg, M. G. Friedman, H. Haikin, and R. Dagan. 1998. High 377 
prevalence of "Simkania Z," a novel Chlamydia-like bacterium, in infants with acute 378 
bronchiolitis. J Infect Dis 177:1425-9. 379 

33. Korppi, M., M. Paldanius, A. Hyvarinen, and A. Nevalainen. 2006. Simkania 380 
negevensis and newly diagnosed asthma: a case-control study in 1- to 6-year-old children. 381 
Respirology 11:80-3. 382 

34. Kumar, S., S. A. Kohlhoff, M. Gelling, P. M. Roblin, A. Kutlin, S. Kahane, M. G. 383 
Friedman, and M. R. Hammerschlag. 2005. Infection with Simkania negevensis in 384 
Brooklyn, New York. Pediatr Infect Dis J 24:989-92. 385 

35. Nascimento-Carvalho, C. M., M. R. Cardoso, M. Paldanius, A. Barral, C. A. Araujo-386 
Neto, A. Saukkoriipi, R. Vainionpaa, M. Leinonen, and O. Ruuskanen. 2009. 387 
Simkania negevensis infection among Brazilian children hospitalized with community-388 
acquired pneumonia. J Infect 58:250-3. 389 

36. Ossewaarde, J. M., and A. Meijer. 1999. Molecular evidence for the existence of 390 
additional members of the order Chlamydiales. Microbiology 145 ( Pt 2):411-7. 391 

37. Rozen, S., and H. Skaletsky. 2000. Primer3 on the WWW for general users and for 392 
biologist programmers. Methods Mol Biol 132:365-86. 393 

18 
 



38. Ruhl, S., N. Casson, C. Kaiser, R. Thoma, A. Pospischil, G. Greub, and N. Borel. 394 
2009. Evidence for Parachlamydia in bovine abortion. Vet Microbiol 135:169-74. 395 

39. Ruhl, S., G. Goy, N. Casson, R. Thoma, A. Pospischil, G. Greub, and N. Borel. 2008. 396 
Parachlamydia acanthamoebae infection and abortion in small ruminants. Emerg Infect 397 
Dis 14:1966-8. 398 

40. Rurangirwa, F. R., P. M. Dilbeck, T. B. Crawford, T. C. McGuire, and T. F. 399 
McElwain. 1999. Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from 400 
an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal 401 
of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov. Int J Syst Bacteriol 402 
49:577-581. 403 

41. Thomas, V., N. Casson, and G. Greub. 2006. Criblamydia sequanensis, a new 404 
intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. 405 
Environ Microbiol 8:2125-35. 406 

42. Welti, M., K. Jaton, M. Altwegg, R. Sahli, A. Wenger, and J. Bille. 2003. 407 
Development of a multiplex real-time quantitative PCR assay to detect Chlamydia 408 
pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae in respiratory tract 409 
secretions. Diagn Microbiol Infect Dis 45:85-95. 410 

43. Wheelhouse, N., F. Katzer, F. Wright, and D. Longbottom. 2010. Novel chlamydia-411 
like organisms as cause of bovine abortions, UK. Emerg Infect Dis 16:1323-4. 412 

 413 

414 

19 
 



 415 

Figure 1: Reproducibility and efficiency of the new real-time PCR. Inter and intra-run 416 

reproducibility was performed between 12 different runs representing 72 duplicates of 417 

positive control. (A) Inter-run variability. (B) Bland-Altman graph represents the intra-run 418 

variability between duplicates and a bias of 0.36 was calculating as well as the 95% limit of 419 

agreement shown by the dashed line. (C) Efficiency was evaluated with 20 replicates of 5 420 

different plasmid control concentration (50, 20, 5, 1 and 0.5 copies per reaction). 421 

Supplementary figure S1: the graph shows cycle threshold (Ct) values according to the 422 

percentage of positive wells obtained for nasopharyngeal samples. The dashed line 423 

represents the mean Ct (36.3) obtained for 24 replicates of 5 DNA copies of the positive 424 

plasmid control per reaction (Fig.1A). The majority of clinical samples were detected at Ct 425 

values >36.3, corresponding to <5 DNA copies per reaction, for which the efficiency of the 426 

PCR decreases. 427 
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 428 

Table 1: Bacterial and amoebal species used to test the specificity. 429 

BACTERIAL SPECIES Source/strain 
Bacteroides fragilis* ATCC25825 
Escherichia coli* ATCC 25922 
Haemophilus influenzae* ATCC 49247 
Legionella pneumophila Clinical specimen 
Mycoplasma pneumoniae Clinical specimen 
Pseudomonas aeruginosa* ATCC 27853 
Staphylococcus aureus* ATCC 25923 
Streptococcus mitis ATCC 6249 
Streptococcus pneumoniae* Clinical specimen 
AMOEBAL SPECIES Source/strain 
Acanthamoeba castellanii ATCC 30010 
Acanthamoeba comandoni Strain WBT 
Dictyostelium discoideum DH1-10 
Hartmannella vermiformis ATCC 50237 
 *Bacterial DNA used in the competition test with Pr. naegleriophila strain KNic.430 
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 431 

Table 2: Chlamydial DNA used to evaluate the range of the new PCR 432 

Chlamydial species Source/strain 
Chlamydia abortus  Strain S26/3a 
Chlamydia pecorum Strain W73 b 
Chlamydia pneumoniae Strain K6 c 
Chlamydia psittaci  Strain T49/90 d 
Chlamydia suis Strain S45/6a 
Chlamydia trachomatis Clinical specimen 
Criblamydia sequanensis Strain CRIB-18 
Estrella lausannensis Strain CRIB-30 
Neochlamydia hartmannellae ATCC 50802 
Parachlamydia acanthamoebae  Strain Hall’s coccus 
Parachlamydia acanthamoebae  ATCC VR-1476 (strain Bn9) 
Candidatus Protochlamydia amoebophila  ATCC PRA-7 (strain UWE25) 
Protochlamydia naegleriophila  Strain KNic 
Simkania negevensis ATCC VR-1471 
Waddlia chondrophila ATCC VR-1470 
a Kindly provided by G.E. Jones, Moredun Research Institute, Edinburgh, UK 433 

b Kindly provided by J. Storz, Baton Rouge Louisiana, LA, USA 434 

c Kindly provided by A. Pospischil, Zürich, Switzerland 435 

d Kindly provided by R.K. Hoop, Zürich, Switzerland 436 

437 
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Table 3: Analysis of samples from various origins by the pan-Chlamydiales PCR in 438 

comparison with the C. pneumoniae PCR (A) and the C. trachomatis PCR (B). 439 

A 440 

 C. pneumoniae Pan-Chlamydiales 
Samples + - + - 
Nasopharyngeal swabs 1 1 1/0 1 1 
Bronchoalveolar lavages 0 6 2/1 0 6 
Bronchial aspirates 0 4 0/2 0 4 
Sputa 1 2 2/0 1 2 
Sub-total 2 13 2 13 
Total 15 15 
Superscript numbers indicate the number of positive sample for Mycoplasma pneumoniae 441 

and the number of positive sample for Legionnella pneumophila (M.pn./L. pn.), respectively 442 

B 443 

 C. trachomatis Pan-Chlamydiales 
Samples + - + - 
Vaginal or cervical swabs 14 15 14 15 
Anorectal swabs 14 0 12 2** 
Urethral swabs 1 0 1 0 
Eye swabs 1 1 1 1 
Urines 32 33 31(+1°) 32(+1*) 
Ascitis liquid 1 1 0 2* 
Sub-total 63 50 60 53 
Total 113 113 
 444 

* 1 or **2 sample(s) positive for C. trachomatis but negative with the pan-Chlamydiales PCR; 445 

° 1 sample negative for C. trachomatis but positive with the pan-Chlamydiales PCR. 446 
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Table 4: Sequencing results of nasopharyngeal samples from the pneumonia group positive with the new pan-Chlamydiales 447 

PCR 448 

Patient 
no. 

Sex Age 
(years) 

Signs and 
symptoms 

Other 
etiology 

Underlying 
condition(s) 

% 16S rRNA gene homology with most similar 
GenBank sequence (corresponding family) 

GE10160 F 3.7 39.0°C, cough, 
thoracic pain, DRS 

- coeliakie 100% Chlamydia pneumoniae LPCoLN (Ch) 

GE10097 F 2.7 40.6°C, cough, DRS - - 100% Chlamydia pneumoniae LPCoLN (Ch) 
VS30014 M 12.4 38.9°C, cough - - 100% Chlamydia pneumoniae LPCoLN (Ch) 
VS30030 F 12.2 39.5°C, cough - - 100% Chlamydia trachomatis D-LC (Ch) 
GE10098 F 8.0 38.0°C, cough - - 100% Chlamydia pneumoniae CWL029 (Ch) 
GE10014 M 7.6 39.5°C, cough M. pneumoniae - 94% Uncultured Neochlamydia sp. 

LTUNC09656 (P) 
GE10159 M 3.7 40.0°C, cough - - 100% Chlamydia pneumoniae LPCoLN (Ch) 
GE10169 M 5.6 40.0°C, cough, 

thoracic pain, 
tachypnea 

- Bronchodysplasia, 
premature birth 
(28 weeks) 

97% Candidatus Rhabdochlamydia 
porcellionis (R) 
91% Chlamydiales bacterium cvE38 (S) 

GE10179 F 3.6 Dyspnea S. pneumoniae 
H1N1 virus 

- Sequencing failed 

HE20032 M 1.5 41.6°C, cough, DRS - - 94% Uncultured Candidatus Protochlamydia 
sp. clone CN823 (P) 

VS30003 M 5.8 39.5°C, cough, DRS - - 95% Uncultured Chlamydiales bacterium 
clone P-5 (P) 

GE10027 M 9.8 38.1°C, cough, DRS M. pneumoniae asthma 92% Uncultured soil bacterium clone 530-2 
(Cr) 

GE10036 M 1.6 38.0°C, cough, DRS, 
tachypnea 

S. pneumoniae - 95% Uncultured bacterium clone 
F5K2Q4C04JDDHX (P) 

GE10047 M 2.6  39.5°C, cough, DRS, 
tachypnea 

- - 92% Criblamydia sequanensis (Cr) 

GE10072 F 4.8 39.5 °C HMPV A - Sequencing failed 
GE10147 M 13.8 38.2°C, cough, DRS S. pneumoniae - 95% Uncultured bacterium clone FW1013-

189 (P) 
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GE10193 F 5.1 38.9°C, cough, 
tachypnea 

- - 92% Chlamydiales bacterium cvE38 (S) 

HE20008 F 3.3 38.3°C, cough, 
tachypnea, DRS 

HUK1 - 93% Estrella lausannensis strain CRIB 30 (Cr) 

HE20028 F 1.1 39.5°C, cough, DRS, 
tachypnea 

HRSV A - 94% Uncultured Chlamydiales bacterium 
clone P-5 (P) 

HE20036 M 1.4 40.0°C, DRS - - 96% Chlamydiales bacterium cvE21 (E6) 
HE20074 M 4.5 38.1°C, cough, DRS - - 94% Criblamydia sequanensis (Cr) 
VS30007 M 6.6 38.7°C, cough, DRS - - 95% Candidatus Metachlamydia lacustris 

strain CHSL (P) 
VS30013 M 6.4 38.5°C, cough, 

tachypnea 
- - 94% Uncultured Chlamydiales bacterium 

clone P-9 (P) 
VS30044 M 3.8 40.4°C, cough - - 95% Uncultured Chlamydiales bacterium 

clone P-7 (P) 
VS30055 F 4.1 38.5°C, cough, 

tachypnea 
- - 92% Candidatus Metachlamydia lacustris 

strain CHSL (P) 
F= female, M = male; DRS = distress respiratory syndrome; 449 

Ch= Chlamydiaceae, P = Parachlamydiaceae, R = Rhabdochlamydiaceae, S = Simkaniaceae, Cr = Criblamydiaceae, E6= novel E6-450 

lineage. 451 
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Figure 1: Reproducibility and ef�iciency of the new real-time PCR. Inter and intra-run reproducibility was performed

between 12 different runs representing 72 duplicates of positive control. (A) Inter-run variability. (B) Bland-Altman

graph represents the intra-run variability between duplicates and a bias of 0.36 was calculating as well as the 95%

limit of agreement shown by the dashed line. (C) Ef�iciency was evaluated with 20 replicates of 5 different plasmid

control concentration (50, 20, 5, 1 and 0.5 copies per reaction).



 
 

Table S1: Sequencing results of 7 samples from the retrospective study positive with the 

new PCR  

Sample Sequence 
(bp) 

Threshold cycle 
(Ct) with the new 
PCR: mean ±SD 

Expected result 
of the 
sequencing 

% 16S rRNA gene sequence 
similarity with most similar 
GenBank sequence (Accession no.) 

Sputa 183 36.1 CP + 100% Chlamydia pneumoniae 
LPCoLN (CP001713.1) 

Nasopharyngeal 
swab 

183 35.5±0.7 CP + 100% Chlamydia pneumoniae 
LPCoLN (CP001713.1) 

Cervical swab 192 23.6±2.9 CT + 100% Chlamydia trachomatis D-LC 
(CP002054.1) 

Anorectal swab 151 39.0±0.2 CT + 100% Chlamydia trachomatis D-LC 
(CP002054.1) 

Urine 192 35.0±0.8 CT + 100% Chlamydia trachomatis D-LC 
(CP002054.1) 

Cervical swab 206 29.3±0.3 CT + 100% Chlamydia trachomatis D-LC 
(CP002054.1) 

Urethral swab 141 31.7±0.5 CT + 99% Chlamydia trachomatis D-LC 
(CP002054.1) 

Urine 190 41.3 CT - 94% Uncultured bacterium clone 
FW1013-189 (EF693090.1) 

CP = Chlamydia pneumoniae, CT = C. trachomatis. 



Supplementary �igure S1: the graph shows cycle threshold (Ct) values according to the percentage of positive

wells obtained for nasopharyngeal samples. The dashed line represents the mean Ct (36.3) obtained for 24

replicates of 5 DNA copies of the positive plasmid control per reaction (Fig.1A). The majority of clinical samples

were detected at Ct values >36.3, corresponding to <5 DNA copies per reaction, for which the ef�iciency of the

PCR decreases. 
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