303 research outputs found

    Early childhood bilingualism: effects on brain structure and function [version 2; peer review: 2 approved]

    Get PDF
    Growing up in a bilingual environment is becoming increasingly common. Yet, we know little about how this enriched language environment influences the connectivity of children’s brains. Behavioural research in children and adults has shown that bilingualism experience may boost executive control (EC) skills, such as inhibitory control and attention. Moreover, increased structural and functional (resting-state) connectivity in language-related and EC-related brain networks is associated with increased executive control in bilingual adults. However, how bilingualism factors alter brain connectivity early in brain development remains poorly understood. We will combine standardised tests of attention with structural and resting-state functional magnetic resonance imaging (MRI) in bilingual children. This study will allow us to address an important field of inquiry within linguistics and developmental cognitive neuroscience by examining the following questions: Does bilingual experience modulate connectivity in language-related and EC-related networks in children? Do differences in resting-state brain connectivity correlate with differences in EC skills (specifically attention skills)? How do bilingualism-related factors, such as age of exposure to two languages, language usage and proficiency, modulate brain connectivity? We will collect structural and functional MRI, and quantitative measures of EC and language skills from two groups of English-Greek bilingual children - 20 simultaneous bilinguals (exposure to both languages from birth) and 20 successive bilinguals (exposure to English between the ages of 3 and 5 years) - and 20 English monolingual children, 8-10 years old. We will compare connectivity measures and attention skills between monolinguals and bilinguals to examine the effects of bilingual exposure. We will also examine to what extent bilingualism factors predict brain connectivity in EC and language networks. Overall, we hypothesize that connectivity and EC will be enhanced in bilingual children compared to monolingual children, and each outcome will be modulated by age of exposure to two languages and by bilingual language usage

    Corticobulbar Tract Injury, Oromotor Impairment and Language Plasticity in Adolescents Born Preterm

    Get PDF
    Children born preterm are at risk of impairments in oromotor control, with implications for early feeding and speech development. In this study, we aimed to identify (a) neuroanatomical markers of persistent oromotor deficits using diffusion-weighted imaging (DWI) tractography and (b) evidence of compensatory neuroplasticity using functional MRI (fMRI) during a language production task. In a cross-sectional study of 36 adolescents born very preterm (<33 weeks’ gestation) we identified persistent difficulties in oromotor control in 31% of cases, but no clinical diagnoses of speech-sound disorder (e.g., dysarthria, dyspraxia). We used DWI-tractography to examine the microstructure (fractional anisotropy, FA) of the corticospinal and corticobulbar tracts. Compared to the unimpaired group, the oromotor-impaired group showed (i) reduced FA within the dorsal portion of the left corticobulbar tract (containing fibres associated with movements of the lips, tongue, and larynx) and (ii) greater recruitment of right hemisphere language regions on fMRI. We conclude that, despite the development of apparently normal everyday speech, early injury to the corticobulbar tract leads to persistent subclinical problems with voluntary control of the face, lips, jaw, and tongue. Furthermore, we speculate that early speech problems may be ameliorated by cerebral plasticity – in particular, recruitment of right hemisphere language areas

    Atypical Development of Broca’s Area in a Large Family with Inherited Stuttering

    Get PDF
    Developmental stuttering is a condition of speech dysfluency, characterised by pauses, blocks, prolongations, and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, sixteen family members were included in genotyping analysis. T1-weighted and diffusion weighted MRI scans were conducted on seven family members (6 male; aged 9–63 years) with two age and sex matched controls without stuttering (N = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca’s area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of p < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left p = 0.017; right p=0.037), and a larger right globus pallidus was associated with more severe stuttering (rho =0.86, p=0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca’s area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering

    Asymmetry of planum temporale constrains interhemispheric language plasticity in children with focal epilepsy.

    Get PDF
    Reorganization of eloquent cortex enables rescue of language functions in patients who sustain brain injury. Individuals with left-sided, early-onset focal epilepsy often show atypical (i.e. bilateral or right-sided) language dominance. Surprisingly, many patients fail to show such interhemispheric shift of language despite having major epileptogenic lesions in close proximity to eloquent cortex. Although a number of epilepsy-related factors may promote interhemispheric plasticity, it has remained unexplored if neuroanatomical asymmetries linked to human language dominance modify the likelihood of atypical lateralization. Here we examined the asymmetry of the planum temporale, one of the most striking asymmetries in the human brain, in relation to language lateralization in children with left-sided focal epilepsy. Language functional magnetic resonance imaging was performed in 51 children with focal epilepsy and left-sided lesions and 36 healthy control subjects. We examined the association of language laterality with a range of potential clinical predictors and the asymmetry of the length of the planum temporale. Using voxel-based methods, we sought to determine the effect of lesion location (in the affected left hemisphere) and grey matter density (in the unaffected right hemisphere) on language laterality. Atypical language lateralization was observed in 19 patients (38%) and in four controls (11%). Language laterality was increasingly right-sided in patients who showed atypical handedness, a left perisylvian ictal electroencephalographic focus, and a lesion in left anterior superior temporal or inferior frontal regions. Most striking was the relationship between rightward asymmetry of the planum temporale and atypical language (R = 0.70, P < 0.0001); patients with a longer planum temporale in the right (unaffected) hemisphere were more likely to have atypical language dominance. Voxel-based regression analysis confirmed that increased grey matter density in the right temporo-parietal junction was correlated with right hemisphere lateralization of language. The length of the planum temporale in the right hemisphere was the main predictor of language lateralization in the epilepsy group, accounting for 48% of variance, with handedness accounting for only a further 5%. There was no correlation between language lateralization and planum temporale asymmetry in the control group. We conclude that asymmetry of the planum temporale may be unrelated to language lateralization in healthy individuals, but the size of the right, contra-lesional planum temporale region may reflect a 'reserve capacity' for interhemispheric language reorganization in the presence of a seizure focus and lesions within left perisylvian regions

    The Caenorhabditis elegans HNF4α Homolog, NHR-31, Mediates Excretory Tube Growth and Function through Coordinate Regulation of the Vacuolar ATPase

    Get PDF
    Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4α type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system

    Full-length genome sequence of a simian immunodeficiency virus (SIV) infecting a captive agile mangabey (Cercocebus agilis) is closely related to SIVrcm infecting wild red-capped mangabeys (Cercocebus torquatus) in Cameroon

    Get PDF
    Simian immunodeficiency viruses (SIVs) are lentiviruses that infect an extensive number of wild African primate species. Here we describe for the first time SIV infection in a captive agile mangabey (Cercocebus agilis) from Cameroon. Phylogenetic analysis of the full-length genome sequence of SIVagi-00CM312 showed that this novel virus fell into the SIVrcm lineage and was most closely related to a newly characterized SIVrcm strain (SIVrcm-02CM8081) from a wild-caught red-capped mangabey (Cercocebus torquatus) from Cameroon. In contrast to red-capped mangabeys, no 24 bp deletion in CCR5 has been observed in the agile mangabey. Further studies on wild agile mangabeys are needed to determine whether agile and red-capped mangabeys are naturally infected with the same SIV lineage, or whether this agile mangabey became infected with an SIVrcm strain in captivity. However, our study shows that agile mangabeys are susceptible to SIV infection

    SMF-1, SMF-2 and SMF-3 DMT1 Orthologues Regulate and Are Regulated Differentially by Manganese Levels in C. elegans

    Get PDF
    Manganese (Mn) is an essential metal that can exert toxic effects at high concentrations, eventually leading to Parkinsonism. A major transporter of Mn in mammals is the divalent-metal transporter (DMT1). We characterize here DMT1-like proteins in the nematode C. elegans, which regulate and are regulated by Mn and iron (Fe) content. We identified three new DMT1-like genes in C. elegans: smf-1, smf-2 and smf-3. All three can functionally substitute for loss of their yeast orthologues in S. cerevisiae. In the worm, deletion of smf-1 or smf-3 led to an increased Mn tolerance, while loss of smf-2 led to increased Mn sensitivity. smf mRNA levels measured by QRT-PCR were up-regulated upon low Mn and down-regulated upon high Mn exposures. Translational GFP-fusions revealed that SMF-1 and SMF-3 strongly localize to partially overlapping apical regions of the gut epithelium, suggesting a differential role for SMF-1 and SMF-3 in Mn nutritional intake. Conversely, SMF-2 was detected in the marginal pharyngeal epithelium, possibly involved in metal-sensing. Analysis of metal content upon Mn exposure in smf mutants revealed that SMF-3 is required for normal Mn uptake, while smf-1 was dispensable. Higher smf-2 mRNA levels correlated with higher Fe content, supporting a role for SMF-2 in Fe uptake. In smf-1 and smf-3 but not in smf-2 mutants, increased Mn exposure led to decreased Fe levels, suggesting that both metals compete for transport by SMF-2. Finally, SMF-3 was post-translationally and reversibly down-regulated following Mn-exposure. In sum, we unraveled a complex interplay of transcriptional and post-translational regulations of 3 DMT1-like transporters in two adjacent tissues, which regulate metal-content in C. elegans

    Zebrafish Mutants calamity and catastrophe Define Critical Pathways of Gene–Nutrient Interactions in Developmental Copper Metabolism

    Get PDF
    Nutrient availability is an important environmental variable during development that has significant effects on the metabolism, health, and viability of an organism. To understand these interactions for the nutrient copper, we used a chemical genetic screen for zebrafish mutants sensitive to developmental copper deficiency. In this screen, we isolated two mutants that define subtleties of copper metabolism. The first contains a viable hypomorphic allele of atp7a and results in a loss of pigmentation when exposed to mild nutritional copper deficiency. This mutant displays incompletely penetrant skeletal defects affected by developmental copper availability. The second carries an inactivating mutation in the vacuolar ATPase that causes punctate melanocytes and embryonic lethality. This mutant, catastrophe, is sensitive to copper deprivation revealing overlap between ion metabolic pathways. Together, the two mutants illustrate the utility of chemical genetic screens in zebrafish to elucidate the interaction of nutrient availability and genetic polymorphisms in cellular metabolism
    • …
    corecore