162 research outputs found

    Evolutionary Conservation of Infection-Induced Cell Death Inhibition among Chlamydiales

    Get PDF
    Control of host cell death is of paramount importance for the survival and replication of obligate intracellular bacteria. Among these, human pathogenic Chlamydia induces the inhibition of apoptosis in a variety of different host cells by directly interfering with cell death signaling. However, the evolutionary conservation of cell death regulation has not been investigated in the order Chlamydiales, which also includes Chlamydia-like organisms with a broader host spectrum. Here, we investigated the apoptotic response of human cells infected with the Chlamydia-like organism Simkania negevensis (Sn). Simkania infected cells exhibited strong resistance to apoptosis induced by intrinsic stress or by the activation of cell death receptors. Apoptotic signaling was blocked upstream of mitochondria since Bax translocation, Bax and Bak oligomerisation and cytochrome c release were absent in these cells. Infected cells turned on pro-survival pathways like cellular Inhibitor of Apoptosis Protein 2 (cIAP-2) and the Akt/PI3K pathway. Blocking any of these inhibitory pathways sensitized infected host cell towards apoptosis induction, demonstrating their role in infection-induced apoptosis resistance. Our data support the hypothesis of evolutionary conserved signaling pathways to apoptosis resistance as common denominators in the order Chlamydiales

    Chlamydophila pneumoniae induces a sustained airway hyperresponsiveness and inflammation in mice

    Get PDF
    Background: It has been reported that Chlamydophila (C.) pneumoniae is involved in the initiation and promotion of asthma and chronic obstructive pulmonary diseases (COPD). Surprisingly, the effect of C. pneumoniae on airway function has never been investigated.Methods: In this study, mice were inoculated intranasally with C. pneumoniae (strain AR39) on day 0 and experiments were performed on day 2, 7, 14 and 21.Results: We found that from day 7, C. pneumoniae infection causes both a sustained airway hyperresponsiveness and an inflammation. Interferon-γ (IFN-γ) and macrophage inflammatory chemokine-2 (MIP-2) levels in bronchoalveolar lavage (BAL)-fluid were increased on all experimental days with exception of day 7 where MIP-2 concentrations dropped to control levels. In contrast, tumor necrosis factor-α (TNF-α) levels were only increased on day 7. From day 7 to 21 epithelial damage and secretory cell hypertrophy was observed. It is suggested that, the inflammatory cells/mediators, the epithelial damage and secretory cell hypertrophy contribute to initiation of airway hyperresponsiveness.Conclusion: Our study demonstrates for the first time that C. pneumoniae infection can modify bronchial responsiveness. This has clinical implications, since additional changes in airway responsiveness and inflammation-status induced by this bacterium may worsen and/or provoke breathlessness in asthma and COPD

    Clinical Usefulness of Measuring Red Blood Cell Distribution Width in Patients with Hepatitis B

    Get PDF
    BACKGROUND: Red blood cell distribution width (RDW), an automated measure of red blood cell size heterogeneity (e.g., anisocytosis) that is largely overlooked, is a newly recognized risk marker in patients with cardiovascular diseases, but its role in persistent viral infection has not been well-defined. The present study was designed to investigate the association between RDW values and different disease states in hepatitis B virus (HBV)-infected patients. In addition, we analyzed whether RDW is associated with mortality in the HBV-infected patients. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and twenty-three patients, including 16 with acute hepatitis B (AHB), 61 with chronic hepatitis B (CHB), and 46 with chronic severe hepatitis B (CSHB), and 48 healthy controls were enrolled. In all subjects, a blood sample was collected at admission to examine liver function, renal function, international normalized ratio and routine hematological testing. All patients were followed up for at least 4 months. A total of 10 clinical chemistry, hematology, and biochemical variables were analyzed for possible association with outcomes by using Cox proportional hazards and multiple regression models. RDW values at admission in patients with CSHB (18.30±3.11%, P<0.001), CHB (16.37±2.43%, P<0.001) and AHB (14.38±1.72%, P<0.05) were significantly higher than those in healthy controls (13.03±1.33%). Increased RDW values were clinically associated with severe liver disease and increased 3-month mortality rate. Multivariate analysis demonstrated that RDW values and the model for end-stage liver disease score were independent predictors for mortality (both P<0.001). CONCLUSION: RDW values are significantly increased in patients with hepatitis B and associated with its severity. Moreover, RDW values are an independent predicting factor for the 3-month mortality rate in patients with hepatitis B

    Evolution of metabolic divergence in <i>Pseudomonas aeruginosa</i> during long-term infection facilitates a proto-cooperative interspecies interaction

    Get PDF
    The effect of polymicrobial interactions on pathogen physiology and how it can act either to limit pathogen colonization or to potentiate pathogen expansion and virulence are not well understood. Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic pathogens commonly found together in polymicrobial human infections. However, we have previously shown that the interactions between these two bacterial species are strain dependent. Whereas P. aeruginosa PAO1, a commonly used laboratory strain, effectively suppressed S. aureus growth, we observed a commensal-like interaction between the human host-adapted strain, DK2-P2M24-2003, and S. aureus. In this study, characterization by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry (IMS) and mass spectral (MS) molecular networking revealed a significant metabolic divergence between P. aeruginosa PAO1 and DK2-P2M24-2003, which comprised several virulence factors and signaling 4-hydroxy-2-alkylquinoline (HAQ) molecules. Strikingly, a further modulation of the HAQ profile was observed in DK2-P2M24-2003 during interaction with S. aureus, resulting in an area with thickened colony morphology at the P. aeruginosa–S. aureus interface. In addition, we found an HAQ-mediated protection of S. aureus by DK2-P2M24-2003 from the killing effect of tobramycin. Our findings suggest a model where the metabolic divergence manifested in human host-adapted P. aeruginosa is further modulated during interaction with S. aureus and facilitate a proto-cooperative P. aeruginosa–S. aureus relationship

    Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line

    Get PDF
    BACKGROUND: Many tumours undergo disregulation of polyamine homeostasis and upregulation of ornithine decarboxylase (ODC) activity, which can promote carcinogenesis. In animal models of colon carcinogenesis, inhibition of ODC activity by difluoromethylornithine (DFMO) has been shown to reduce the number and size of colon adenomas and carcinomas. Indole-3-carbinol (I3C) has shown promising chemopreventive activity against a range of human tumour cell types, but little is known about the effect of this agent on colon cell lines. Here, we investigated whether inhibition of ODC by I3C could contribute to a chemopreventive effect in colon cell lines. METHODS: Cell cycle progression and induction of apoptosis were assessed by flow cytometry. Ornithine decarboxylase activity was determined by liberation of CO(2 )from (14)C-labelled substrate, and polyamine levels were measured by HPLC. RESULTS: I3C inhibited proliferation of the human colon tumour cell lines HT29 and SW480, and of the normal tissue-derived HCEC line, and at higher concentrations induced apoptosis in SW480 cells. The agent also caused a decrease in ODC activity in a dose-dependent manner. While administration of exogenous putrescine reversed the growth-inhibitory effect of DFMO, it did not reverse the growth-inhibition following an I3C treatment, and in the case of the SW480 cell line, the effect was actually enhanced. In this cell line, combination treatment caused a slight increase in the proportion of cells in the G(2)/M phase of the cell cycle, and increased the proportion of cells undergoing necrosis, but did not predispose cells to apoptosis. Indole-3-carbinol also caused an increase in intracellular spermine levels, which was not modulated by putrescine co-administration. CONCLUSION: While indole-3-carbinol decreased ornithine decarboxylase activity in the colon cell lines, it appears unlikely that this constitutes a major mechanism by which the agent exerts its antiproliferative effect, although accumulation of spermine may cause cytotoxicity and contribute to cell death. The precise mechanism by which putrescine enhances the growth inhibitory effect of the agent remains to be elucidated, but does result in cells undergoing necrosis, possibly following accumulation in the G(2)/M phase of the cell cycle

    AID-Targeting and Hypermutation of Non-Immunoglobulin Genes Does Not Correlate with Proximity to Immunoglobulin Genes in Germinal Center B Cells

    Get PDF
    Upon activation, B cells divide, form a germinal center, and express the activation induced deaminase (AID), an enzyme that triggers somatic hypermutation of the variable regions of immunoglobulin (Ig) loci. Recent evidence indicates that at least 25% of expressed genes in germinal center B cells are mutated or deaminated by AID. One of the most deaminated genes, c-Myc, frequently appears as a translocation partner with the Ig heavy chain gene (Igh) in mouse plasmacytomas and human Burkitt's lymphomas. This indicates that the two genes or their double-strand break ends come into close proximity at a biologically relevant frequency. However, the proximity of c-Myc and Igh has never been measured in germinal center B cells, where many such translocations are thought to occur. We hypothesized that in germinal center B cells, not only is c-Myc near Igh, but other mutating non-Ig genes are deaminated by AID because they are near Ig genes, the primary targets of AID. We tested this “collateral damage” model using 3D-fluorescence in situ hybridization (3D-FISH) to measure the distance from non-Ig genes to Ig genes in germinal center B cells. We also made mice transgenic for human MYC and measured expression and mutation of the transgenes. We found that there is no correlation between proximity to Ig genes and levels of AID targeting or gene mutation, and that c-Myc was not closer to Igh than were other non-Ig genes. In addition, the human MYC transgenes did not accumulate mutations and were not deaminated by AID. We conclude that proximity to Ig loci is unlikely to be a major determinant of AID targeting or mutation of non-Ig genes, and that the MYC transgenes are either missing important regulatory elements that allow mutation or are unable to mutate because their new nuclear position is not conducive to AID deamination

    Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor

    Get PDF
    Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11) “lesion mimic” mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz) mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3). LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity

    Vertebroplasty and kyphoplasty: a comparative review of efficacy and adverse events

    Get PDF
    Vertebroplasty and kyphoplasty have become common surgical techniques for the treatment of vertebral compression fractures. Vertebroplasty involves the percutaneous injection of bone cement into the cancellous bone of a vertebral body with the goals of pain alleviation and preventing further loss of vertebral body height. Kyphoplasty utilizes an inflatable balloon to create a cavity for the cement with the additional potential goals of restoring height and reducing kyphosis. Vertebroplasty and kyphoplasty are effective treatment options for the reduction of pain associated with vertebral body compression fractures. Biomechanical studies demonstrate that kyphoplasty is initially superior for increasing vertebral body height and reducing kyphosis, but these gains are lost with repetitive loading. Complications secondary to extravasation of cement include compression of neural elements and venous embolism. These complications are rare but more common with vertebroplasty. Vertebroplasty and kyphoplasty are both safe and effective procedures for the treatment of vertebral body compression fractures

    Quantitative modeling of the physiology of ascites in portal hypertension

    Get PDF
    Although the factors involved in cirrhotic ascites have been studied for a century, a number of observations are not understood, including the action of diuretics in the treatment of ascites and the ability of the plasma-ascitic albumin gradient to diagnose portal hypertension. This communication presents an explanation of ascites based solely on pathophysiological alterations within the peritoneal cavity. A quantitative model is described based on experimental vascular and intraperitoneal pressures, lymph flow, and peritoneal space compliance. The model's predictions accurately mimic clinical observations in ascites, including the magnitude and time course of changes observed following paracentesis or diuretic therapy
    corecore