516 research outputs found

    On Some Open Problems in Many-Electron Theory

    Full text link
    Mel Levy and Elliott Lieb are two of the most prominent researchers who have dedicated their efforts to the investigation of fundamental questions in many-electron theory. Their results have not only revolutionized the theoretical approach of the field, but, directly or indirectly, allowed for a quantum jump in the computational treatment of realistic systems as well. For this reason, at the conclusion of our book where the subject is treated across different disciplines, we have asked Mel Levy and Elliott Lieb to provide us with some open problems, which they believe will be a worth challenge for the future also in the perspective of a synergy among the various disciplines.Comment: "Epilogue" chapter in "Many-Electron Approaches in Physics, Chemistry and Mathematics: A Multidisciplinary View", Volker Bach and Luigi Delle Site Eds. pages 411-416; Book Series: Mathematical Physics Studies, Springer International Publishing Switzerland, 2014. The original title has been modified in order to clarify the subject of the chapter out of the context of the boo

    Ictal Spiking Patterns Recorded from Temporal Depth Electrodes Predict Good Outcome After Anterior Temporal Lobectomy

    Full text link
    Purpose : Investigators have shown that the presence of ictal spiking (IS) recorded from temporal depth electrodes is associated with mesial temporal sclerosis (MTS). We investigated the relation of IS to seizure control and pathology after anterior temporal lobectomy (ATL). Methods : All patients undergoing intracranial ictal monitoring from a single institution since 1989 were identified. Those who did not undergo ATL or had postoperative follow-up of <1 year were excluded. All received at a minimum bilateral temporal depth electrodes. Ictal recordings were reviewed for the presence of IS, and the proportion of seizures with IS was determined for each patient. Outcome was determined by using Engel's classification. Surgical specimens were reviewed for pathology. Statistics used were X 2 , Fisher exact test, and Wilcoxon rank sum. Results : Forty patients with 571 seizures were reviewed. In 292 seizures from 32 patients, IS was seen. Outcomes were 24 class I (22 with IS), five class II (four with IS), three class III (one with IS), seven class IV (four with IS), and one lost to follow-up (with IS). Pathologic review revealed 25 with MTS, 22 of whom had IS. The presence of IS was associated with class I outcomes (p = 0.04), but not MTS (p = 0.06). Patients with class I outcomes had a significantly greater proportion of seizures with IS (mean, 0.58 ± 0.3) compared with other outcomes (mean, 0.30 ± 0.3, p = 0.02). Conclusions : The presence of IS and higher proportion of seizures with IS correlated with good seizure outcome after ATL. This information may be used in preoperative counseling.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65542/1/j.1528-1157.2000.tb00161.x.pd

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface

    The importance of the weak: Interaction modifiers in artificial spin ices

    Get PDF
    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics, and emergent magnetic properties, in e.g. artificial spin ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here we introduce a new approach: single interaction modifiers, using slave-mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane. We show that by placing these on the vertices of square artificial spin ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule obeying states in square artificial spin ice structures, enabling the exploration of thermal dynamics in a spin liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length-scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.Comment: 17 pages, including methods, 4 figures. Supplementary information contains 16 pages and 15 figure

    Biochemical autoregulatory gene therapy for focal epilepsy.

    Get PDF
    Despite the introduction of more than one dozen new antiepileptic drugs in the past 20 years, approximately one-third of people who develop epilepsy continue to have seizures on mono- or polytherapy1. Viral-vector-mediated gene transfer offers the opportunity to design a rational treatment that builds on mechanistic understanding of seizure generation and that can be targeted to specific neuronal populations in epileptogenic foci2. Several such strategies have shown encouraging results in different animal models, although clinical translation is limited by possible effects on circuits underlying cognitive, mnemonic, sensory or motor function. Here, we describe an autoregulatory antiepileptic gene therapy, which relies on neuronal inhibition in response to elevations in extracellular glutamate. It is effective in a rodent model of focal epilepsy and is well tolerated, thus lowering the barrier to clinical translation

    Extensive degeneracy, Coulomb phase and magnetic monopoles in an artificial realization of the square ice model

    Full text link
    Artificial spin ice systems have been introduced as a possible mean to investigate frustration effects in a well-controlled manner by fabricating lithographically-patterned two-dimensional arrangements of interacting magnetic nanostructures. This approach offers the opportunity to visualize unconventional states of matter, directly in real space, and triggered a wealth of studies at the frontier between nanomagnetism, statistical thermodynamics and condensed matter physics. Despite the strong efforts made these last ten years to provide an artificial realization of the celebrated square ice model, no simple geometry based on arrays of nanomagnets succeeded to capture the macroscopically degenerate ground state manifold of the corresponding model. Instead, in all works reported so far, square lattices of nanomagnets are characterized by a magnetically ordered ground state consisting of local flux-closure configurations with alternating chirality. Here, we show experimentally and theoretically, that all the characteristics of the square ice model can be observed if the artificial square lattice is properly designed. The spin configurations we image after demagnetizing our arrays reveal unambiguous signatures of an algebraic spin liquid state characterized by the presence of pinch points in the associated magnetic structure factor. Local excitations, i.e. classical analogues of magnetic monopoles, are found to be free to evolve in a massively degenerated, divergence-free vacuum. We thus provide the first lab-on-chip platform allowing the investigation of collective phenomena, including Coulomb phases and ice-like physics.Comment: 26 pages, 10 figure

    Half-Metallic Graphene Nanoribbons

    Full text link
    Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals - for example, the Heusler compounds- and were first observed in a manganese perovskite. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials. However, organic materials have hardly been investigated in this context even though carbon-based nanostructures hold significant promise for future electronic device. Here we predict half-metallicity in nanometre-scale graphene ribbons by using first-principles calculations. We show that this phenomenon is realizable if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, and that their magnetic property can be controlled by the external electric fields. The results are not only of scientific interests in the interplay between electric fields and electronic spin degree of freedom in solids but may also open a new path to explore spintronics at nanometre scale, based on graphene

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page
    corecore