22 research outputs found

    Protective Responses at the Biochemical and Molecular Level Differ between a Coffea arabica L. Hybrid and Its Parental Genotypes to Supra-Optimal Temperatures and Elevated Air [CO2]

    Get PDF
    Climate changes with global warming associated with rising atmospheric [CO2] can strongly impact crop performance, including coffee, which is one of the most world’s traded agricultural commodities. Therefore, it is of utmost importance to understand the mechanisms of heat tolerance and the potential role of elevated air CO2 (eCO2) in the coffee plant response, particularly regarding the antioxidant and other protective mechanisms, which are crucial for coffee plant acclimation. For that, plants of Coffea arabica cv. Geisha 3, cv. Marsellesa and their hybrid (Geisha 3 Marsellesa) were grown for 2 years at 25/20 C (day/night), under 400 (ambient CO2, aCO2) or 700 L (elevated CO2, eCO2) CO2 L-1, and then gradually submitted to a temperature increase up to 42/30 C, followed by recovery periods of 4 (Rec4) and 14 days (Rec14). Heat (37/28 C and/or 42/30 C) was the major driver of the response of the studied protective molecules and associated genes in all genotypes. That was the case for carotenoids (mostly neoxanthin and lutein), but the maximal (a + b) carotenes pool was found at 37/28 C only in Marsellesa. All genes (except VDE) encoding for antioxidative enzymes (catalase, CAT; superoxide dismutases, CuSODs; ascorbate peroxidases, APX) or other protective proteins (HSP70, ELIP, Chape20, Chape60) were strongly upregulated at 37/28 C, and, especially, at 42/30 C, in all genotypes, but with maximal transcription in Hybrid plants. Accordingly, heat greatly stimulated the activity of APX and CAT (all genotypes) and glutathione reductase (Geisha3, Hybrid) but not of SOD. Notably, CAT activity increased even at 42/30 C, concomitantly with a strongly declined APX activity. Therefore, increased thermotolerance might arise through the reinforcement of some ROS-scavenging enzymes and other protective molecules (HSP70, ELIP, Chape20, Chape60). Plants showed low responsiveness to single eCO2 under unstressed conditions, while heat promoted changes in aCO2 plants. Only eCO2 Marsellesa plants showed greater contents of lutein, the pool of the xanthophyll cycle components (V + A + Z), and b-carotene, compared to aCO2 plants at 42/30 C. This, together with a lower CAT activity, suggests a lower presence of H2O2, likely also associated with the higher photochemical use of energy under eCO2. An incomplete heat stress recovery seemed evident, especially in aCO2 plants, as judged by the maintenance of the greater expression of all genes in all genotypes and increased levels of zeaxanthin (Marsellesa and Hybrid) relative to their initial controls. Altogether, heat was the main response driver of the addressed protective molecules and genes, whereas eCO2 usually attenuated the heat response and promoted a better recovery. Hybrid plants showed stronger gene expression responses, especially at the highest temperature, when compared to their parental genotypes, but altogether, Marsellesa showed a greater acclimation potential. The reinforcement of antioxidative and other protective molecules are, therefore, useful biomarkers to be included in breeding and selection programs to obtain coffee genotypes to thrive under global warming conditions, thus contributing to improved crop sustainabilityinfo:eu-repo/semantics/publishedVersio

    Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp.

    Get PDF
    This work was supported by national funds from Fundacao para a Ciencia e a Tecnologia through the projects PTDC/AGRPRO/3386/2012, the research units UID/AGR/04129/2013 (LEAF) and UID/GEO/04035/2013 (GeoBioTcc), as well through the grant SFRH/BPD/47563/2008 (AT) co-financed through the POPH program subsidized by the European Social Fund. Brazilian funding from CAPES (grams PDSE: 000427/2014-04, W.P. Rodrigues; 0343/2014-05, MM; 12226/12-2, LM), CNPq and Fapemig (fellowships to FDM, FP, and EC) are also greatly acknowledged.Modeling studies have predicted that coffee crop will be endangered by future global warming, but recent reports highlighted that high [CO2] can mitigate heat impacts on coffee. This work aimed at identifying heat protective mechanisms promoted by CO2 in Coffea arabica (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown at 25/20 degrees C (day/night), under 380 or 700 mu L CO2 L-1, and then gradually submitted to 31/25, 37/30, and 42/34 degrees C. Relevant heat tolerance up to 37/30 degrees C for both [CO2] and all coffee genotypes was observed, likely supported by the maintenance or increase of the pools of several protective molecules (neoxanthin, lutein, carotenes, ohtocopherol, HSP70, raffinose), activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), and the upregulated expression of some genes (ELIP, Chaperonin 20). However, at 42/34 degrees C a tolerance threshold was reached, mostly in the 380 -plants and Icatu. Adjustments in raffinose, lutein, beta-carotene, alpha-tocopherol and HSP70 pools, and the upregulated expression of genes related to protective (FLIPS, HSP70, Chape 20, and 60) and antioxidant (CAT, CuSOD2, APX Cyt, APX ChI) proteins were largely driven by temperature. However, enhanced [CO2] maintained higher activities of GR (Icatu) and CAT (Icatu and IPR108), kept (or even increased) the Cu,Zn-SOD, APX, and CAT activities, and promoted a greater upregulation of those enzyme genes, as well as those related to HSP70, ELIPs, Chaperonins in CL153, and Icatu. These changes likely favored the maintenance of reactive oxygen species (ROS) at controlled levels and contributed to mitigate of photosystem II photoinhibition at the highest temperature. Overall, our results highlighted the important role of enhanced [CO2] on the coffee crop acclimation and sustainability under predicted future global warming scenarios.publishersversionpublishe

    Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp.

    Get PDF
    The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided

    Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Get PDF
    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios

    Can Precision Agriculture Be Used in the Management of a Fe and Zn Biofortification Workflow in Organic Tomatoes (Lycopersicum esculentum L.)?

    No full text
    It is expected that the population worldwide might exceed 9 billion by 2050, therefore it being imperative to increase food production. As such, the development of smart farming technology is an important key food production issue. In fact, through the use of UAVs (Unmanned Aerial Vehicles), it is possible to create normalized difference vegetation index (NDVI) maps, that can indicate factors, such as health and vegetation vigor. In this context, this study aimed to assess the state of three tomato varieties (beef heart, “chucha”, and apple) in the framework of a biofortification workflow with Fe and Zn, following an organic production mode. In a tomato experimental production field (GPS coordinates—39°41′48.517″ N; 8°35′45.524″ W), six foliar sprayings were carried out during the production cycle, with a mix of Zitrilon (15%) (0.40 and 1.20 kg·ha−1) and Maxiblend (1 and 4 kg·ha−1). NDVI was determined 7 days before the first foliar spraying and showed a maximum of 0.86 (on a scale from −1 to 1). After the 3rd foliar spraying, no changes were detected in the color of freshly harvest tomatoes (assessed through spectrophotometric colorimeter), but an increase of Fe and Zn content was found in the leaves, and of Zn in tomatoes themselves (except in “chucha” variety). The use of precision agriculture techniques in correlation with the other analyses is discussed

    Changes in maximal activities of the chloroplastic glutathione reductase and cellular catalase.

    No full text
    <p>Values for antioxidant enzyme glutathione reductase (GR) (left), as well as for cellular catalase (CAT) (right), along the entire experiment for Apoatã (Ap), Icatu (Ic), and Obatã (Ob) genotypes, under well-watered (WW), mild drought (MD) and severe drought (SD) conditions, and submitted to temperature control conditions (25/20 <sup>o</sup>C), during the gradual temperature decrease (18/13 <sup>o</sup>C), at the end of the acclimation period (13/8 <sup>o</sup>C), after 3 chilling cycles (3x13/4 <sup>o</sup>C), after 7 days under rewarming conditions (7x Rec Cold), and after a further 7 days period under rewatering conditions (7x Rec Drought). For each enzyme, the mean activity values ± SE (n = 4) followed by different letters express significant differences between temperature treatments for the same water availability level (a, b, c, d, e, f), or between water treatments for each temperature treatment (A, B, C), always separately for each genotype.</p

    Variation of the leaf contents regarding the xanthophylls cycle components.

    No full text
    <p>Values of zeaxanthin and the sum of the xanthophylls violaxanthin, antheraxanthin and zeaxanthin (V+A+Z) (mg g<sup>-1</sup> dw), as well as the xanthophylls de-epoxidation state (DEPS) along the entire experiment for Apoatã, Icatu, and Obatã genotypes, under well-watered (WW), mild drought (MD) and severe drought (SD) conditions, and submitted to temperature control conditions (25/20 <sup>o</sup>C), during the gradual temperature decrease (18/13 <sup>o</sup>C), at the end of the acclimation period (13/8 <sup>o</sup>C), after 3 chilling cycles (3x13/4 <sup>o</sup>C), after 7 days under rewarming conditions (7x Rec Cold), and after a further 7 days period under rewatering conditions (7x Rec Drought).</p

    Values of leaf relative water content (RWC, %) and water potential (Ψ<sub>W</sub>, MPa).

    No full text
    <p>Values were obtained at predawn along the entire experiment for Apoatã, Icatu, and Obatã genotypes, under well-watered (WW), mild drought (MD) and severe drought (SD) conditions, and submitted to temperature control conditions (25/20 <sup>o</sup>C), during the gradual temperature decrease (18/13 <sup>o</sup>C), at the end of the acclimation period (13/8 <sup>o</sup>C), after 3 chilling cycles (3x13/4 <sup>o</sup>C), after 7 days under rewarming conditions (7x Rec Cold), and after a further 7 days period under rewatering conditions (7x Rec Drought).</p
    corecore