39 research outputs found

    Mid-infrared spectroscopic analysis of raw milk to predict the blood nonesterified fatty acid concentrations in dairy cows

    Get PDF
    In high-yielding dairy cattle, severe postpartum negative energy balance is often associated with metabolic and infectious disorders that negatively affect production, fertility, and welfare. Mobilization of adipose tissue associated with negative energy balance is reflected through an increased level of nonesterified fatty acids (NEFA) in the blood plasma. Earlier, identification of negative energy balance through detection of increased blood plasma NEFA concentration required laborious and stressful blood sampling. More recently, attempts have been made to predict blood NEFA concentration from milk samples. In this study, we aimed to develop and validate a model to predict blood plasma NEFA concentration using the milk mid-infrared (MIR) spectra that are routinely measured in the context of milk recording. To this end, blood plasma and milk samples were collected in wk 2, 3, and 20 postpartum for 192 lactations in 3 herds. The blood plasma samples were taken in the morning, and representative milk samples were collected during the morning and evening milk sessions on the same day. To predict plasma NEFA concentration from the milk MIR spectra, partial least squares regression models were trained on part of the observations from the first herd. The models were then thoroughly validated on all other observations of the first herd and on the observations of the 2 independent herds to explore their robustness and wide applicability. The final model could accurately predict blood plasma NEFA concentrations 1.2 mmol/L NEFA, the model clearly underestimated the true level. Additionally, we found that morning blood plasma NEFA levels were predicted with significantly higher accuracy using MIR spectra of evening milk samples compared with MIR spectra of morning samples, with root mean square error of prediction values of, respectively, 0.182 and 0.197 mmol/L, and R-2 values of 0.613 and 0.502. These results suggest a time delay between variations in blood plasma NEFA and related milk biomarkers. Based on the MIR spectra of evening milk samples, cows at risk for negative energy status, indicated by detrimental morning blood plasma NEFA levels (>0.6 mmol/L), could be identified with a sensitivity and specificity of, respectively, 0.831 and 0.800. As this model can be applied to millions of historical and future milk MIR spectra, it opens an opportunity for regular metabolic screening and improved resilience phenotyping.Peer reviewe

    Genetic parameters for cow-specific digestibility predicted by near infrared reflectance spectroscopy

    Get PDF
    Digestibility traits included in this study were dry matter digestibility (DMD, g/kg), which was calculated based on the indigestible neutral detergent fibre (iNDF, g/kg of dry matter) content in faeces (iNDFf) and in diet (iNDFd), and iNDFf predicted directly from faecal samples by near infrared reflectance spectroscopy (NIRS). The data set was collected at three research herds in Finland and one in Norway including in total 931 records from 328 lactating Nordic Red Cattle and Holstein cows. Observations were associated with different accuracy, due to the differences in sampling protocols used for collecting faecal samples. Heritability estimates varied between different sampling protocols and ranged from 0.14 ± 0.06 to 0.51 ± 0.24 for DMD and from 0.13 ± 0.05 to 0.48 ± 0.18 for iNDFf. Estimated genetic standard deviations were 10.5 g/kg and 6.2 g/kg dry matter for DMD and iNDFf, respectively. Results of our study indicated that recording only the iNDF content in the faeces is sufficient to determine genetic variation in cows’ ability to digest feed. The coefficient of genetic variation for DMD was rather small (1.7%), but could be utilized if it is supported by a positive analysis of benefits over costs.Peer reviewe

    A computationally efficient method for approximating reliabilities in large-scale single-step genomic prediction

    Get PDF
    Background In this study, computationally efficient methods to approximate the reliabilities of genomic estimated breeding values (GEBV) in a single-step genomic prediction model including a residual polygenic (RPG) effect are described. In order to calculate the reliabilities of the genotyped animals, a single nucleotide polymorphism best linear unbiased prediction (SNPBLUP) or a genomic BLUP (GBLUP), was used, where two alternatives to account for the RPG effect were tested. In the direct approach, the genomic model included the RPG effect, while in the blended method, it did not but an index was used to weight the genomic and pedigree-based BLUP (PBLUP) reliabilities. In order to calculate the single-step GBLUP reliabilities for the breeding values for the non-genotyped animals, a simplified weighted-PBLUP model that included a general mean and additive genetic effects with weights accounting for the non-genomic and genomic information was used. We compared five schemes for the weights. Two datasets, i.e., a small (Data 1) one and a large (Data 2) one were used. Results For the genotyped animals in Data 1, correlations between approximate reliabilities using the blended method and exact reliabilities ranged from 0.993 to 0.996 across three lactations. The slopes observed by regressing the reliabilities of GEBV from the exact method on those from the blended method were 1.0 for all three lactations. For Data 2, the correlations and slopes ranged, respectively, from 0.980 to 0.986 and from 0.91 to 0.96, and for the non-genotyped animals in Data 1, they ranged, respectively, from 0.987 to 0.994 and from 0.987 to 1, which indicate that the approximations were in line with the exact results. The best approach achieved correlations of 0.992 to 0.994 across lactations. Conclusions Our results demonstrate that the approximated reliabilities calculated using our proposed approach are in good agreement with the exact reliabilities. The blended method for the genotyped animals is computationally more feasible than the direct method when RPG effects are included, particularly for large-scale datasets. The approach can serve as an effective strategy to estimate the reliabilities of GEBV in large-scale single-step genomic predictions

    Principal component and factor analytic models in international sire evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interbull is a non-profit organization that provides internationally comparable breeding values for globalized dairy cattle breeding programmes. Due to different trait definitions and models for genetic evaluation between countries, each biological trait is treated as a different trait in each of the participating countries. This yields a genetic covariance matrix of dimension equal to the number of countries which typically involves high genetic correlations between countries. This gives rise to several problems such as over-parameterized models and increased sampling variances, if genetic (co)variance matrices are considered to be unstructured.</p> <p>Methods</p> <p>Principal component (PC) and factor analytic (FA) models allow highly parsimonious representations of the (co)variance matrix compared to the standard multi-trait model and have, therefore, attracted considerable interest for their potential to ease the burden of the estimation process for multiple-trait across country evaluation (MACE). This study evaluated the utility of PC and FA models to estimate variance components and to predict breeding values for MACE for protein yield. This was tested using a dataset comprising Holstein bull evaluations obtained in 2007 from 25 countries.</p> <p>Results</p> <p>In total, 19 principal components or nine factors were needed to explain the genetic variation in the test dataset. Estimates of the genetic parameters under the optimal fit were almost identical for the two approaches. Furthermore, the results were in a good agreement with those obtained from the full rank model and with those provided by Interbull. The estimation time was shortest for models fitting the optimal number of parameters and prolonged when under- or over-parameterized models were applied. Correlations between estimated breeding values (EBV) from the PC19 and PC25 were unity. With few exceptions, correlations between EBV obtained using FA and PC approaches under the optimal fit were ≥ 0.99. For both approaches, EBV correlations decreased when the optimal model and models fitting too few parameters were compared.</p> <p>Conclusions</p> <p>Genetic parameters from the PC and FA approaches were very similar when the optimal number of principal components or factors was fitted. Over-fitting increased estimation time and standard errors of the estimates but did not affect the estimates of genetic correlations or the predictions of breeding values, whereas fitting too few parameters affected bull rankings in different countries.</p

    Principal component approach in variance component estimation for international sire evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dairy cattle breeding industry is a highly globalized business, which needs internationally comparable and reliable breeding values of sires. The international Bull Evaluation Service, Interbull, was established in 1983 to respond to this need. Currently, Interbull performs multiple-trait across country evaluations (MACE) for several traits and breeds in dairy cattle and provides international breeding values to its member countries. Estimating parameters for MACE is challenging since the structure of datasets and conventional use of multiple-trait models easily result in over-parameterized genetic covariance matrices. The number of parameters to be estimated can be reduced by taking into account only the leading principal components of the traits considered. For MACE, this is readily implemented in a random regression model.</p> <p>Methods</p> <p>This article compares two principal component approaches to estimate variance components for MACE using real datasets. The methods tested were a REML approach that directly estimates the genetic principal components (direct PC) and the so-called bottom-up REML approach (bottom-up PC), in which traits are sequentially added to the analysis and the statistically significant genetic principal components are retained. Furthermore, this article evaluates the utility of the bottom-up PC approach to determine the appropriate rank of the (co)variance matrix.</p> <p>Results</p> <p>Our study demonstrates the usefulness of both approaches and shows that they can be applied to large multi-country models considering all concerned countries simultaneously. These strategies can thus replace the current practice of estimating the covariance components required through a series of analyses involving selected subsets of traits. Our results support the importance of using the appropriate rank in the genetic (co)variance matrix. Using too low a rank resulted in biased parameter estimates, whereas too high a rank did not result in bias, but increased standard errors of the estimates and notably the computing time.</p> <p>Conclusions</p> <p>In terms of estimation's accuracy, both principal component approaches performed equally well and permitted the use of more parsimonious models through random regression MACE. The advantage of the bottom-up PC approach is that it does not need any previous knowledge on the rank. However, with a predetermined rank, the direct PC approach needs less computing time than the bottom-up PC.</p

    Invited review: Reliability computation from the animal model era to the single-step genomic model era

    Get PDF
    The calculation of exact reliabilities involving the inversion of mixed model equations poses a heavy computational challenge when the system of equations is large. This has prompted the development of different approximation methods. We give an overview of the various methods and computational approaches in calculating reliability from the era before the animal model to the era of single-step genomic models. The different methods are discussed in terms of modeling, development, and applicability in large dairy cattle populations. The paper also describes the problems faced in reliability computation. Many details dispersed throughout the literature are presented in this paper. It is clear that a universal solution applicable to every model and input data may not be possible, but we point out several efficient and accurate algorithms developed recently for a variety of very large genomic evaluations
    corecore