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ABSTRACT

The calculation of exact reliabilities involving the 
inversion of mixed model equations poses a heavy com-
putational challenge when the system of equations is 
large. This has prompted the development of differ-
ent approximation methods. We give an overview of 
the various methods and computational approaches in 
calculating reliability from the era before the animal 
model to the era of single-step genomic models. The 
different methods are discussed in terms of modeling, 
development, and applicability in large dairy cattle 
populations. The paper also describes the problems 
faced in reliability computation. Many details dispersed 
throughout the literature are presented in this paper. 
It is clear that a universal solution applicable to every 
model and input data may not be possible, but we point 
out several efficient and accurate algorithms developed 
recently for a variety of very large genomic evaluations.
Key words: estimated breeding values, single-step 
genomic models, dairy cattle, reliability computation

INTRODUCTION

The computation of reliability for EBV is challeng-
ing, and this challenge has been further exacerbated 
by the increase in genomic information in the recent 
past. Reliability is defined as the squared correlation 
between the true breeding value and EBV (Wilmink 
and Dommerholt, 1985), and has measured the agree-
ment of the true with the estimated genetic merit for 
almost a century (Goodale, 1928). When comparing 
EBV, breeders are interested not only in the genetic 

predictions but also in the reliability of these predic-
tions (Meyer and Tier, 2003). The reliability of an EBV 
can also be considered as a measure of information 
content that contributed to that prediction. In prac-
tice, reliability is computed using the prediction error 
variance (PEV) of EBV and the genetic variance of 
true breeding value (VanVleck, 1993). The PEV can 
be obtained from elements of the inverse of the coef-
ficient matrix of the mixed model equations (MME) 
(Henderson, 1984). However, usually, the MME inverse 
matrix cannot be computed due to its size or to the 
loss of numerical precision (Hickey et al., 2009), even 
when using sparse matrix techniques (Meyer and Tier, 
2003). Traditional pedigree-based genetic evaluations 
use an animal model where the size of MME increases 
with the number of animals in the pedigree. A variety 
of methods have been proposed for approximating PEV 
for an animal model (Misztal and Wiggans, 1988; Har-
ris and Johnson, 1998; Jamrozik et al., 2000; Liu et al., 
2004; Tier and Meyer, 2004).

Inexpensive genotyping has led to the use of genomic 
data in dairy cattle evaluations (Van Tassell et al., 
2011; García-Ruiz et al., 2016; VanRaden, 2020). Ge-
nomic data presents a different challenge than the use 
of only pedigree information. Genomic predictions can 
be computed by 2 equivalent models, typically referred 
to as genomic relationship-based BLUP (GBLUP) 
and SNP-based BLUP (SNPBLUP) (VanRaden, 
2008; Strandén and Garrick, 2009). In GBLUP, the size 
of MME increases with the number of genotyped ani-
mals, whereas in SNPBLUP the dimension of this set of 
equations is bounded by the number of SNP markers. 
The pedigree and genomic information can be combined 
into a blended model, the single-step genomic BLUP 
(ssGBLUP) model (Aguilar et al., 2010; Christensen 
and Lund, 2010) that permits simultaneous analysis of 
phenotypes for genotyped and nongenotyped animals. 
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There is a further class of single-step models that are 
otherwise equivalent to ssGBLUP but based on marker 
effect models (ssSNPBLUP) and with SNP markers 
treated as covariates (Fernando et al., 2014; Liu et al., 
2014; Taskinen et al., 2017). We will refer to ssGBLUP 
and ssSNPBLUP as single-step models when both are 
considered.

Experience with single-step models have shown them 
to have at least as high or often higher prediction ac-
curacy than pedigree-based animal models (Legarra 
et al., 2014; Misztal et al., 2013a, 2020). The striking 
feature of ssGBLUP is its ability to account for bias 
when selection is based on genotypes only (VanRaden, 
2012; Mäntysaari et al., 2020; Misztal et al., 2020). 
However, the calculation of PEV by inverting the MME 
to compute reliabilities for ssGBLUP models often be-
comes either impossible or prohibitively expensive in 
the case of large numbers of animals. This limitation 
results from the genomic information producing large 
and dense matrix blocks in the MME that preclude the 
use of sparse matrix techniques.

Efficient computation of genomic accuracies for any 
model and data set continues to be an important re-
search topic (Misztal et al., 2020). In this paper, we 
consider the computation of reliabilities for various 
models used in dairy cattle breeding, as a supplement 
to the review papers on EBV computations (Mäntysaari 
et al., 2020; Misztal et al., 2020). The objectives of this 
review are (1) to provide an overview of the different 
reliability methods in terms of modeling, development, 
and application in dairy cattle, with a special focus on 
genomic reliabilities, and (2) to discuss the problems 
faced in calculating reliabilities.

PEDIGREE-BASED MODELS

Sire Model

Sire models associate daughter phenotypes to sires 
genetic effects through a random sampling of genetic 
effects of each bull (Henderson, 1975). In the simplest 
sire model, each bull is assumed to be unrelated and 
the dams of the daughters represent a random sample 
of cows. The complexity of the MME in a sire model 
increases as the simplifying assumptions are relaxed by, 
for example, identifying pedigree relationships among 
sires and maternal grand sires, the addition of other 
random effects such as permanent environment or herd-
year, or the addition of fixed effects such as parity.

Reliability of a sire EBV is often based on the re-
ciprocal of the diagonal of sire model MME for EBV 
after the absorption of all fixed effects. For a simple 
sire model, ignoring the off-diagonal elements in the 
coefficient matrix of the MME has produced good reli-

ability approximations (Meyer, 1989). When a sire re-
lationship matrix is included in the MME, ignoring the 
off-diagonal elements of the coefficient matrix will lead 
to inaccurate approximations, due to exclusion of the 
information contained in those off-diagonals (Meyer, 
1989).

Several methods have been proposed to account for 
the off-diagonal elements to give better approximations 
from the diagonal elements of the MME coefficient ma-
trix (VanRaden and Freeman, 1985; Robinson and 
Jones, 1987). VanRaden and Freeman (1985) calculated 
bounds on the diagonal elements of the MME of the 
form Z′MZ + kI, where I is an identity matrix, Z is the 
incidence matrix of the random genetic effects; 
M I X X X X= − ( )′ ′−

, where X is the incidence matrix of 
the fixed effects; (X′X)− denotes a generalized inverse 
of X′X; and k e s=σ σ2 2  with the residual variance σe

2 and 
the sire genetic variance σs

2. The bounds were deter-
mined by using a partitioned matrix and positive defi-
nite forms. Two formulas for computing upper and 
lower bounds on accuracies, respectively, were D/(D + 
k) and D/(D + k + d′d/D), where D is the diagonal 
element of Z′MZ and d′d is the sum of the squares of 
off-diagonal elements. Later, Robinson and Jones 
(1987) generalized this approach to a model with re-
lated sires.

Animal Model

The animal model enables simultaneous evaluation 
of sires, dams, and offspring, which prevents selection 
bias and improves the accuracy of prediction (Misztal 
and Wiggans, 1988). Unlike in a sire model where the 
observations on a daughter provide the information 
on her sire, even if relationships are ignored among 
those bulls, in an animal model, the relationships 
among animals (i.e., the covariances among random 
effects) are essential in the calculation of EBV and 
PEV. For animals without phenotypes, this is the only 
information contained in these EBV. For example, a 
bull will never have milk yield records, but the cor-
relations imposed by the relationships with relatives 
could provide the highest genetic merit prediction in 
a population based on the performance of those rela-
tives. Although the theory of animal model evaluation 
was developed about 60 years ago (Henderson, 1963), 
large-scale EBV prediction using an animal model only 
evolved in the early 1990s, leveraging the dramatic 
increase in the capacity of computers at that time. 
In routine animal model evaluations, the absorption 
technique is frequently used to reduce the size of the 
system of equations to be solved. Despite the use of 
this strategy, the MME coefficient matrix was still too 
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large to invert when millions of animals were involved 
in complex models. Schaeffer and Kennedy (1986) 
developed a matrix-free method, usually called “itera-
tion on data,” that enables obtaining solutions without 
explicitly setting up the MME. The iteration on data 
is computationally efficient in solving an animal model 
having millions of animals because it takes advantage 
of the sparsity of the MME.

Generally, the calculation of PEV in an animal model 
involves inverting MME of a size equal to the number 
of levels in fixed and in random effects in the model, 
and that constraint continued to limit applications of 
animal models for large data sets. Several approaches 
have been proposed to solve this problem and to ap-
proximate formulas for PEV and accuracy without the 
need to invert the MME coefficient matrix (Misztal and 
Wiggans, 1988; Liu et al., 2004; Tier and Meyer, 2004; 
Ducrocq and Schneider, 2007; Liu et al., 2010). Misz-
tal and Wiggans (1988) pointed out that to achieve 
computing efficiency, the cost of PEV approximation 
should not exceed that of EBV evaluations.

Approximation of PEV for an Animal Model

Methods to approximate reliabilities for sire models 
are not suitable for animal models, because many im-
portant genetic relationships in an animal model are 
not considered in a sire model (Misztal and Wiggans, 
1988). Therefore, several methods have been developed 
to approximate reliability in an animal model (Misztal 
and Wiggans, 1988; Boichard and Lee, 1992; Thomp-
son et al., 1994). Misztal and Wiggans (1988) devel-
oped an iterative algorithm to approximate PEV in an 
animal model suitable for large data sets. They as-
sumed that the loss of information in the estimation 
due to the nongenetic effects has been accounted for in 
a diagonal matrix D for every animal. A single obser-
vation for an animal having no loss of information due 
to estimation of nongenetic effects has a value of 1 on 
the diagonal. The diagonal elements of the matrix 

D A+( )− −
,α 1 1
 where α σ σ= ,e a

2 2  are assumed to be the 
same as in the submatrix of the inverse of the MME 
corresponding to the genetic effects of the animal along 
with its sire and dam, and A is the pedigree-based re-
lationship matrix. Therefore, the total genetic infor-
mation of an animal i, say bi, can be decomposed in 
contributions from records and from relationships. 
They also demonstrated that the reliability of EBV for 
animal i can be calculated as di/(di + α), where di is 
the effective number of records for animal i. The au-
thors approximated the contributions due to relation-
ships for each relationship using the following iterative 
algorithm:
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where qi, qs, and qd are information on animal i, its 
sire, and its dam, respectively, without relationships 
considered, and bi, bs, and bd are the total informa-
tion corresponding to the same animals. Initially, the q 
vector is equal to the effective number of records, but 
q is updated by accumulating information from every 
animal using the relationship matrix information.

Misztal and Wiggans (1988) assessed their method 
with a simulated data set and compared the exact reli-
abilities obtained by inversion of the coefficient matrix 
and by approximation for both a full model and a model 
without fixed effects (herd-year-season). They reported 
correlation estimates of 0.996 with a single-trait repeat-
ability model for a simulated data, which had 2,315 
records from 1,000 daughters of 40 sires, and only 100 
management groups over 3 generations. A major ad-
vantage of this method is that the memory requirement 
is restricted to 3 variables per animal. The iterative 
process only involves reading the data file once and the 
pedigree file once at each iteration. Later, VanRaden 
and Wiggans (1991) developed a similar method us-
ing the same contributions as in Misztal and Wiggans 
(1988), but expressed in daughter equivalents. 

Meyer (1989) proposed an approach for approximat-
ing the reliability for a single-trait animal model. Let C 
be the usual MME and C−1 its inverse. A reduced set of 
elements in C−1 can be approximated by inverting the 
4 × 4 submatrix, where the dimension is from an indi-
vidual, its parents, and the fixed effect class containing 
the observation. The accuracy of this approximation 
depends on the number and magnitude of nonzero off-
diagonal elements of C relevant for this animal that 
were ignored. The number of these elements could be 
substantial for an animal with many progenies. The 
author suggested the following 3-step procedure: (1) 
adjust the diagonal of each animal with records for 
limited subclass sizes, (2) accumulate adjustments to 
the diagonals of the parents for limited information on 
progeny, and (3) adjust diagonals of progeny for the 
adjusted diagonals of their parents, to avoid double 
counting the animal considered.
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Multi-Trait Animal Models

Multi-trait animal models can incorporate valuable 
information from correlated traits on an animal and its 
relatives for the computation of EBV (Meyer, 1989). 
When genetic correlations between traits are moder-
ate or high, reliability approximations from single-trait 
models may give poor estimates for reliabilities using 
analogous multi-trait model evaluations. Numbers of 
daughters that may be suitable for use in a single-trait 
sire model can be inappropriate because observations 
from correlated traits on a daughter do not provide the 
same amount of information on a sire as 2 measure-
ments from different daughters. On the other hand, 
information of a second correlated trait on the same 
animal can generate more information on the EBV 
for that animal for the primary trait than if it were 
observed on its ancestors or its progeny (Meyer, 1989).

In the method suggested by Tier and Meyer (2004), 
the PEV and prediction error covariances of EBV were 
approximated by extending the 3 primary steps of 
Meyer (1989) as follows: (1) determine the record infor-
mation for every animal, (2) accumulate information on 
the progeny and further descendants of the animal from 
the youngest to the oldest, and (3) gather the accumu-
lated record information from parents, ancestors, and 
collateral relatives by traversing the pedigree from the 
oldest to the youngest animal. The following 2 addi-
tional steps are required: (1) removing the animal’s 
own contribution to avoid double counting, and (2) 
combining the contributions from all information 
sources (parents, progeny, and its own records). The 
final block for each animal, say Fi, can be written as 

F E D Ei
j

t

j i l

p
l

i
i= + +

=
=∑ ∑

1
1

* , where Ej
* is the contribution 

of the parents adjusted for animal i from step 3; Di has 
the amount of information from its own records; El has 
the progeny contributions of animal i from step 2; ti is 
the number of known parents for animal i; and pi is the 
number of progeny of animal i.

The PEV of animal i can be expressed as 

PEV F Gi idiag= +( )









− −

0
1 1

, where diag{} is a square 

matrix with the diagonal elements the same as the di-
agonal elements of the original matrix and all off-diag-
onals elements are zero, and G0

1−  is the variance-covari-
ance matrix of additive genetic effects. See Tier and 
Meyer (2004) for further details. The method provides 
good approximations of PEV in a multi-trait model 
and has been shown to be efficient even for large popu-
lations. However, the method tends to overestimate 
reliabilities for animals with high reliabilities.

Exploiting Sparsity in the Animal Model

In addition to the calculation of PEV, the diagonal 
elements of the inverse of the coefficient matrix of the 
MME are often needed in the estimation of variance 
components by REML (VanRaden and Freeman, 1985). 
For example, PEV are needed in the first derivatives 
of the REML log-likelihood used by expectation maxi-
mization and average information REML approaches. 
These computational approaches are regarded as ex-
pensive when large data sets are used. Various sparse 
matrix techniques have been proposed to calculate 
PEV values required for the first derivative (Misztal 
and Perez-Enciso, 1993; Johnson and Thompson, 1995). 
Yet, it is worth noting that the sparse inverse generally 
includes a small fraction of the nonzero elements of the 
full inverse.

Exploiting sparse Cholesky factorization, the coeffi-
cient matrix of MME can be presented as C = U′DU, 
where the MME coefficient matrix C is expressed using 
the upper triangle matrix U and the diagonal matrix 
D. Indeed, based on the method of Takahashi et al. 
(1973), Misztal and Perez-Enciso (1993) showed that 
the inverse of C noted C−1 can be written as C−1 = 
D−1U′−1 + (I – U)C−1. They used the following equa-

tions to obtain the sparse matrix C−1: c d u cii ii
k i

n

ik ik= −−

= +
∑1

1

 

and c c u cij ji
k j

n

jk ik= =−
= +
∑ ,

1

 where the elements of the C, 

D, and U matrices are referred by indices i = n, n−1, 
..., 1, and j = i−1, i−2, …, 1. The advantage of this 
method is that the elements of C−1 are calculated only 
for corresponding nonzero elements of U. For easy un-
derstanding see the numerical example given in Misztal 
and Perez-Enciso (1993). It is also worth noting that 
this type of method, based on the sparse inverse, can be 
used to compute PEV in an animal model. However, 
the total computing time heavily depends on the mem-
ory requirement that continues to present a major 
limitation in the case of large populations.

An alternative approach is to approximate the needed 
functions or elements of PEV in expectation maximiza-
tion and average information REML by Monte Carlo 
(MC) simulation as in Matilainen et al. (2013), which 
can be applied in computation of PEV for reliability as 
well. However, although the memory limitations have 
been lifted by the use of the MC approach, each MC 
sample requires solving MME, which may be infeasible 
in practice as the required number of MC samples may 
be too large. Monte Carlo sampling procedures for cal-
culating PEV have also been described in Hickey et al. 
(2008) and Hickey et al. (2009). Hickey et al. (2009) 
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found that PEV approximations using MC sampling 
are affected by the formulation used to calculate PEV 
and the level of exact PEV. However, they showed that 
the difference between the formulations tends to be 
small when the number of MC samples increases. See 
Hickey et al. (2009) for further details.

GENOMIC MODELS

Computation of Reliabilities in the Era  
of Genomic Prediction

Genomic selection uses genomic information, which 
needs to be considered in the evaluation models as well 
as in the calculation of reliabilities. Initially the number 
of genotyped animals was quite small. However, the 
rapid increase in the number of genotyped animals due 
to the decreasing cost of genotyping and the growing 
use of genomic selection, has led to new computational 
challenges to handle the vast amount of genomic in-
formation. In this section, we will review the different 
approaches for approximating reliabilities for models 
that use genomic information only.

Equivalence Between GBLUP and SNPBLUP Models

Genomic relationship-based BLUP or SNPBLUP 
models have been widely used for routine genomic 
evaluations in animal breeding. Both models generate 
equal EBV and PEV. Based on the paper of Meuwissen 
et al. (2001), a marker effect or SNPBLUP model can 
be written as y = Xb + Zg + e, where y is the vector 
of trait phenotypes, Z is the matrix of gene content, b 
is the vector of fixed effects, g is the vector of marker 
effects, and e is the vector of random residual effects. It 
is assumed that there are n genotyped animals with m 
SNP markers (i.e., Z has size n by m). The marker ef-
fects are assumed to be uncorrelated with variance 
Var(g) = Iσg

2 and Var e I R( ) = =σe
2 .

Breeding values can be calculated from SNPBLUP 
model as u = Zg. Using selection index equations, Van-
Raden (2007, 2008) showed that the SNPBLUP model 
is equivalent to the GBLUP model, which directly 
models the breeding values u but not marker effects g. 
The breeding values are assumed to have variance 
Var(u) = Gσu

2, where G is the genomic relationship 
matrix and σu

2 is the genetic variance. The G matrix is 
ZZ′

i

m
i ip p

=∑ −( )
1

1 , with pi as the frequency of the ith 

SNP marker, and σ σu g
2 2

1

1= −( )
=
∑
i

m

i ip p . Using the MME 

(Henderson, 1984) and the Woodbury matrix identity, 
Strandén and Garrick (2009) proved the equivalence 

between genomic effect and marker effect models for 
the genotyped reference animals. As shown by Hender-
son (1984), 2 models are linearly equivalent if and only 
if their fixed effect estimates are equal and their pheno-
typic variance matrices are equal. Fernando et al. 
(2014) showed that SNPBLUP and GBLUP provide 
equivalent predictions. The MME size increases with 
the number of genotyped animals n in GBLUP but is 
bounded by the number of SNP markers m in SNPB-
LUP.

Typically, SNP markers are unable to completely 
capture the genetic variation due to the incomplete 
linkage disequilibrium between the QTL and the ge-
nome-wide markers (Hayes et al., 2009; Liu et al., 2011; 
Ben Zaabza et al., 2020a). Inclusion of the residual 
polygenic (RPG) effect in the aforementioned models 
would generally result in higher accuracy (Liu et al., 
2011), but would also increase the size of the MME 
by the number of genotyped animals. The equivalence 
between GBLUP and SNPBLUP models with a fitted 
RPG has been demonstrated with RPG as a separate 
effect in SNPBLUP (Liu et al., 2016), and with RPG 
integrated in the marker genotype matrix (Ben Zaabza 
et al., 2020a).

Computational Cost of Reliability Calculation  
in Multistep Genomic Models Using Either  
GBLUP or SNPBLUP

Calculation of EBV reliability requires the elements 
from the inverse of the coefficient of the MME. In SN-
PBLUP model, reliability for an animal i can be calcu-
lated as 1 2− ( )z C Gzi

gg
ii ui

′ / ,σ  where zi is the row i in the 
marker matrix Z, and Cgg is the submatrix correspond-
ing to the marker effects in the inverse of SNPBLUP 
MME. The computationally most expensive operation 
with SNPBLUP is the inversion of the coefficient ma-
trix of the MME, which has an approximately cubic 
cost with the number of SNP markers [i.e., O(m3)]. In 
GBLUP, reliability for an animal i can be calculated as 
1 2− ( )PEV Gi ii u/ ,σ  where PEVi is the diagonal element 
i in the PEV matrix Cuu obtained from the inverse of 
GBLUP MME. The inversion of GBLUP MME has a 
cubic cost (and quadratic memory) for genotyped ani-
mals [i.e., O(n3)], which is prohibitively expensive for a 
large population of genotyped animals. Further, the 
inversion of the G matrix is computed beforehand and 
requires almost (n2) memory and (n3) computations, 
which is not computationally feasible due to the density 
and large size of the genomic relationship matrix G in 
case of a high number of genotyped animals. Thus, 
when the number of genotyped animals exceeds the 
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number of SNP markers (i.e., n > m), SNPBLUP is 
more efficient because it does not involve calculation of 
the G matrix or its inverse (Strandén and Garrick, 
2009; Fernando et al., 2014). For example, when the 
number of genotyped animals (n) is higher than the 
number of marker covariates (m), the computing cost 
required to invert the MME for GBLUP over SNPB-
LUP is approximately proportional to (n/m)3 (Ben 
Zaabza et al., 2020a).

Computational Cost of GBLUP/SNPBLUP with Fitted 
RPG Effect

Including the RPG effect in multistep genomic BLUP 
is known to improve the reliability of the prediction 
and reduce bias (Guarini et al., 2018). In case the SNP 
markers fail to describe all the additive genetic vari-
ance of the trait, widely used sires with high genomic 
enhanced breeding values (GEBV) reliabilities will 
have slightly different prediction estimates compared 
with those from traditional pedigree analysis, unless 
RPG effect is included in the applied genomic model 
(Golden et al., 2016). In the GBLUP model, the RPG 
effect can be accounted for by an additional RPG or by 
combining the genomic and polygenic breeding value 
effects in the genomic relationship matrix, which can 
be written as

	 G Z AZw c cw w= −( ) +1 22
′ ,	

where Zc is the VanRaden (2008) method 1 centered 
and scaled genotype matrix and w is the RPG propor-
tion. The RPG proportion w is the weight of the RPG 
effect and can be seen as the proportion of genetic 
variance not captured by SNP markers. If we assume a 
GBLUP model as y = 1nμ + u + e, the computation 
of PEV requires the following 2 inversions: (1) inver-
sion of the genomic relationship matrix Gw of size n, 
and (2) inversion of the MME of size n + 1. This is not 
feasible for a large population of genotyped animals, 
because the computing time increases cubically and 
the storage (memory) quadratically with the num-
ber of genotyped animals. Typically, the calculation 
of reliability in GBLUP models is dominated by the 
calculation of the inverse genomic relationship matrix, 
which includes making and inverting the matrix. This 
becomes clearer with the higher the number of geno-
typed animals.

In SNPBLUP with a fitted RPG effect, the marker 
effect coefficients can be augmented with RPG coeffi-
cients for the genotyped animals. In other words, if we 
consider an SNPBLUP model equivalent to the GB-
LUP model as y = 1nμ + Zg + e, where 

Z Z L= −( )





1 w wc , the square matrix L is the Cho-

lesky decomposition of A22 (i.e., A22 = LL′), and g is 
mn by 1 vector of pseudomarker effects, mn = m + n. 
The computation of the PEV of SNP markers requires 
the inversion of the MME of size m + n, which is infea-
sible for large-scale genetic evaluation schemes involv-
ing millions of animals. Ben Zaabza et al. (2020a) re-
ported a computing time of 18.6 h to invert the G 
matrix for 222,619 genotyped animals using 10 CPU 
threads. Extrapolating for 1 million genotyped animals, 
the equivalent computing time would be almost 70 d. 
The authors proposed several strategies to overcome 
the computational burden in multistep genomic model 
reliability estimation.

Approximating Reliabilities  
in SNPBLUP/GBLUP Models

MC-SNPBLUP. Heavy computation is inevitable 
in both large-scale GBLUP and SNPBLUP models 
when the RPG effect is included. In large-scale genomic 
evaluations, an approximation method based on reduc-
ing the size of the MME can be a practical solution. 
To this end, Ben Zaabza et al. (2020a,b) proposed a 
MC approach to estimate reliability for the SNPBLUP 
model with an RPG effect. The method allows reduc-
tion of the MME size, which determines the computa-
tional cost in the case of a large number of genotyped 
animals. The authors approximated the A22 matrix 
using MC sampling; that is, they applied MC samples 
instead of the Cholesky decomposition L for the RPG 
effect, as follows:

	 A a a
a

a

U U22 1

1

22 22
1� � �= 
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where ai ~ , ,N 0 22A( )  i n= …  MC1, , , and 
U a a22 1

1= …



nMC

nMC
.

Thus, the Gw matrix can be reformulated as 
G Z Z U Uw c cw w* = −( ) +1 22 22

′ ′ . Subsequently, the Gw
*  ma-

trix can be written as G SSw
* = ′, where S S S= [ ]Z U , 

with SZ = 1−w cZ  and S UU = w 22. Ben Zaabza et al. 
(2020a) used Gw

*  to create the following equivalent MC-
based SNPBLUP:

	 y Sg e= + +1n sµ ,	

where gs is the vector of (m + nMC) pseudomarker ef-
fects, of which m are due to SNP markers and nMC are 
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dummy effects for the RPG breeding values. Thus, the 
MME can be written as

	
1 1 1

1
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1 1 2
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n u s
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1
n
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.	

The inversion of MME for MC-SNPBLUP incurs a 
cubic cost and requires quadratic storage space for (m 
+ nMC). Savings in memory requirements and comput-
ing time are due to replacing the number of genotyped 
animals by a smaller number of MC samples. The au-
thors have shown that the MC-SNPBLUP model has 
computational advantages over exact SNPBLUP, with 
a fitted RPG effect, in that it gives good reliability 
approximations with several MC samples much smaller 
than the number of genotyped animals, when the num-
ber of genotyped animals is large. Consequently, the 
total computing time is substantially decreased.

The MC-SNPBLUP method was tested in a beef 
cattle carcass conformation evaluation involving a 
population of almost 223,000 genotyped animals and 
13.35 million pedigree animals, and compared with the 
exact GBLUP model reliabilities under different MC 
sample sizes and RPG proportions. The authors re-
ported correlations of 99% between the 2 model reli-
abilities with 20,000 MC samples. The corresponding 
computing time was around 250 min, which is less than 
1/10th of that for GBLUP reliabilities. For more de-
tails, see Ben Zaabza et al. (2020a). The computational 
cost needed to invert the MME was approximately 

proportional to 
n

m n+











MC

3

 for GBLUP over MC-SN-

PBLUP, indicating that the latter is computationally 
less demanding than GBLUP model when n ≫ (n + 
nMC).

Full MC Sampling for SNPBLUP. Expanding 
the SNPBLUP MME to include the RPG effect by us-
ing the MC approach offers computational advantages 
over the exact SNPBLUP, by reducing the MME size 
to (m + nMC) instead of (m + n), with nMC always 
smaller than n. However, the computational cost using 
a high-density SNP marker chip is still expensive in the 
case of many SNP markers and genotyped animals. To 
overcome this issue, Ben Zaabza et al. (2021) extended 
the MC-SNPBLUP model to use MC samples for both 
SNP markers and the RPG effect. Because all genetic 
effects were now replaced by MC samples, the method 
was putatively called full-MC-SNPBLUP. The full-MC-
SNPBLUP model equation is

	 y Us e= + +1n µ ,	

where ŝ are solutions for nMC random pseudogenetic 
effects, with nMC as the number of MC samples and U 
as an n by nMC matrix of the MC samples. It is assumed 
that s I~ ,N 0 2σu( ) and e R~ , ,N 0 2σe( )  where σu

2 and σe
2 are 

the genetic and residual variance, respectively. Each 
column i in the U matrix is an MC-simulated sample ui 
= Zcgi + ai, where it is assumed that g I~ ,N 0 1−( )



w  

and a A~ , .N 0 22�w( )  Thus, the MME for full-MC-SNPB-
LUP is
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.	

The full-MC-SNPBLUP is a sequential procedure, 
which comprises the following 4 main steps: (1) making 
MC samples for SNP markers, (2) making MC samples 
for the RPG effect, (3) making the MME matrix, and 
(4) inverting the MME matrix. Even though the com-
puting time for the first 2 steps increases linearly along 
with the number of MC samples, generating the MC 
samples for the RPG effect can be computationally 
more expensive than for the SNP marker effects. The 
cost of making the MME is n(nMC)

2. However, the cost 
of inverting the MME is a cubic function O[(nMC)

3)] of 
the number of MC samples, and hence, the comput-
ing cost for making the MME becomes more expensive 
than that for MME inversion when the number of geno-
typed animals surpasses the number of MC samples. 
Considering the required computing time as well as 
the unbiasedness and accuracy of full-MC-SNPBLUP, 
this model outperformed the MC-SNPBLUP method, 
especially when high RPG proportion was used. How-
ever, the computing time is largely determined by the 
number of MC samples needed to obtain a high ac-
curacy. Further, the application of the MC approach 
in a multi-trait model remains challenging. For more 
details, see Ben Zaabza et al. (2021).

SINGLE-STEP GENOMIC MODELS

Computation of reliabilities for the single-step mod-
els inherits the challenges from both the pedigree-based 
and genomic models. The following sections give the 
current status in the computation of approximate 
reliabilities for large data sets with many genotyped 
individuals.

Reliabilities for Single-Step GBLUP Models

When a part of the population is not genotyped, the 
genomic relationship matrix G can be combined with 
the pedigree-based additive relationship matrix A into 
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a unified relationship matrix H (Legarra et al., 2009; 
Aguilar et al., 2010; Christensen and Lund, 2010). Let 
subscripts 1 and 2 refer to nongenotyped and geno-
typed animals, respectively. Then, the pedigree-based 
relationship matrix A can be written as

	 A
A A
A A

=












11 12

21 22
,	

where A11 and A22 represent the pedigree relationship 
between nongenotyped and between genotyped animals, 
respectively, and the submatrix A12 is the pedigree 
relationship between nongenotyped and genotyped ani-
mals. The H matrix can be interpreted as an extended 
matrix of A to accommodate G, and can be written as

	 H
A A A A A A GA A A A G

GA A G
=

− +



− − − −

−
11 12 22

1
21 12 22

1
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1
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,	

and its inverse as

	 H A
G A

− −
− −= +
−











1 1
1

22
1

0 0

0
.	

Clearly the augmented relationship matrix H is a dense 
matrix, but its inverse H−1 appears to have a simple 
form with dense blocks within otherwise sparse matrix. 
The H−1 matrix includes the inverse of the genomic 
relationship G, which is often singular and needs to be 
blended to A22 to be of full rank. A modified genomic 
relationship matrix can be written (obtained) as Gw 
= (1 − w)G + wA22. The most expensive operation 
in ssGBLUP model reliabilities, as presented by Agui-
lar et al. (2010) and Christensen and Lund (2010), is 
making and then inverting the MME. Both operations 
have an approximately cubic cost with the number of 
equations (animal plus fixed effects). Moreover, ssGB-
LUP requires the inversion of G and A22 matrices. The 
corresponding computations increase cubically and the 
storage requirement quadratically with the number of 
genotyped animals.

Reliability Approximation Using the Direct Inversion 
of G Matrix

Misztal et al. (2013b) proposed an approximation 
method to calculate reliabilities in ssGBLUP models. 
Their approach is an extension of the approximation 
algorithm of Misztal and Wiggans (1988). Misztal et al. 
(2013b) showed that PEV for an animal i can be writ-
ten as 1/       ,α+ + +( )d d di

r
i
p

i
g  where di

r , di
p , and di

g  are 

contributions due to pedigree, phenotype, and genomic 
information, respectively, in terms of effective daugh-
ters or observations. The authors demonstrated that 
PEV for all animals can also be written as 

diag r PD D I G A+ + + −( )















− −
−

.1
22

1
1

α  The G matrix ac-

counts for genomic information and the A22 matrix 
provides an adjustment to ensure that the relationship 
information contained in G and A22 will not be double 
counted.

The algorithm developed by Misztal et al. (2013b) for 
reliability approximation with genomic information in-
cludes the following 3 steps: (1) approximating reli-
abilities in an animal model (i.e., no genomic informa-
tion used), (2) transforming the already calculated reli-
abilities for genotyped animals into the effective number 
of records, and (3) calculating LHSuu, where uu denotes 
the block of the left-hand side (LHS) of the MME, as 

D D I G Ar P+ + + −( )















− −
−

,1
22

1
1

α  and then genomic re-

liability for animal i as 1− ,αLHSuu
ii  where LHSuu

ii  is the 
diagonal value i in LHSuu. An additional step, involving 
the adjustment of reliabilities for nongenotyped animals 
in case these are functions of the reliabilities of geno-
typed animals, is optional. Misztal et al. (2013b) also 
suggested a simpler form of the above algorithm by ig-
noring the off-diagonal elements of G−1 and A22

1− , so 

that LHS diaguu
r P≈ + + + −



{ }− − −

D D I G A( { }) .1
22

1 1
α  

The second approximation enjoys a significant compu-
tational advantage over the first one, whereas the first 
approximation performs better. Its drawback is that it 
requires an explicit calculation of the inverse of G and 
A22 matrices, which is not computationally feasible for 
a large number of genotyped animals. Both methods 
were found to be viable for populations of up to 100,000 
genotyped animals.

Reliability Approximation Based  
on a Multistep Approach

To make genomic reliabilities comparable across 
countries and consistent with pedigree-based ani-
mal model reliabilities, Liu et al. (2017) developed a 
standardized statistical procedure for approximating 
genomic reliabilities. The authors defined the follow-
ing features which an accurate method for calculating 
genomic reliabilities has to satisfy: (1) ability to ac-
count for the RPG effect, (2) feasibility irrespective of 
the number of genotyped animals, (3) applicability to 
a single-step genomic model, (4) feasibility for routine 
genomic evaluations, and (5) compatibility of the ap-
proximated genomic reliability with the genomic vali-
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dation PEV. The authors based their method on a pure 
multistep SNPBLUP model, which has the advantage 
of a manageable and stable MME size, as the model 
does not rely on the number of genotyped animals.

The Interbull method by Liu et al. (2017) involves 
a total of 6 steps, which are as follows: (1) calculating 
SNP reliability with the assumption that all the genetic 
variability is captured by the SNP markers (i.e., no 
RPG effect was included into the model), (2) approxi-
mating the reliability of genomic EBV or direct ge-
nomic value as RDGV = (1 − k)RimpRSNP, where k is the 
proportion of RPG variance, Rimp is the reliability of 
genotype imputation, and RSNP is the reliability of SNP 
markers, (3) adjusting the theoretical reliabilities to the 
realized reliabilities using genomic validation results. It 
is worth noting that the theoretical reliabilities tend to 
be inflated for the young genotyped candidate animals, 
(4) calculating the genomic effective daughter contribu-
tion (EDC) gain, namely the difference between the 
realized genomic EDC and the conventional EDC, (5) 
transferring the additional information of genomic ori-
gin to nongenotyped animals, and (6) calculating final 
reliabilities enhanced with genomic information. For 
more details, see Liu et al. (2017).

Reliability Approximation Using Algorithm of Proven 
and Young Animals 

Bermann et al. (2021) presented a method for calcu-
lating PEV in the GBLUP model using an approximate 
inverse of G computed a recursive algorithm developed 
by Misztal et al. (2014), called the algorithm of proven 
and young animals (APY). The authors extended this 
method for approximated PEV of GBLUP to the ssG-
BLUP model to approximate reliabilities for single-trait 
and multi-trait ssGBLUP by using a procedure based 
on effective record contributions (ERC), as shown in 
Liu et al. (2017). It is worth noting that the APY 
method calculates the approximated G−1, hereinafter 
called GAPY

−1 , for a large number of noncore genotyped 
animals based on the direct G−1 for a minimum num-
ber of core genotyped animals, assuming that these 
core animals represent most of the chromosome seg-
ments in the genome (Tsuruta et al., 2021). The pro-
posed GAPY

−1  can be written as

	 G
I P

I
G

M

I
P IAPY

cn cc

nc

−
−

−
=

−

























 −











1
1

10
0

0

0

nn


 =














−
.

G G

G M

cc cn

nc
nn

1
	

Let subscripts c and n refer to the core and noncore 
animals, respectively; P G Gcn nc cc= −1 and 
M G G G Gnn nn nc cc cn= −{ }−diag .1

The GAPY
−1  has a cubic cost and a quadratic memory 

requirement for core genotyped animals and a linear 
cost and memory requirement for noncore genotyped 
animals. In other words, when the number of genotyped 
animals increases, the number of computations used in 
GAPY
−1  increases linearly.
In their study, Bermann et al. (2021) exploited the 

sparse presentation of GAPY
−1  to calculate PEV in GB-

LUP as the diagonal of D G ,+( )− −

APY
1 1

 where D is a di-
agonal matrix having weights. The D matrix can be 

written as diag ′ ′ ′− ( )



{ }−W I X X X X W , where X and 

W are design matrices for the fixed and random effect, 
respectively. Their algorithm clearly does not require 
setting up the MME, but only approximating weights 
to be added to the diagonal elements of the GAPY

−1  ma-
trix. The authors used the APY-GBLUP to approxi-
mate reliabilities in a single-trait ssGBLUP using a 
multistep procedure similar to those developed by Liu 
et al. (2017) and Edel et al. (2019). Further, they ex-
tended both the single-trait APY-GBLUP and APY-
ssGBLUP to multi-trait APY-GBLUP and APY-ssGB-
LUP models, respectively, by adjusting the single-trait 
reliabilities using the genetic and residual covariance 
matrices across traits as in Strabel et al. (2001).

In their multistep procedure, Bermann et al. (2021) 
showed that steps 4 to 6 are the most time-consuming 
steps of their algorithm, with a quadratic cost for core 
genotyped animals and a linear cost for noncore geno-
typed animals both for step 4, which involves calculat-
ing Gcc as G G G Mcc cn cn− ( ) ,nn ′  and for step 6, which 

involves calculating the matrix product − ( )G G Mcc cn
nn . 

Step 5, however, which requires inverting the matrix 
Gcc, has a cubic cost for core genotyped animals. The 
gains in computing cost and memory requirement are 
due to ignoring the computation and storage for both 
the blocks of noncore × noncore (except diagonal ele-
ments) for both G and GAPY

−1  (Misztal, 2016).
The computations by the APY-based ssGBLUP re-

liabilities seem to be efficient in terms of computing 
times, but the success of this method can be dependent 
on the choice of appropriate core animals. Tsuruta et 
al. (2021) reported that some of the chosen core ani-
mals might give redundant information (i.e., collinear-
ity between animals), which would require increasing 
the number of core animals representing all indepen-
dent chromosome segments in the genome. The authors 
stated that even with the APY method, the computa-
tional cost for large-scale genomic evaluations is still 
high when all genotyped animals are included. They 
concluded that this could prove to be a bottleneck in 
conducting frequent evaluations.
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Reliability Approximation Based on the Single-Step 
Bayesian Regression Method

The single-step Bayesian regression (ssBR) model 
for ssSNPBLUP was presented by Fernando et al. 
(2014). The MME for the ssBR is
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where M is the matrix of imputed and observed geno-
types of all animals in the pedigree, M1 is a submatrix 
of imputed genotypes of nongenotyped animals with 
phenotype, and ˆ,b  ˆ,g  and ε̂ are solutions for fixed ef-
fects, marker effects, and imputation residual effects, 
respectively.

The ssBR model was originally implemented using 
Markov chain MC (MCMC), which allows computa-
tion of PEV from the MCMC chain. Gao et al. (2018) 
illustrated that the PEV from the MCMC chain was 
close to the correct value obtained by direct inversion. 
However, MCMC was considered to be computationally 
demanding for large MME.

Edel et al. (2019) described the theoretical aspects 
related to calculations of reliability of single-step 
predictions. Their derivation consists of calculating 
the PEV for marker effects, and then approximating 
the PEV for the imputation residuals. The authors 
demonstrated that the PEV for SNP marker effects, 
taking into account the contribution of the imputation 
residual, can be written as
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They also showed that the PEV of the imputation term 
of ε̂ can be approximated by a diagonal matrix (i.e., by 
dividing the diagonal of A A A12 22

1
21

−  by the diagonal of 
A11). For more details, see Edel et al. (2019).

Edel et al. (2019) further presented a second ap-
proximation based on limiting the number of nongeno-

typed animals to those with a substantial contribution 
to the total amount of information. The consequent 
reduction in animal number had the following 3 bene-

fits: (1) reducing the dimensionality of  Z R Z A1 1
1

1
11

2

1′ − + ,
σa

 

(2) lowering the cost of imputing and storing of geno-
types of nongenotyped animals, and (3) reducing the 
size of the M matrix to equal the sum of genotyped 
animals plus those nongenotyped animals with substan-
tial information contributions, instead of genotyped 
and all nongenotyped animals. The authors also pro-
posed to combine the 2 approximation approaches to 
calculate reliability of genotyped animals for large 
populations of dairy cattle. Similar to Liu et al. (2017), 
they suggested a framework to approximate reliability 
for nongenotyped animals by propagating the informa-
tion of genotyped animals by reverse-reliability estima-
tion to nongenotyped animals. It is noteworthy that the 
Liu et al. (2017) method does not use the imputed 
genotypes but the observed genotypes only. One of the 
main advantages of the approach of Edel et al. (2019) 
is that there is no need to invert the G matrix, which 
becomes infeasible as the number of genotyped animals 
increases. Also, the calculation of imputed genotypes 
for all nongenotyped animals can easily be parallelized, 
which significantly decreases the total computing time. 
Even though the Edel et al. (2019) approach can be an 
efficient method to overcome the computational prob-
lems encountered with calculation of the exact ssBV-
BLUP (or regular ssGBLUP) reliabilities, it is worth 
mentioning that the diagonal approximation approach 
was derived from practical examples and holds for dairy 
cattle only. In contrast, the original ssBR approach 
with MCMC can be used for any model, data, and 
population structure.

Multi-Trait Single-Step Reliability Approximation

Ben Zaabza et al. (2022a) developed an ssGBLUP 
reliability approximation method for a multi-trait 
model. The method is based on a separate calculation 
of reliabilities for genotyped and nongenotyped ani-
mals, and comprises 3 steps. Firstly, the amount of 
nongenomic information for genotyped animals is cal-
culated using approximate reliability in a traditional 
pedigree-based animal model. Secondly, the genomic 
information is added to estimate the total amount of 
information in ssGBLUP model reliability. This in-
volves the use of a technique called reverse-reliability 
estimation to calculate ERC, instead of the simple for-

mula ERC
r

r

h

h
=

−( )
−( )2

2

2

21

1
. The reverse-reliability 
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technique consists of approximating an ERC value from 
a given reliability by reversing the method of Tier and 
Meyer (2004). The ERC for each genotyped animal 
were solved iteratively using a Newton-Raphson algo-
rithm (Ben Zaabza et al., 2022a,b). The ERC based on 
the reverse-reliability estimation are then used as 
weights in calculating multi-trait GBLUP model reli-
ability. Thirdly, reliabilities for the nongenotyped ani-
mals are calculated by adding the increase in informa-
tion due to genomics to the genotyped animals through 
pseudo-observations in a conventional pedigree-based 
animal model.

Ben Zaabza et al. (2022a) showed that the compu-
tational cost of the approximation method was only 
about 12% of that of the exact ssGBLUP reliability 
approach which was based on matrix inversion. Cal-
culation of genomic reliabilities using the multi-trait 
GBLUP model proved to be the most time-consuming 
step, with O[(tn)3] computations and O[n(m + t2n)] 
memory, where t is the number of traits and n is the 
number of genotyped animals. This is not tenable in 
case of many genotyped animals. One way to overcome 
issues with computing cost related to the multi-trait 
GBLUP model reliability is to use equivalent multi-
trait SNPBLUP. Indeed, reliabilities for genotyped 
animals can be efficiently computed by an equivalent 
multi-trait SNPBLUP model with O[(tm)3] compu-
tations and O[m(n + t2m)] memory, which can be a 
practical choice to reduce the computational cost when 
the number of genotyped animals exceeds the number 
of markers. However, this advantage is lost if an RPG 
effect is fitted into the SNPBLUP model, which incurs 
a cost of O[m(n + t2m)] (Liu et al., 2014; Bermann et 
al., 2021). One way to overcome the problem is to use 
either partial MC-based sampling, where the size of 
the MME depends on the number of m + nMC, or full 
MC-based sampling, where the MME depends on nMC.

DISCUSSION

The purpose of this paper was to give an overview of 
the various methods for calculating model reliabilities, 
with special focus on genomic reliabilities. The compu-
tation of pedigree-based animal model reliabilities no 
longer presents as great of a challenge as in previous 
decades, even for large data sets. However, the calcula-
tion of exact genomic reliabilities involving MME inver-
sion has proved infeasible if the number of genotyped 
animals is very high. Different approximation methods 
have been developed to overcome the heavy compu-
tational challenge. The rapid pace at which the new 
literature on model reliabilities is increasing makes it 
practically impossible to summarize it in such a short 

space, and so we will limit our discussion to only a few 
recent developments.

Among the reliability calculation methods proposed 
for GBLUP/SNPBLUP models, the MC approach by 
Ben Zaabza et al. (2020a, 2021) allows reduction of 
MME from (m + n) to (m + nMC) with partial MC or 
to only nMC with full MC. Both methods were found to 
be effective when the number of genotyped animals n 
is larger than the number of SNP markers m. However, 
a compromise needs to be made between the number 
of MC samples, nMC, and accuracy. Computation of 
exact reliabilities in ssGBLUP models is even more 
challenging when many more genotyped animals are 
used, which has prompted the development of different 
approximation methods to overcome the heavy compu-
tational challenge.

Liu et al. (2017) developed a method to harmonize 
the computation of genomic reliabilities in different 
countries. The authors proposed a multistep procedure 
for reliability calculation using a single-trait model. 
They quantified the nongenomic information for geno-
typed animals in a conventional animal model and 
then used the nongenomic information to obtain the 
total information in a genomic model. The method is 
simple and efficient both in terms of computation and 
accuracy, but its extension to a multi-trait model still 
requires the development of the necessary software.

The approach by Liu et al. (2017) has motivated the 
introduction of other approximation methods. For ex-
ample, the ssBR method proposed by Edel et al. (2019) 
has proved effective. The authors examined the relative 
merit of their method in terms of accuracy by compar-
ing it to the exact ssGBLUP reliabilities. The ssBR 
was found to do slightly better than the Misztal et al. 
(2013b) and Liu et al. (2017) methods, but its draw-
back is that the diagonal approximation was initially 
derived from practical examples and holds for dairy 
cattle only. The method developed by Bermann et al. 
(2022), which is based on an APY, enjoys a significant 
computational advantage over the others, but loses 
in accuracy compared with them. The quality of the 
method may also be dependent on the chosen set of 
core animals, and further study is needed to assess the 
effect of the chosen core animals on the goodness of the 
approximation.

Ben Zaabza et al. (2022a) developed a reliability 
approximation method similar to those by Liu et al. 
(2017) and Edel et al. (2019). The encouraging results 
reported in Ben Zaabza et al. (2022a) suggest that 
the method might be useful for large data sets. How-
ever, their procedure involves an intermediate step of 
calculating reliabilities in GBLUP or SNPBLUP, and 
this continues to be computationally expensive when 
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an RPG effect is included. Even though the MC ap-
proach can be applied for reliability approximation in 
SNPBLUP models when RPG is fitted, the method is 
sensitive to the MC sample size and the size of the 
RPG weight. The encouraging results of these recent 
approximation methods lend some support to their 
potential applicability for large data sets. However, all 
the methods produce some inflation or deflation in the 
reliabilities without a compelling explanation. One of 
the main concerns has to do with the double counting 
of information in the genomic reliability calculation. 
Solving this problem poses an interesting topic for fu-
ture research.

It is worthwhile noting that all these proposed ap-
proaches for estimating genomic reliabilities center on 
calculating PEV for each SNP and the RPG effects 
separately, and finally summing these to arrive at a 
GEBV reliability. The EDC reliability approximation 
by VanRaden and Wiggans (1991) is fundamentally 
different in that it estimates the reliability contributed 
by information sources. In conventional pedigree-based 
BLUP (PBLUP), these are the contributions from own 
observation, from the parents, and from the offspring. 
This method could conceivably be extended by adding 
an animal’s (imputed) genotype as a fourth source of 
information. The latter could be decomposed in a reli-
ability of a fully known genotype and a reliability with 
which the (imputed) genotype is known (obtained from 
propagation). If an efficient method could be conceived 
to estimate genotype reliability, this could potentially 
greatly simplify GEBV reliability calculations, particu-
larly if calculation of the reliability of each SNP can be 
avoided.

An interesting question concerns changes in the reli-
ability of EBV due to genomic information. There are 
at least 2 aspects to be considered: model reliability 
versus observed reliability, and what base is used for 
the genomic and pedigree data.

The first is that the computed model reliabilities de-
pend on the assumptions made in the statistical model. 
Thus, the reliability of an EBV/GEBV by a model is 
restricted by the assumptions of the prediction model. 
For example, consider a GBLUP/SNPBLUP model 
to analyze data having 50,000 markers versus 10,000 
markers. The model with 50,000 markers is likely to 
show lower reliabilities than the one with 10,000 mark-
ers. However, the observed reliabilities will tend to be 
the opposite: that is, a model having more markers 
give higher prediction reliabilities than a model with 
fewer markers. Thus, a comparison of reliabilities be-
tween different models having different assumptions 
is often not meaningful. Another example is that a 
PBLUP model which uses an incomplete pedigree that 
has many unrelated animals will give higher EBV reli-

abilities than a PBLUP model with complete pedigree 
information where the animals will be more related and 
possibly inbred. A complete pedigree will have more 
closely related individuals than an incomplete pedigree 
and, thus, will have less uncorrelated information avail-
able to predict the breeding values. Similarly, genomic 
information may indicate a higher relationship between 
some animals than pedigree information, which can 
translate to lower model reliability for some individuals.

Any pedigree or genomic based model reliabilities 
depend on the used genetic base. The centering of 
markers, or so-called allele coding, affects EBV reli-
abilities by SNPBLUP/GBLUP. In theory, centering 
does not affect the PEV of marker effects in SNPBLUP 
such that the between-marker PEV in the inverse of 
MME (SNPBLUP) will be the same irrespective of the 
allele coding (Strandén and Christensen, 2011). Thus, 
the use of either −1,0,1 or 0,1,2 or centering by average 
genotype will not affect the PEV marker matrix. How-
ever, EBV reliabilities for animal i can be calculated as 
1 2− ( )z C z Gi

gg
i ii u
' /  σ  from SNPBLUP MME, as already 

explained. In the extreme, an individual i may have 
zero for all values in the genotype vector zi for some 
centering but a vector of ones for another. The PEV 
matrix between the markers in SNPBLUP (i.e., Cgg), is 
the same in both cases, but z C zi

gg
i
'  for an individual 

differs. In the extreme case of zi being the zero vector, 
the genomic relationship matrix diagonal value Gii 
would be zero as well, which illustrates that allele cod-
ing affects the reliability. To resolve the problem of in-
consistent PEV due to different allele coding, Tier et al. 
(2018) proposed including into the G matrix an addi-
tional founder using base population allele frequencies, 
which model the mean of the founder population. The 
authors showed that the use of an implied founder re-
sulted in a single set of PEV irrespective of the allele 
coding scheme. For more details, we refer the reader to 
Tier et al. (2018).

Interbull has the difficult task of trying to come up 
with general guidelines to compute genomic reliabilities 
in different countries. Allele frequencies can differ by 
population, and consequently, the base differs as well 
if it relies on allele frequencies, as is common. Use of 
a common allele frequency base for all populations 
would allow a unified approach. However, this would 
often differ from the used approach for a local popula-
tion. Thus, genomic EBV reliabilities may not be as 
easily transformed from one population to another 
as pedigree-based EBV reliabilities by measures such 
as effective daughter contributions. Furthermore, dif-
ferent populations can use different SNP markers in 
their genomic evaluations. Perhaps, if all participating 
populations used the meta-founder approach (Legarra 
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et al., 2015) to model the relationships among pedigree 
founders, such that they are all related, this problem 
would diminish, as the same allele frequency of 0.5 is 
used for all markers. It is important to note that the 
meta-founder approach developed by Christensen et 
al. (2012) and Legarra et al. (2015) can be seen as 
a generalization of unknown parent groups or genetic 
groups, and consists of a coherent method to make the 
G and A matrices relative to the same base population 
and thus compatible. Properties, similarities, and dif-
ferences between meta-founders and unknown parent 
groups are well discussed in Masuda et al. (2021).

CONCLUSIONS

The computation of reliability of EBV is challeng-
ing, and the recent increase in the number of geno-
typed animals has further exacerbated this challenge. 
Current single-step techniques for EBV computation 
have succeeded in making the computational cost of 
solving the MME linearly proportional to the number 
of genotyped animals. Thus, the solving algorithms 
are capable of handling models with large data and 
many genotyped animals. In practice, the calcula-
tion of EBV can be achieved by using a fast-iterative 
method rather than a direct inversion of the MME, 
whereas the calculation of reliability requires results 
from the direct inversion of the MME. Therefore, most 
of algorithms used to calculate EBV are unsuitable for 
use in genomic reliability models because the calcula-
tions of EBV and reliabilities do not share the same 
math. In fact, direct inversion of the MME may be 
the only case where the same strategies are used for 
solutions to both EBV and reliabilities. On the other 
hand, when approximations are used in the reliability 
computations, the choice of the reliability solver and 
EBV solver can be independent and share very little 
code. Consequently, several studies on reliability ap-
proximations have been conducted lately to handle 
any size of dairy cattle populations, with some prom-
ising results. A universal solution applicable to every 
model and input data may not be possible but recent 
intensive efforts to approximate reliability have devel-
oped efficient and accurate algorithms for a variety of 
very large genomic evaluations.
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