133 research outputs found
Small-molecule Bcl-2 inhibitors sensitise tumour cells to immune-mediated destruction
The cytotoxic effects of anticancer immune cells are mediated by perforin/granzyme-B, Fas ligand and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), and therefore depend on intact apoptotic responses in target tumour cells. As killing by all three of these mechanisms is blocked by the frequently overexpressed antiapoptotic oncoprotein Bcl-2, we hypothesised that coexposure to a Bcl-2 inhibitor might enhance anticancer immune responses. We evaluated this in U937 lymphoma cells, and A02 melanoma cells, which both show strong Bcl-2 expression. Vα24+ Vβ11+ natural killer T (NKT) cells expanded from peripheral blood of normal donors (n=3) were coincubated with PKH26-labelled U937 cells, and cytotoxicity was determined by flow cytometry after annexin-V-FITC and 7-AAD staining. In all cases, addition of the HA14-1 small-molecule Bcl-2 inhibitor to the cocultures significantly increased apoptosis in the target U937 cells. Using a similar assay, killing of A02 cells by the cytotoxic T-lymphocyte clone 1H3 was shown to be amplified by coexposure to the potent small-molecule Bcl-2 inhibitor ABT-737. Experiments with immune effectors preincubated with concanamycin-A suggested that sensitisation to perforin/granzyme-B may underlie enhanced target-cell killing observed in the presence of Bcl-2 inhibitors. We conclude that immune destruction of malignant cells can be amplified by molecular interventions that overcome Bcl-2-mediated resistance to apoptosis
Safety, Tolerability, and Pharmacokinetics of ARC-520 Injection, an RNA Interference-Based Therapeutic for the Treatment of Chronic Hepatitis B Virus Infection, in Healthy Volunteers
published_or_final_versio
Small inhibitor of Bcl-2, HA14-1, selectively enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast cancer cells
Inhibition or downregulation of Bcl-2 represents a new therapeutic approach to by-pass chemoresistance in cancer cells. Therefore, we explored the potential of this approach in breast cancer cells. Cisplatin and paclitaxel induced apoptosis in a dose-dependent manner in MCF-7 (drug-sensitive) and MDA-MB-231 (drug-insensitive) cells. Furthermore, when we transiently silenced Bcl-2, both cisplatin and paclitaxel induced apoptosis more than parental cells. Dose dependent induction of apoptosis by drugs was enhanced by the pre-treatment of these cells with HA14-1, a Bcl-2 inhibitor. Although the effect of cisplatin was significant on both cell lines, the effect of paclitaxel was much less potent only in MDA-MB-231 cells. To further understand the distinct role of drugs in MDA-MB-231 cells pretreated with HA14-1, caspases and Bcl-2 family proteins were studied. The apoptotic effect of cisplatin with or without HA14-1 pre-treatment is shown to be caspase-dependent. Among pro-apoptotic Bcl-2 proteins, Bax and Puma were found to be up-regulated whereas Bcl-2 and Bcl-x(L) were down-regulated when cells were pretreated with HA14-1 followed by paclitaxel or cisplatin. Enforced Bcl-2 expression in MDA-MB-231 cells abrogated the sensitizing effect of HA14-1 in cisplatin induced apoptosis. These results suggest that the potentiating effect of HA14-1 is drug and cell type specific and may not only depend on the inhibition of Bcl-2. Importantly, alteration of other pro-apoptotic or anti-apoptotic Bcl-2 family members may dictate the apoptotic response when HA14-1 is combined with chemotherapeutic drugs
Apoptosis of t(14;18)-positive lymphoma cells by a Bcl-2 interacting small molecule
Overexpression of Bcl-2 protein occurs via both t(14;18)-dependent and independent mechanisms and contributes to the survival and chemoresistance of non-Hodgkin lymphomas. HA14–1 is a nonpeptidic organic small molecule, which has been shown to inhibit the interaction of Bcl-2 with Bax, thereby interfering with the antiapoptotic function of Bcl-2. In this study, we sought to determine the in vitro efficacy of HA14–1 as a therapeutic agent for non-Hodgkin lymphomas expressing Bcl-2. Assessment of cell viability demonstrated that HA14–1 induced a dose- (IC50 = 10 μM) and time-dependent growth inhibition of a cell line (SudHL-4) derived from a t(14;18)-positive, Bcl-2-positive, non-Hodgkin lymphoma. HA14–1 effectively induced apoptosis via a caspase 3-mediated pathway but did not affect either the p38 MAPK or p44/42 MAPK pathways. Western blot analyses of Bcl-2 family proteins and other cell cycle-associated proteins were performed to determine the molecular sequelae of HA14–1-induced apoptosis. The results show down-regulation of Mcl-1 but up-regulation of p27kip1, Bad, Bcl-xL, and Bcl-2 proteins, without change in Bax levels during HA14–1-mediated apoptosis. Our findings further elucidate the cellular mechanisms accompanying Bcl-2 inhibition and demonstrate the potential of Bcl-2 inhibitors as therapeutic agents for the treatment of non-Hodgkin lymphomas
Microarray patch delivery of un-adjuvanted influenza vaccine induces potent and broad-spectrum immune responses in a phase I clinical trial
Microarray patches (MAPs) offer the possibility of improved vaccine thermostability and dose-sparing potential as well as the potential to be safer, more acceptable, easier to use and more cost-effective for the administration of vaccines than injection by needle and syringe. Here, we report a phase I trial (ACTRN12618000112268/ U1111-1207-3550) using the Vaxxas high-density MAP (HD-MAP) to deliver a monovalent influenza vaccine to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. To the best of our knowledge, this is the first study determining dose reduction potential using MAPs in humans. Monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/ 2015 [H1N1] haemagglutinin (HA) was delivered by MAP into the volar forearm or upper arm, or given intramuscularly (IM) once. Participants (20 per group) received HD-MAPs delivering doses of 15, 10, 5, 2.5 or 0 µg of HA or an IM injection of quadrivalent influenza vaccine (QIV). In two subgroups, skin biopsies were taken on days 1 (pre-vaccination) and 4 for analysis of the cellular composition from the HD-MAP application sites. All laboratory investigators were blind to treatment and participant allocation. The primary objectives of the study were safety and tolerability. Secondary objectives included immunogenicity and dose de-escalation assessments of the influenza vaccine delivered by HD-MAP. Both objectives were assessed for up to 60 days post-vaccination.
Please click Download on the upper right corner to see the full abstract
A phase I trial of SON-1010, a tumor-targeted, interleukin-12-linked, albumin-binding cytokine, shows favorable pharmacokinetics, pharmacodynamics, and safety in healthy volunteers
BackgroundThe benefits of recombinant interleukin-12 (rIL-12) as a multifunctional cytokine and potential immunotherapy for cancer have been sought for decades based on its efficacy in multiple mouse models. Unexpected toxicity in the first phase 2 study required careful attention to revised dosing strategies. Despite some signs of efficacy since then, most rIL-12 clinical trials have encountered hurdles such as short terminal elimination half-life (T½), limited tumor microenvironment targeting, and substantial systemic toxicity. We developed a strategy to extend the rIL-12 T½ that depends on binding albumin in vivo to target tumor tissue, using single-chain rIL-12 linked to a fully human albumin binding (FHAB) domain (SON-1010). After initiating a dose-escalation trial in patients with cancer (SB101), a randomized, double-blind, placebo-controlled, single-ascending dose (SAD) phase 1 trial in healthy volunteers (SB102) was conducted.MethodsSB102 (NCT05408572) focused on safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) endpoints. SON-1010 at 50-300 ng/kg or placebo administered subcutaneously on day 1 was studied at a ratio of 6:2, starting with two sentinels; participants were followed through day 29. Safety was reviewed after day 22, before enrolling the next cohort. A non-compartmental analysis of PK was performed and correlations with the PD results were explored, along with a comparison of the SON-1010 PK profile in SB101.ResultsParticipants receiving SON-1010 at 100 ng/kg or higher tolerated the injection but generally experienced more treatment-emergent adverse effects (TEAEs) than those receiving the lowest dose. All TEAEs were transient and no other dose relationship was noted. As expected with rIL-12, initial decreases in neutrophils and lymphocytes returned to baseline by days 9-11. PK analysis showed two-compartment elimination in SB102 with mean T½ of 104 h, compared with one-compartment elimination in SB101, which correlated with prolonged but controlled and dose-related increases in interferon-gamma (IFNγ). There was no evidence of cytokine release syndrome based on minimal participant symptoms and responses observed with other cytokines.ConclusionSON-1010, a novel presentation for rIL-12, was safe and well-tolerated in healthy volunteers up to 300 ng/kg. Its extended half-life leads to a prolonged but controlled IFNγ response, which may be important for tumor control in patients.Clinical trial registrationhttps://clinicaltrials.gov/study/NCT05408572, identifier NCT05408572
Phase I trial of CYT997, a novel cytotoxic and vascular-disrupting agent
BACKGROUND: CYT997 is a novel microtubule inhibitor and vascular-disrupting agent with marked preclinical anti-tumour activity. METHODS: This phase I dose-escalation study assessed the safety, tolerability, pharmacokinetics and pharmacodynamics of CYT997 administered by continuous intravenous infusion over 24 h every 3 weeks to patients with advanced solid tumours
A Melodic Contour Repeatedly Experienced by Human Near-Term Fetuses Elicits a Profound Cardiac Reaction One Month after Birth
Human hearing develops progressively during the last trimester of gestation. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, and process complex auditory streams. Fetal and neonatal studies show that they can remember frequently recurring sounds. However, existing data can only show retention intervals up to several days after birth.Here we show that auditory memories can last at least six weeks. Experimental fetuses were given precisely controlled exposure to a descending piano melody twice daily during the 35(th), 36(th), and 37(th) weeks of gestation. Six weeks later we assessed the cardiac responses of 25 exposed infants and 25 naive control infants, while in quiet sleep, to the descending melody and to an ascending control piano melody. The melodies had precisely inverse contours, but similar spectra, identical duration, tempo and rhythm, thus, almost identical amplitude envelopes. All infants displayed a significant heart rate change. In exposed infants, the descending melody evoked a cardiac deceleration that was twice larger than the decelerations elicited by the ascending melody and by both melodies in control infants.Thus, 3-weeks of prenatal exposure to a specific melodic contour affects infants 'auditory processing' or perception, i.e., impacts the autonomic nervous system at least six weeks later, when infants are 1-month old. Our results extend the retention interval over which a prenatally acquired memory of a specific sound stream can be observed from 3-4 days to six weeks. The long-term memory for the descending melody is interpreted in terms of enduring neurophysiological tuning and its significance for the developmental psychobiology of attention and perception, including early speech perception, is discussed
Tubulin-binding dibenz[c,e]oxepines: Part 2 Structural variation and biological evaluation as tumour vasculature disrupting agents
5,7-Dihydro-3,9,10,11-tetramethoxybenz[c,e]oxepin-4-ol 1, prepared from a dibenzyl ether precursor via Pd-catalysed intramolecular direct arylation, possesses broad-spectrum in vitro cytotoxicity towards various tumour cell lines, and induces vascular shutdown, necrosis and growth delay in tumour xenografts in mice at sub-toxic doses. The biological properties of 1 and related compounds can be attributed to their ability to inhibit microtubule assembly at the micromolar level, by binding reversibly to the same site of the tubulin αβ-heterodimer as colchicine 2 and the allocolchinol, N-acetylcolchinol 4
- …