110 research outputs found

    Shape, motion, and inertial parameter estimation of space objects using teams of cooperative vision sensors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005."February 2005."Includes bibliographical references (leaves 133-140).Future space missions are expected to use autonomous robotic systems to carry out a growing number of tasks. These tasks may include the assembly, inspection, and maintenance of large space structures; the capture and servicing of satellites; and the redirection of space debris that threatens valuable spacecraft. Autonomous robotic systems will require substantial information about the targets with which they interact, including their motions, dynamic model parameters, and shape. However, this information is often not available a priori, and therefore must be estimated in orbit. This thesis develops a method for simultaneously estimating dynamic state, model parameters, and geometric shape of arbitrary space targets, using information gathered from range imaging sensors. The method exploits two key features of this application: (1) the dynamics of targets in space are highly deterministic and can be accurately modeled; and (2) several sensors will be available to provide information from multiple viewpoints. These features enable an estimator design that is not reliant on feature detection, model matching, optical flow, or other computation-intensive pixel-level calculations. It is therefore robust to the harsh lighting and sensing conditions found in space. Further, these features enable an estimator design that can be implemented in real- time on space-qualified hardware. The general solution approach consists of three parts that effectively decouple spatial- and time-domain estimations. The first part, referred to as kinematic data fusion, condenses detailed range images into coarse estimates of the target's high-level kinematics (position, attitude, etc.).(cont.) A Kalman filter uses the high-fidelity dynamic model to refine these estimates and extract the full dynamic state and model parameters of the target. With an accurate understanding of target motions, shape estimation reduces to the stochastic mapping of a static scene. This thesis develops the estimation architecture in the context of both rigid and flexible space targets. Simulations and experiments demonstrate the potential of the approach and its feasibility in practical systems.by Matthew D. Lichter.Ph.D

    Concept development for lightweight binary-actuated robotic devices, with application to space systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001."June 2001."Includes bibliographical references (leaves 66-71).Exploratory space missions of the future will require robotic systems to lead the way by negotiating and mapping very rough terrain, collecting samples, performing science tasks, and constructing facilities. These robots will need to be adaptable and reconfigurable in order to achieve a wide variety of objectives. Conventional designs using gears, motors, bearings, encoders, and many discrete components will be too complex, heavy, and failure-prone to allow highly-reconfigurable systems to be feasible. This thesis develops new concepts that may potentially enable the design of self-transforming space explorers. The vision of this research is to integrate compliant bistable mechanisms with large numbers of binary-actuated embedded smart materials. Compliant mechanisms are lightweight and robust. Binary actuation is the idea of using an actuator in a discrete on/off manner rather than in a continuous manner. A binary actuator is easy to control and robust, and by using tens or hundreds of binary actuators, one can approximate a continuous system, much like a digital computer can approximate an analog system. The first part of this thesis examines the fundamental planning issues involved with systems having large numbers of binary actuators. The notion of a workspace is described and applied to the optimization of a manipulator design. Methods for solving the forward and inverse kinematics are discussed in the context of this application. These methods are extended to the trajectory and locomotion planning problems. Methods for planning systems of substantial complexity are developed in the context of exploratory space robotics. The second part of this thesis presents experimental demonstrations that examine elements of the concept. The results of several design prototypes are discussed.by Matthew D. Lichter.S.M

    Dielectric Elastomer Actuated Systems and Methods

    Get PDF
    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex

    Elastomeric actuator devices for magnetic resonance imaging

    Get PDF
    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex

    Air quality and error quantity: pollution and performance in a high-skilled, quality-focused occupation

    Get PDF
    We provide the first evidence that short-term exposure to air pollution affects the work performance of a group of highly-skilled, quality-focused employees. We repeatedly observe the decision-making of individual professional baseball umpires, quasi-randomly assigned to varying air quality across time and space. Unique characteristics of this setting combined with high-frequency data disentangle effects of multiple pollutants and identify previously under-explored acute effects. We find a 1 ppm increase in 3-hour CO causes an 11.5% increase in the propensity of umpires to make incorrect calls and a 10 mg/m3 increase in 12-hour PM2.5 causes a 2.6% increase. We control carefully for a variety of potential confounders and results are supported by robustness and falsification checks

    Medulloblastoma Exome Sequencing Uncovers Subtype-Specific Somatic Mutations

    Get PDF
    Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma

    DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control

    Get PDF
    Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas

    Lowe Syndrome Protein OCRL1 Supports Maturation of Polarized Epithelial Cells

    Get PDF
    Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components α-catenin and zonula occludens (ZO)-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5′-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome

    A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing.

    Get PDF
    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼ 100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.We thank the DKFZ Genomics and Proteomics Core Facility and the OICR Genome Technologies Platform for provision of sequencing services. Financial support was provided by the consortium projects READNA under grant agreement FP7 Health-F4-2008-201418, ESGI under grant agreement 262055, GEUVADIS under grant agreement 261123 of the European Commission Framework Programme 7, ICGC-CLL through the Spanish Ministry of Science and Innovation (MICINN), the Instituto de Salud Carlos III (ISCIII) and the Generalitat de Catalunya. Additional financial support was provided by the PedBrain Tumor Project contributing to the International Cancer Genome Consortium, funded by German Cancer Aid (109252) and by the German Federal Ministry of Education and Research (BMBF, grants #01KU1201A, MedSys #0315416C and NGFNplus #01GS0883; the Ontario Institute for Cancer Research to PCB and JDM through funding provided by the Government of Ontario, Ministry of Research and Innovation; Genome Canada; the Canada Foundation for Innovation and Prostate Cancer Canada with funding from the Movember Foundation (PCB). PCB was also supported by a Terry Fox Research Institute New Investigator Award, a CIHR New Investigator Award and a Genome Canada Large-Scale Applied Project Contract. The Synergie Lyon Cancer platform has received support from the French National Institute of Cancer (INCa) and from the ABS4NGS ANR project (ANR-11-BINF-0001-06). The ICGC RIKEN study was supported partially by RIKEN President’s Fund 2011, and the supercomputing resource for the RIKEN study was provided by the Human Genome Center, University of Tokyo. MDE, LB, AGL and CLA were supported by Cancer Research UK, the University of Cambridge and Hutchison-Whampoa Limited. SD is supported by the Torres Quevedo subprogram (MI CINN) under grant agreement PTQ-12-05391. EH is supported by the Research Council of Norway under grant agreements 221580 and 218241 and by the Norwegian Cancer Society under grant agreement 71220-PR-2006-0433. Very special thanks go to Jennifer Jennings for administrating the activity of the ICGC Verification Working Group and Anna Borrell for administrative support.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1000
    corecore