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ABSTRACT

Exploratory space missions of the future will require robotic systems to lead the
way by negotiating and mapping very rough terrain, collecting samples, performing
science tasks, and constructing facilities. These robots will need to be adaptable and
reconfigurable in order to achieve a wide variety of objectives. Conventional designs
using gears, motors, bearings, encoders, and many discrete components will be too
complex, heavy, and failure-prone to allow highly-reconfigurable systems to be feasible.

This thesis develops new concepts that may potentially enable the design of self-
transforming space explorers. The vision of this research is to integrate compliant
bistable mechanisms with large numbers of binary-actuated embedded smart materials.
Compliant mechanisms are lightweight and robust. Binary actuation is the idea of using
an actuator in a discrete on/off manner rather than in a continuous manner. A binary
actuator is easy to control and robust, and by using tens or hundreds of binary actuators,
one can approximate a continuous system, much like a digital computer can approximate
an analog system.

The first part of this thesis examines the fundamental planning issues involved
with systems having large numbers of binary actuators. The notion of a workspace is
described and applied to the optimization of a manipulator design. Methods for solving
the forward and inverse kinematics are discussed in the context of this application. These
methods are extended to the trajectory and locomotion planning problems. Methods for
planning systems of substantial complexity are developed in the context of exploratory
space robotics.

The second part of this thesis presents experimental demonstrations that examine
elements of the concept. The results of several design prototypes are discussed.

Thesis Supervisor: Steven Dubowsky
Title: Professor of Mechanical Engineering
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CHAPTER

1

INTRODUCTION

1.1 Introduction

This thesis presents preliminary concept development for a new lightweight,

robust robotic design paradigm, with special emphasis on space applications. The work

presented here represents the author's contribution to a collaborative research program

being carried out at the MIT Field and Space Robotics Laboratory. This program is

funded by the NASA Institute for Advanced Concepts (NIAC), an autonomous agency

created to "provide an independent open forum for the external analysis and definition of

space and aeronautics advanced concepts [and] complement the advanced concepts

activities conducted within the NASA Enterprise" [NASA Institute for Advanced

Concepts, 2001]. The NIAC is focused on supporting research that may dramatically

impact the aerospace community on the 10 to 40 year time horizon and strongly seeks

research programs that show promise for leapfrogging current technology development.

The design paradigm being explored and developed in this laboratory involves

using compliant, elastic structures embedded with a large number of simple binary

actuators. A binary actuator is one that is capable of robustly maintaining only two

discrete states: an on or an off position. This is in contrast to conventional robotic

devices, which use continuous actuators such as motors, hydraulics, pneumatics, etc. A

binary actuator could be made of a lightweight smart material such as shape memory

alloy (SMA), conducting polymer, electrostrictive polymer, piezo polymer, etc.

Chapter 1. Introduction 
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The use of a large number of binary actuators as opposed to a few continuous

ones is analogous to the leap from analog to digital computing. By using tens, hundreds,

or thousands of binary actuators, one can approximate a continuous system in dexterity

and utility. Incorporating simple compliant mechanisms, rather than complex gear trains,

bearings, and lubrication, vastly reduces the number of moving parts and hence increases

robustness. Further design additions, such as the use of simple bistable mechanisms to

reinforce the actuator commands, provide additional robustness.

While compliant mechanisms and binary actuators are not new concepts, their

combination in large numbers to create robotic systems has not been studied. The goal of

this study was to examine the fundamental issues and challenges involved with this

compliance-based binary robotic paradigm. The research discussed here explores the

planning and control issues involved with highly redundant binary systems as well as

some of the preliminary challenges in building such devices.

1.2 Motivation

The exploration and development of the planets and moons in our solar system in

the next 10 to 40 years are stated goals of NASA and the international space science

community [NASA, 1998]. In order to do this, robotic systems will need to lead the way

by scouting, collecting geologic samples, mapping, performing science tasks, and

constructing facilities, while working in highly unstructured environments and

negotiating very rough terrain [Huntsberger, et al, 2000] (see Figure 1.1).

Chapter 1. Introduction 
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Figure 1.1. Martian terrain as seen from the NASA Pathfinder lander, 1997. (Courtesy JPL.)

Current planetary robotic systems do not have the capabilities to perform these

missions. They are rovers or landers, built with a fixed configuration, capable of

functioning in benign terrain and performing specific surveying and minor sample

collection. They are composed of a large number of mechanical and electrical

components such as gears, motors, bearings, encoders, and sensors. The latest planetary

rover, Sojourner, and those under development are relatively conventional fixed-

configuration vehicles carrying a simple mechanical manipulator [Bickler, 1992;

Schenker, 1997] (see Figure 1.2). This technology, while well conceived for current and

near-term science objectives, will not meet the demands of missions forecast for the new

millennium. Even relatively small rocks the size of the rover itself present serious

obstacles to current rovers (see Figure 1.3). They will not be able to explore rough

terrain, such as cliff sides, deep ravines, and craters, where the most interesting scientific

samples and information are probably located. Nor will they be able to perform even the

simplest assembly or construction tasks.

Chapter 1. Introduction 11



Figure 1.2. (a) Sojourner rover that landed on Mars in 1997; (b) Rocky 7 test bed rover, one of
many currently used to test technologies and concepts on Earth. (Courtesy JPL.)

Figure 1.3. Simulation of Sojourner, showing the difficulty in surmounting obstacles with
conventional technologies. (Courtesy JPL.)

Rather than implementing exploratory robots in a fixed-configuration manner

with highly specified tasks, robots of the future will need to be adaptable, transforming

themselves to meet a wide variety of objectives when needed (see Figure 1.4). A robot

Chapter 1. Introduction 12



that is optimized for adaptability, rather than a few specific tasks, will be much more

valuable and cost-effective for missions of the next 10 to 40 years. Unfortunately,

conventional components such as gear trains, motors, bearings, and encoders will render

self-transformation unfeasible, due to their complexity, weight, and proneness to failure.

New robot technology concepts as well as new paradigms for the design of space robots

are required to meet the needs of future planetary exploration and development programs.

Figure 1.4. The benefits of self-transformation. [Andrews, 2000]

1.3 The Self-Transforming Explorer (STX) Concept

The thrust of the project being carried out by the MIT Field and Space Robotics

Laboratory is to develop the fundamental planning and component technologies to enable

the concept of self-transforming exploratory (STX) robots. Figure 1.5 shows such a

robot, as envisioned by this research group, which is composed of modules

interconnected by generic articulated elements [Andrews, 2000]. With such a structure,

interconnections between different modules could be formed or broken to create a wide
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variety of topologies, thus providing a diversity of capabilities. The articulated elements

would not be composed of conventional gears and motors, but rather would be made

from a compliant structure embedded with smart material actuators. The number of

discrete parts would be substantially reduced, thus improving robustness in hostile

environments and simplifying overall design and fabrication. Specifically, the vision laid

out by this research group consists of four main points: embedded muscle-type actuators;

polymer-based compliant mechanisms; binary actuation and control; and bistable joints

and structures. These will be discussed in detail in the following subsections.

Figure 1.5. Vision of a self-transforming explorer (STX) composed of modules and articulated
elements. [Andrews, 2000]

1.3.1 Embedded Muscle-Type Actuators

The first point of the STX vision is the concept of embedded muscle-type

actuators. Researchers are presently developing a wide variety of smart muscle-like

actuators, including conducting polymers, dielectric (electrostrictive) polymers, piezo

polymers, shape memory alloys, polymer gels, and ferromagnetic polymers [Madden, et

al, 2000; Pelrine, et al, 1998, 2000; Waram, 1993; Jolly, et al, 1996]. In the 10 to 40 year

timeframe, many materials such as these will be developed into commercial engineering

technologies. These technologies have the potential for revolutionizing a variety of

mechanical systems, as they are lightweight, compact, and often lead to highly integrated

designs due to their fundamental simplicity. In addition, these materials have the
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potential for being very robust, as they typically consist of only a few components.

Fewer components generally equates to a lower likelihood of system failure.

1.3.2 Polymer-Based Compliant Mechanisms

The second facet of the STX vision is the concept of replacing conventional

bearings and sliding surfaces with flexures and compliant mechanisms (see Figure 1.6).

The notion of compliance in mechanisms is not new, and much research has gone into

developing methodologies for their design and optimization [Midha, et al, 1992;

Ananthasuresh, et al, 1995; Frecker, et al, 1996, 1999]. They have seen limited use in

robotic systems, however. While often not as stiff as ball bearings, they have the

advantage of simplicity, light weight, low cost, zero friction, and no moving parts.

Having a finite range of motion, they match nicely with muscle-type actuators, whose

motions are also bounded. One can fabricate a large number of compliant joints into a

single piece of material, reducing the assembly requirements for the device as well as the

total part count. Methods are also being developed for embedding actuators during the

fabrication of compliant mechanisms and structures [Madden, et al, 1995; Cham, et al,

1999]. Again, by their fundamental simplicity, compliant mechanisms can be very

reliable, an important trait in the application of exploratory space systems.

Figure 1.6. Flexure-based elastic hinges: (a) notch flexure; (b) beam flexure.

1.3.3 Binary Actuation and Control

The third component of the STX vision is the notion of binary actuation and

control. Binary actuation refers to using actuators in a discrete manner, such that each

actuator is capable of maintaining only two states - an on or an off position. Actuators

can be designed to maintain these states reliably and precisely without the use of
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feedback control. By using a large number of binary actuators, as opposed to a few

continuous ones (motors, hydraulics, etc.), one can approximate a conventional system in

dexterity and utility. This is analogous to the leap from analog to digital computing.

Large networks of binary smart-material actuators could be embedded in compliant

structures in a manner similar to the mass production of computer processors and circuit

boards. In addition to their potential robustness, binary actuators lend themselves well to

digital computation and control. A completely binary system avoids the complexity of

analog-to-digital conversion, and control commands to the actuators are a simple 1 or 0.

More importantly, control commands are insensitive to noise and precise signal

commands are not necessary. That is, a binary system using digital logic will recognize

any command signal above a certain threshold as a 1, and anything below as a 0. As long

as command signals are kept well above or below thresholds, noise and imprecision in

the actual command voltage have no affect on system behavior.

1.3.4 Bistable Joints and Structures

The fourth element of the STX vision is the idea of bistability in the mechanical

structure and joints. A bistable mechanism is one that exhibits stability in two of its

states, maintaining its configuration in the presence of disturbances [Iqbal, Pellegrino,

2000]. An example of this is a household light switch. In either the on or off position,

the switch reliably maintains its mechanical position. An ideal bistable mechanism is

unstable between its two stable states. The purpose of bistable mechanisms in binary

robotic devices is to reinforce the desired state of the binary actuator and to increase the

stiffness of the system when in a fixed configuration. When designed properly, a bistable

mechanism in parallel with a binary actuator allows the controller to shut off power to the

actuator, relying on the passive bistable mechanism rather than the actuator to reject

disturbances. This is important for systems with a large number of actuators, when

power is to be conserved.

The synergistic combination of embedded muscle-type actuators, compliant

mechanisms, binary actuation and control, and bistable mechanisms provides a

framework for a new design paradigm in lightweight robotic devices. This new approach
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to space robotics may enable the design of increasingly complex exploratory robots,

capable of adapting to a variety of mission requirements.

1.4 Background and Literature Review

Most of the elements of the STX vision are not new ideas and have been

researched to varying degrees over the last ten to twenty years. However, to date the

synergistic combination of all these elements has not been examined outside of the MIT

Field and Space Robotics Laboratory [Oropeza, 1999; Dubowsky, 1999; Andrews, 2000;

Lichter, et al, 2000; Sujan, et al, 2001].

The notion of using compliance to replace sliding parts is not at all new (consider

a bow and arrow), but extensive research in this area over the last decade has produced

very interesting results. The rapid growth of plastics use in this century has brought

about a wide variety of implementations, such as tweezers, pincers, and mechanisms with

a fixed (and often small) range of motion (see Figure 1.7). More recently, compliant

mechanisms have been incorporated into MEMS devices, where alternative methods such

as bearings are extremely difficult to build [Jensen, et al, 1997], and in surgical devices,

where the simple monolithic nature of the device lends itself well to sterilization

[Canfield, et al, 1999; Cappelleri, et al, 1999]. The notion of bistability in compliant and

composite structures has also been explored [Jensen, 1998; Opdahl, et al, 1998; Iqbal,

Pellegrino, 2000]. In recent years, automated design procedures have been developed to

produce and optimize mechanism topologies and geometries based on given functional

requirements [Midha, et al, 1992; Howell, et al, 1994; Murphy, et al, 1994;

Ananthasuresh, et al, 1995; Frecker, et al, 1996, 1999; Saggere, et al, 1997; Hetrick, et al,

1998]. Design solutions generated by computer optimization have often led to very

unusual and clever mechanisms.

Chapter 1. Introduction 
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Figure 1.7. Compliant pincer mechanisms. [Ananthasuresh]

A very large area of research in the last ten years has been the area of artificial

muscle technology. The preponderance of materials research groups around the world

has led to a wide variety of potential actuation technologies. Conducting polymers and

gels use the diffusion of ions into their molecular structure to change shape and volume

[Madden, et al, 1995, 2000; Baughman, 1996]. Dielectric or electrostrictive polymers

change shape under the electrostatic force of charge stored on parallel conductive plates

[Kornbluh, et al, 1999; Pelrine, et al, 1998, 2000]. Ferromagnetic polymers change shape

through the use of a magnetic field in conjunction with ferrous particles embedded in an

elastomer matrix [Jolly, et al, 1996]. Shape memory alloys are metal alloys that change

their crystalline structure, and thus their shape, under the application and removal of heat

[Waram, 1993; Gilbertson, 1994; Youyi, Tu, 1994]. This is only a small sample of the

many different materials that have been explored recently; even more will certainly

follow.

The notion of embedded actuation and sensing is a somewhat new idea. Several

groups have explored active damping and shape control of composite structures using

embedded shape memory alloys [Baz, et al, 1994; Lee, Sun, 1995]. Similar studies have

been performed with plastics and piezoelectric materials [Agrawal, et al, 1994]. The

embedding of shape memory alloys and conducting polymer actuators for robotic and

deployment applications has also been studied [Della Santa, et al, 1996; Wang,

Shahinpoor, 1996; Huang, Pellegrino, 1996]. Methods of embedding discrete

Chapter 1. Introduction 18
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components or actuators into plastic structures during manufacture have also been

explored in a few places with interesting results [Madden, et al, 1995; Cham, et al, 1999].

Various groups have studied the concepts of modular reconfigurability, robotic

cooperation, and autonomous organization in recent years. Extensive simulations and

some experimental studies have demonstrated autonomous planning algorithms for

general systems composed of tens or hundreds of "molecular" modules [Kawauchi, et al,

1992; Kotay, et al, 1998]. Self-assembly of systems has also been studied [Murata, et al,

1994]. Metrics for planning modular reconfiguration have been developed [Pamecha, et

al, 1997]. Several groups have studied modular reconfiguration of manipulators, snake-

like robots, and exploratory robots [Yim, 1995; Farritor, et al, 1996, 1997; Kotay, Rus,

1997; Hirose, 2000]. The architectures themselves of such modular systems have been a

focus of considerable attention [Tesar, Butler, 1989; Farritor, 1998].

Of the different components of the STX vision, the area of binary robotics has

seen the least amount of research. Some preliminary work in discretely actuated robots

occurred many years ago [Pieper, 1968; Roth, et al, 1973; Koliskor 1986], but further

research faded due to the lack of computation power available at the time. More recently,

related research has been done in the areas of sensor-less manipulation and discrete

command architectures [Erdmann, Mason, 1988; Goldberg, 1992; Canny, Goldberg,

1993]. The planning, control, and analysis of binary robotic systems has been studied

primarily by a small number of research groups [Chirikjian, 1994, 1995, 1997; Ebert-

Uphoff, et al, 1996; Lees, Chirikjian, 1996; Chirikjian, et al, 1998; Kyatkin, et al, 1999;

Suthakorn, et al, 2000; Lichter, et al, 2000; Sujan, et al, 2001].

What has yet to be studied in great detail is the combination of all of these

elements in large numbers to create a robotic device. Compliant mechanisms, embedded

actuators, smart materials, bistable mechanisms, hyper-redundant binary robotics, and

reconfigurable systems are all fairly well studied but have never been completely

integrated by any one project. It is therefore the aim of this research program to examine

systems combining all these elements.

Chapter 1. Introduction 
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1.5 Research Overview

Because the STX concept is intended for implementation in the 10 to 40 year time

horizon (in accordance with the NIAC objective), it is impossible to create a complete

example of the STX vision through the course of this research. However, one can

demonstrate fundamental aspects of the planning, control, design, and fabrication of

representative robotic subsystems. The goal of this research, then, is to use simulation

studies to demonstrate feasibility for the planning and control of binary robotic systems,

and to use preliminary laboratory experiments to examine issues involved in their design

and fabrication. This work seeks to identify aspects of the vision that are achievable

today, those that show promise in the near future, and those that will require further

research and development.

1.6 Thesis Outline

This thesis is broken into two main chapters: one describing analytical and

simulation work (Chapter 2) and the other describing preliminary experimental studies

(Chapter 3). Chapter 4 presents the conclusions of the research and suggestions for

future work. The appendices are used to present analytical and experimental details,

which may bear value to some readers.

Chapter 1. Introduction 
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CHAPTER

2
SYSTEM-LEVEL PLANNING, ANALYSIS, AND

SIMULATION

2.1 Introduction

One of the fundamental challenges in implementing a binary-actuated robotic

device is in its planning and control. Because binary robots consist of a large number of

binary actuators, as opposed to a small number of continuous ones, many control and

planning issues are fundamentally different than those of conventional robotics. Notions

such as workspaces and forward kinematics have different meanings for binary-actuated

robots. Dramatically different are the methods for solving the inverse kinematics and

path planning problems. Instead of solving geometric equations to determine joint angles

or link lengths, as one would do for a continuous robot, the inverse kinematics problem

for a binary robot involves searching through a discrete set of configurations to find the

one that best matches the desired state. Instead of using Jacobian matrices to compute

actuator speeds for trajectory following, the problem for binary-actuated robots involves

determining an acceptable sequence of actuations that achieves desired motions.

This chapter describes analysis and simulation studies performed to examine the

feasibility of controlling and planning binary-actuated robotic systems in real time. In

addition, this part of the study aims to develop planning algorithms that can be imported

directly into physical implementations without major revision. With an understanding of

the planning complexity of these systems, appropriate hardware demonstrations and

physical systems can be designed.
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In all simulations, graphical representations were made using OpenGL, a graphics

library for use with the C/C++ programming language [Neider, et al, 1993].

2.2 Workspace Optimization

The workspace of a robot generally refers to the locus of all points that a robot's

end-effector can reach [Craig, 1989]. With a continuous system, the workspace is usually

a set of regions in continuous space (see Figure 2.1 .a). In addition, many regions of the

workspace are accessible in multiple orientations of the end-effector. Many continuous

robots are able to achieve a continuous range of end-effector orientations for a given

point in the workspace. Understanding the size of the workspace as well as the

"orientability" of the end-effector within this workspace gives some measure of the

ability of the robot to perform diverse manipulation tasks.

Figure 2. 1. (a) Continuous robot and workspace;
workspace.
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(b) binary-actuated robot and discrete

For binary-actuated robots the notion of a workspace takes on some subtle

differences [Sen, et al, 1994]. For a binary system, the workspace in not a continuous

volume but rather a finite set of points in space (see Figure 2.1 .b). For each point there is

an associated orientation of the end-effector, indicated by the arrows originating from

each point in Figure 2.1 .b. Thus for a given desired placement of the end-effector there is

no guarantee that the robot will be able to achieve it; in fact the robot virtually never
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achieves the desired placement exactly. However, there exists at least one binary

configuration of the robot that achieves a minimum error of end-effector position and

orientation. Thus for a binary robot, the density of the points within the workspace can

be important, since a dense set of points will generally achieve small errors. The density

of points increases as the number of actuators in the system increase, as each additional

actuator doubles the total number of points composing the workspace. Therefore,

increasing the number of actuators tends to increase the manipulability of the robot (but

as will be seen in later sections, this also increases planning complexity).

With this in mind, one might want to optimize a binary robotic design so that its

workspace is tailored to a given set of tasks. For example, a robot designed for a

repeated pick and place task may perform best if the workspace has a great density of

points in the specific pick and place locations, so that it has the greatest precision where

critical. A more general robot whose tasks are quite varied might be better suited by a

workspace whose points are evenly distributed throughout a large volume, thus giving it

relatively uniform precision for a variety of tasks.

One aim of this study is to develop methods for optimizing binary robot designs

to achieve a desired workspace distribution. In order to do this, it is important to quantify

the notions of workspace uniformity and desired workspace distributions. With a

quantification of how well a candidate design meets a desired workspace distribution, one

can optimize the parameters of the robotic device using basic optimization methods.

For optimization and design purposes, it is useful to view a discrete workspace

cloud from the perspective of a density map. For a planar robot, a density map represents

the density of points (the z-axis) versus the Cartesian location in space (the x- and y-

axes). With a discrete cloud, the density map appears as spikes of infinite density at each

workspace point, with all other areas of the map having a value of zero density (see top of

Figure 2.2). To a designer, this density representation has little information and visual

value other than to depict the cloud itself. However, if one applies a low-pass filter to the

density map, the spikes blend together and provide a continuous approximation of the

density of the workspace (see Figure 2.2). With this continuous approximation, one can

more easily create metrics for the uniformity and distribution of the workspace cloud.
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Figure 2.2. Transformation of a discrete point cloud to a continuous density representation using
a low-pass (Gaussian) filter.

In the case studied here, the low-pass filter used was a spatial Gaussian filter,

meaning that each point spike in the map was replaced by a bell-shaped peak that had the

shape of a Gaussian (normal) distribution. The peak was normalized so that its height

was exactly 1 unit, and the width of the peak (the standard deviation of the Gaussian) was
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proportional to the square root of the workspace area divided by the total number of

points. In this way, a uniformly distributed point cloud would have a continuous

representation as a plateau of height 1 unit.

With a continuous density representation, one can quantify the uniformity of

workspace distribution by taking the standard deviation of the z-values in the density

map. A small standard deviation indicates a more uniform density distribution. This

method for quantifying the distribution of the workspace can easily be extended to three-

dimensional workspaces by adding a dimension to the density map. Information on the

orientation of the workspace points can be included similarly by adding more dimensions

to the density map. Of course this makes visualization of the map difficult, but

nonetheless the notion of workspace distribution is still quantifiable.

Figure 2.3. A binary serial manipulator, showing the design variables li, 36, and (pi that can be

optimized to provide uniform workspace density.

With an optimization metric in place, an example case was studied to demonstrate

the idea of optimizing a binary robot design to provide uniform workspace point density.

For this case, a serial planar manipulator was examined, having between four and ten

binary actuators (see Figure 2.3). The joint angles are operated in binary fashion,
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meaning they deflect an angle of ±pi from a nominal angle 60i. To be optimized were the

lengths of each link, li, and the angles of deviation of each binary rotary joint, (pi. (In this

example, 80i was set equal to zero for all i, but this variable also could have been

optimized.) This robotic design results in a planar workspace composed of 2 N points,

where N is the number of binary actuators.

A basic evolutionary algorithm was used to optimize the design variables of this

design. This algorithm was not developed extensively, as it was used only to illustrate

the idea of design optimization based on workspace qualities. The algorithm generated a

random set of candidate designs and evaluated them based on their uniformity of

workspace. It then selected the best candidates (those with the most uniform workspace

densities) and mutated their variables by changing them slightly at random. This new

generation of candidates was evaluated and compared to the previous generation. The

best of the current and the previous generations were then kept and mutated again. The

process was repeated hundreds of times until good solutions evolved. The result of one

such optimization is shown in Figure 2.4. Note that the density map in this figure is

much more uniform than the one shown in Figure 2.2. More sophisticated optimization

methods could be developed to achieve faster convergence, and this would make an

interesting study in the future.
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Figure 2.4. A 6-DOF serial binary manipulator, optimizedfor uniform workspace density,

showing afew binary configurations (top), and its workspace density map (bottom).
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2.3 Forward Kinematics

For binary robotic systems, it is sometimes convenient to formulate the forward

kinematics using four-by-four homogeneous transformation matrices [Craig, 1989]. For

example, the transformation matrix AoM describing the position and orientation of the

end-effector relative to the base can be viewed as the product of the M intermediate

transformations Aj.;, from module to module within the structure (see Figure 2.5). In

other words,

M

AOM = A01  A 1,2 ---. *AM -Im = 171 A.l
i=1

(2.1)

where M is the number of intermediate modules. This method of solution decomposes

the kinematics of a complex structure into a series of smaller, simpler structures that are

easier and faster to solve [Lees, Chirikjian, 1996].

ZM

xm

Figure 2.5. Coordinate frames

z

ZI

of each module within a binary device.

Because of the discrete nature of binary devices, each term of the intermediate

transformation Aj.2, can have only a finite number of possible values. If each module has
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only a few binary degrees of freedom, one can quickly enumerate all the values that the

terms of A.u,i can possibly have. For example, if a module has three binary DOF, then

the module has 23 = 8 possible values for Ai~jj (notated by Ai.;j", Ai2) , ..., Ai.,! 8 )). The

values can be computed once and stored into memory. Adding additional modules in a

serial fashion will consequently increase the number of values stored in memory and thus

memory requirements will grow linearly with an increasing number of modules [Lees,

Chirikjian, 1996]. During run-time, forward kinematics computations need only know

the binary state of the device to compute the transformation AoM using Equation 2.1.

The forward kinematic computations can be simplified further in the case of a

robot with similar modules. If the robotic device is composed of identical modules, each

stage or module has the same kinematic characteristics and possesses the same values for

Aj.7jM, Aj~j(2, ... , Aj~i~s). The number of computations performed and stored in memory

is consequently reduced by a factor of M, where M is the number of modules. One

example of such a robot is the Binary Robotic Articulated Intelligent Device (BRAID),

developed at the Field and Space Robotics Laboratory, which is a serial stack of identical

parallel stages [Oropeza, 1999] (see Figures 2.6 and 2.7). Such a design could be used

for manipulating instruments, collecting soil samples, or mating two cooperating robots,

applications that require only moderate precision. See Appendix C for further discussion

of the kinematics of the BRAID.

binary-actuated linkages
(open or closed)

single stage (3-DO) 4-stage (12 DOF)
device

Figure 2.6 BRAID: a serial chain of binary-actuated parallel stages.
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Figure 2.7. Potential BRAID applications: (a) mating two rovers; (b) maneuvering an
instrument.

One interesting aspect of binary robotic devices is that forward kinematics

computations can be done without repeated use of computationally costly transcendental

functions during run-time [Lees, Chirikjian, 1996]. Whereas continuous robots have

infinite solution spaces requiring complex geometric calculations be performed during

run-time, binary-actuated robot geometries can be computed offline ahead of time since

there are only a finite number of states involved. The solution of the module kinematics

(Ai-iji, Aj1,/2 ), ... , Aj.1js)) may of course require trigonometric or more complex

mathematics, but these need only be solved once, possibly on a different computer than

the one being used for real-time control. During run-time, forward kinematic

computations are trivial linear algebra (Equation 2.1) based on values stored in memory.

No computationally costly mathematics are required at run-time. This computation can

be implemented with even the most basic processing capabilities. In fact, even these

computations can be performed offline; however with high-DOF systems the memory

requirements for this can become quite large. For example, a five-stage BRAID can be

viewed as five identical 3-DOF modules, requiring 16 x 2 = 128 floating point numbers

of storage, or it can be viewed as one 15-DOF module, requiring 16 x 215 = 524,288

floating point numbers of storage.

2.4 Inverse Kinematics

Most strikingly different between continuous and binary-actuated robotic devices

is the solution of their inverse kinematics. Instead of using geometric relations to
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compute infinitely variable joint angles or link lengths, the inverse kinematics are solved

by searching through the configuration space of the binary robot to find the configuration

that minimizes error between target and end-effector position and orientation. There are

many ways to search through this configuration space, and particular methods are often

suited to particular applications [Ebert-Uphoff, et al, 1996; Chirikjian, 1997; Sujan, et al,

2001]. One goal of this study was to examine several inverse kinematic solution methods

to determine those appropriate for implementation in applications.

In all the methods discussed below, the goal is to minimize some error value,

which is a function of both the positional and orientational errors. In the cases studied

here, this error value was defined as

total _ error = positional _ error 2 + Keror * angular _ error 2

1 (2.2)
fitness =

total _ error

where Kerror was a value around 100, angular error was specified in radians, and

positional error was specified in percent of manipulator characteristic length (average of

maximum and minimum possible lengths). Changing the value of Kerror simply shifts the

weighting between positional and angular errors. The basis for this cost function was

made by imagining elastic elements between the desired and actual end-effector position;

total error as defined here approximates the energy stored in the elastic elements due to

the error. Thus the goal for the inverse kinematics solution methods is to minimize total

error (or maximize fitness).

2.4.1 Exhaustive Search

With modern computation speeds, an exhaustive search through the entire

configuration space is possible for devices with low numbers of binary DOF. An

exhaustive search algorithm typically computes the forward kinematics for the end-

effector for each of the configurations, and stores this information in a look-up table in

memory. At run-time, desired end-effector positions are compared to the information in
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the look-up table to determine the configuration that minimizes error. With an exhaustive

search, the resulting solution is globally optimal, as the entire configuration space is

searched; no potential solutions are overlooked.

The problem with exhaustive searches is that they are infeasible for high-DOF

systems. This is because the search space grows exponentially with the number of

actuators, each additional binary DOF doubling the size of the search space. A large

search space takes a long time to search through and requires a great deal of memory.

For example, a 10-DOF system requires the search through and storage of 210 = 1,024

states, while a 20-DOF system has 220 = 1,048,576 states. In this case a system with only

twice the physical complexity requires one thousand times the computation capability. In

simulation studies, exhaustive searches were found to be quite effective for systems with

less than fifteen DOF. Larger systems showed the exhaustive search to be too slow with

modern computation for practical applications.

2.4.2 Combinatorial Search Algorithm

To deal with systems with larger numbers of binary actuators, a second algorithm

was studied and compared to the exhaustive search method. This algorithm, denoted the

combinatorial search algorithm, solves the inverse kinematics by changing the state of

only a few actuators at a time [Lees, Chirikjian, 1996] (see Appendix A for example

code). By limiting actuator state-changes to only a few at a time, rather than changing a

large number of them all at once, the algorithm effectively reduces the search space to

configurations that are close to the existing configuration in configuration space. This

reduction in search space size over an exhaustive search is dramatic for high-DOF

systems.

The first part of the search enumerates all the configurations that are within K

actuator state-changes (bit-flips) of the current configuration, where K is a small number

such as three. The algorithm then exhaustively searches these candidate configurations to

find which one more closely matches the desired end-effector location. From this new

configuration, the process is repeated to find an even better configuration. This process is

repeated until a solution is converged upon. In this way, the combinatorial algorithm is
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like a steepest-descent optimization routine, since it reaches a minimum error by taking

small steps (in configuration space) in the direction that most strongly reduces error. In

simulations, the number of iterations to convergence was found to be of the order of N/3,

where N is the number of DOF. The solution achieved with this algorithm is locally

optimal; that is, there are no close configurations (in configuration space) that provide

better results since all close configurations are exhaustively searched. While a globally

optimal solution cannot be guaranteed like it can with the exhaustive search, for systems

with many DOF the locally optimal solution was observed to be satisfactory for many

applications.

The increase in search speed with this algorithm over the exhaustive search can be

shown mathematically by examining the size of the search space. For an exhaustive

search, the size of the search space is the size of the entire configuration space, which is

exactly 2N, where N is the number of binary DOF. With the combinatorial search

algorithm, the search space size is exactly

+...+ + [Lees, Chirikjian, 1996] (2.3)
K K - 1 0

where C is the number of iterations through the algorithm (order N/3), K is the number of

bit-flips allowed per iteration, and the notation is the operator indicating the number
K

of K combinations among N objects (without regard to order), defined mathematically as

K (N - K).K! !(2.4)

Letting C N /3, substituting Equation 2.4 into 2.3, and collecting the highest order

terms, one can show that the search space size is of the order NK+J. With small K, this is

a dramatically smaller search space than the exhaustive search when the number of DOF

is large. Therefore the combinatorial search space experiences only polynomial growth
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with increasing numbers of DOF, as opposed to the exponential growth experienced by

an exhaustive search.

2.4.3 Genetic Algorithm

A genetic algorithm was a third search method studied for solving the inverse

kinematics problem [Sujan, et al, 2001] (see Appendix B for example code). Genetic

algorithms have been widely used to solve unusual or difficult optimization problems

[Goldberg D, 1989]. A genetic algorithm is a stochastic optimization process that often

succeeds when deterministic methods are impractical or impossible. In essence, a genetic

algorithm generates a random population of candidate solutions and evolves out an

optimal or near-optimal solution by evaluating, selecting, crossbreeding, and mutating the

individuals within the population. Depending on the application, the manner in which

these processes are carried out can range from quite simple to very complex. In

simulations of binary robotic devices done here, a very basic genetic algorithm was

sufficient to provide good results.

One aspect of binary robots that makes the genetic algorithm very natural and

convenient lies in the binary nature of the robot itself. A prerequisite for using genetic

algorithms is that the optimization variables must somehow be represented in a binary

DNA-like manner, so that crossbreeding and mutation can be performed on candidate

solutions. With many engineering problems, the conversion from the real-world problem

to a binary encoding can be complicated. With the binary inverse kinematics problem,

though, these complexities do not exist. The optimization problem is already formulated

in a binary code.

With a genetic algorithm, the main algorithm design variables are the population

size, the number of generations of evolution, the mutation factor (likelihood of bit

mutation), the crossover ratio (fraction of the selected population that is cross-bred),

crossover method (1-point, n-point, uniform, etc.), and the fitness metric used for

evaluating individuals in the population. In this study, many of these algorithm variables

were chosen heuristically based on rules of thumb or general performance of the

algorithm. In simulations, ten separately evolved populations were used, with the final
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solution chosen from the best of all populations. Each of the ten populations had a size of

one hundred individuals, and each population evolved over one hundred generations.

These numbers were chosen because they gave reasonable performance and speed. For

each new generation, a population of new individuals was selected based on the fitness of

the individuals in the previous generation. The likelihood an individual was selected for

the next generation was proportional to its fitness relative to the population (fitness being

defined in Equation 2.2). This method of selection, the most common, is known as

proportional selection. The crossover ratio was set to 0.5, meaning half of the selected

population was crossbred, while the other half maintained its individuality. This ratio

was recommended from literature as a good starting point for many applications

[Goldberg D, 1989]. It provided good performance, and therefore was used. Uniform

crossover was used to provide good diversity in populations (see Figure 2.8).

One-point
crossover Gene sequence is

split in one place and
remainder is traded

Original genes Individual genes have

from two Uniform an equal probability of

individuals crossover being kept or traded

Figure 2.8. Comparisons between basic crossover methods.

In terms of cross-over and mutations, some modifications to the basic genetic

algorithm were made that improved performance of the algorithm. The kinematic

structure that was used in simulation studies was that of the BRAID (see Figure 2.6).

This device is composed of a serial chain of parallel stages. Each parallel stage has three

binary DOF. By the nature of its structure, individual stages rather than individual bits
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should be viewed as the essential building block of the device. The

was seen to be more effective when working with the building blocks

stages) rather than pieces of the building blocks (the individual bits).

the algorithm performs crossover with two individuals, it swaps stages

rather than individual bits between the individuals (see Figure 2.9).

Single bit
crossover

genetic algorithm

of the device (the

Therefore, when

(sets of three bits)

Original genes Stage (3-bit)
from two crossover

individuals

Figure 2.9. Stage crossover vs. bit crossover.

By the same reasoning, mutations were performed on stages rather than bits. In

genetic algorithms, mutations provide random variations to individuals within the

population, which helps ensure that the entire configuration space is represented. In this

application, it appeared to be more effective to mutate stages (sets of three bits) rather

than individual bits. The algorithm replaces the existing stage with one randomly chosen

from the eight possible states the stage can have. While many phenomena of genetic

algorithms are not easily explained, it is thought that the same reasoning used in the

crossover discussion applies here; i.e. mutating the building blocks is more effective than

mutating individual bits.
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Comparing the genetic algorithm to the others discussed, the size of the search

space explored by the genetic algorithm is given by

search _ space _size = E -G -P (2.5)

where E is the number of populations separately evolved (in this case 10), G is the

number of generations for each population (100), and P is the number of individuals

within the population (100). In studies done here, E, G, and P were kept constant relative

to the number of degrees of freedom, N. For more advanced algorithm development,

these values could be made a function of N, but this was not necessary for purposes here.

The values of E, G, and P used here were found to be effective for systems having as

many as 150 binary DOF. In the case of constant algorithm parameters, the search space

size stays constant relative to the number of DOF. Within the algorithm, several

computations take place that are linearly proportional to N (such as forward kinematics

computations) and therefore computation time of the inverse kinematics using a genetic

algorithm grows only linearly with the number of DOF of the system. As will be shown

in the following section, this makes the genetic algorithm the fastest of those studied for

systems having more than 40 DOF.

2.4.4 Algorithm Comparisons

Figure 2.10 shows the times for solving the inverse kinematics problem for each

of the three algorithms described above. The times were computed from simulations

based on the BRAID structure (see Figure 2.6), and were performed using a 600 MHz

Pentium III processor. In these studies, the exhaustive search was observed to be the

fastest for systems with less than 12 DOF, the combinatorial algorithm was the fastest for

systems having between 12 and 40 DOF, and the genetic algorithm was the fastest for

larger systems.
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Figure 2.10. Inverse kinematics solution times for various algorithms.

4.4.5 Error Analysis of Binary Systems

Errors in position and orientation for the various algorithms can be quantified on a

stochastic basis using a Monte Carlo method. The inverse kinematics for one thousand

random target points were solved for and the errors were recorded and quantified on a

statistical basis. The targets were chosen from within a working workspace, which was

defined as a region roughly 90% of the radius of the actual point cloud (see Figure 2.11).

The working workspace represents the region in which actual tasks would be carried out,

having sufficient point density to allow good performance. (It is assumed that the

periphery of the true workspace has low point density.) Each target was given a random

orientation. Again, computations were made from simulations of the BRAID structure.

The specific BRAID geometry analyzed here was chosen by trial and error as one that

had good motion properties by inspection.
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Figure 2.11. Representative workspace of a 30-DOF BRAID. 1000 random target points were
chosen from within the working workspace, a sphere whose size is slightly smaller than the actual

workspace cloud.

An example of the distribution of the errors is shown in Figure 2.12. These

distributions are intended to give the designer an understanding for the size of errors

encountered in binary systems and show that errors are not constant but still predictable

statistically. For systems with 30 DOF (a ten-stage BRAID), displacement errors are

generally within a few percent of the characteristic manipulator length and angular errors

are within fifteen degrees. Such a system is unsuitable for precision work, but may be

acceptable for such tasks as camera placement, crude instrument manipulation, and

sample collection. For better angular precision (at the cost of displacement precision),

one could simply increase the value of Kerror in the error cost function (Equation 2.2).

One could also use a fine-motion stage to trim the errors involved with the binary system,

although this was not a focus of this study. The shapes of the error distributions are very
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similar for each of the algorithms, and most closely resemble a gamma distribution

[NIST/Sematech, 2001]. The outliers are generally near the boundaries of the working

workspace, and further refinement of the working workspace could eliminate these

outliers and improve precision (at the cost of reducing the working envelope). Figure

2.13 shows how the median errors drop as a function of the number of DOF for the

combinatorial and genetic search algorithms. Note that after about 30 DOF, there are

only marginal improvements in performance with increasing number of DOF. One can

also see that the genetic algorithm provides slightly better solutions than the

combinatorial algorithm between 20 and 50 DOF. This is partly due to the fact that the

genetic algorithm was heuristically tuned for roughly this range of DOF.
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Figure 2.12. Error distributions for a 30-DOF BRAID: displacement error (left); angular error
(right). (1000 samples.)
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Figure 2.13. Median errors vs. number of DOF for different algorithms: displacement error
(left); angular error (right). (1000 samples per DOF.)
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These errors should not be viewed as the results of a thoroughly optimized

system. Any "optimization" done here was made through qualitative inspection of

systems having between 20 and 50 DOF. The same stage geometry was used for all the

systems analyzed, regardless of DOF. In reality, an optimized stage geometry would be

different for a 9-DOF system than a 90-DOF system. The geometry studied here was

certainly not bad, but numerical optimization of all the geometric parameters would need

to be carried out in order to determine more accurate limits on the errors of such systems.

This is a challenging problem worthy of deeper study.

2.5 Trajectory Following

As was seen with the inverse kinematics problem, the trajectory following

problem is strikingly different for binary devices than for continuous ones. Instead of

computing Jacobian matrices based on infinitely variable geometries and using them to

compute actuator velocities [Craig, 1989], the problem instead is a repeated search

through the configuration space to find the configuration whose end-effector most closely

matches a moving target [Lees, Chirikjian, 1996]. In this way, the trajectory following

problem is very closely related to the inverse kinematics problem.

Since there are at least several ways to solve the inverse kinematics problem, it is

straightforward to apply this to a moving target. With low-DOF systems, repeated use of

the exhaustive search may prove to be the easiest and most robust method for trajectory

following. For systems with higher DOF, one could use such methods as genetic

algorithms or combinatorial searches as described above.

At first glance, a genetic algorithm may seem to be the best method for solving

the trajectory following problem for systems with many binary states. It seems to be the

fastest for large systems and provides good results. However, further examination shows

the genetic algorithm as developed here is not well suited for the trajectory following

task. A genetic algorithm is a stochastic search method; given the same target and the

same initial conditions, it will produce different solutions by the fact that it is searching a

subset of the configuration space based on a randomly selected initial population.
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Because a binary system is very highly redundant, there are usually a large number of

binary configurations that will produce nearly the same kinematic result of the end-

effector, yet will have largely different configurations. That is, points neighboring in

Cartesian space may be very distant in configuration space. Thus for the genetic

algorithm developed here, a relatively smooth path can be planned in Cartesian space, but

it may be quite erratic in configuration space (see Figure 2.14). The solution generated

by the genetic algorithm developed here will likely generate a path in configuration space

requiring large numbers of actuators to toggle between small time steps. For the sake of

power consumption, reliability, and transient behavior, this is very undesirable. One

could avoid this problem by incorporating smoothness of the configuration trajectory into

the fitness metric. In such a case the fitness metric must be defined with great care so

that appropriate performance and predictable algorithm behavior occurs. This is probably

easier said than done, since this process would probably rely on heuristic tweaking and

qualitative observations.

Cartesian Space (Conceptual) Configuration Space

Figure 2.14. A smooth trajectory in Cartesian space is not necessarily smooth in configuration
space.

Because of these issues, the combinatorial search algorithm was observed to be

the most effective and straightforward method for solving the trajectory following

problem, of the algorithms studied here. This was also observed by other researchers in a

similar study [Lees, Chirikjian, 1996]. Because this algorithm searches only the subset of

neighboring configurations, it intrinsically generates a path that is not only relatively
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smooth in Cartesian space, but also in configuration space. Between time steps, only a

few actuators will be actuated at a time (in the cases studied here, no more than three at a

time). In addition, the combinatorial algorithm proves to be faster than the genetic

algorithm up to one hundred DOF (see Figure 2.15). In the trajectory planning problem,

the combinatorial algorithm is able to run much faster than in the pure inverse kinematics

problem described in Section 2.4.2, since it only makes one iteration between time steps

(as opposed to roughly N/3 iterations, where N is the number of DOF). For its speed,

reliability, and desirable behavior in configuration space, the combinatorial search

algorithm was clearly the best of the algorithms studied for trajectory following.

2 Inverse Kinematics Solution Time vs. Number of DOF (Pentium 1I1 600 MHz)
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Figure 2.15. Inverse kinematics solution times as they relate to the trajectory following problem.

Simulations showed that the errors maintained during trajectory following were

acceptable for a number of applications, such as maneuvering a camera or instrument or

manipulating an object with low precision (see Figure 2.16). Typical errors during

manipulation were found to be of roughly the same size as those discussed in Section

2.4.5 (see Figures 2.12 and 2.13).
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Figure 2.16. Simulation of a camera maneuvering task using the trajectory-planning algorithm.
Desired trajectory: red path; actual trajectory: green path.
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2.6 Locomotion Planning

The trajectory following problem can be extended to the locomotion planning

problem, in the case of binary devices used as legs. Simulations were carried out to

demonstrate the feasibility of planning actuator sequences in real-time for a robot having

six binary-actuated legs. This locomotion scenario is a representative task of moderate

computational difficulty that has foreseeable use in planetary explorers and other

applications. The ability to plan such a task is prerequisite for demonstrating feasibility

and utility of the binary robotic concept in real-world scenarios.

In simulation, each of the six legs was modeled as a BRAID and had 21 binary

DOF (see Figure 2.17), yielding a total of 126 DOF for the system. Desired ground

contact points for each leg were chosen based on the uneven terrain. Trajectory planning

was performed on the legs to determine the configurations and actuator sequences

required for motion of the robot.

Figure 2.17. Simulation of a 6x21-DOF walking robot composed of six BRAIDs for legs, walking
in rough terrain.
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Several issues arise with a binary system such as this one. With multiple legs

making contact with the ground, the robot forms a closed kinematic chain that is actually

over constrained due to the discrete nature of the leg motions. If the ground contact

points are rigidly held, it will be impossible for the contacting legs to change

configurations, due to the incompatibilities between each leg's workspace (see Figure

2.18.a). Thus, with rigid ground contact, it is impossible to shift the weight of the body

while keeping feet planted. This task is a prerequisite for walking.

Rigid Model

incompatibility

Semi-Compliant Model

Nkinematic
incompatibilities

absorbed

Figure 2.18. Kinematic models in simulation: (a) rigid; (b) semi-compliant.

One way to deal with this issue computationally is to assume a small amount of

compliance in the ground contact and/or the robotic structure itself. When this is done,

small incompatibilities between the workspaces of planted legs are absorbed (see Figure

2.18.b). In simulation, this seemed to be the most realistic and simple method for dealing

with this kinematic issue. More discussion on this will follow.
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A second major issue arises in the complexity of the inverse kinematics problem.

In order to find the binary configuration of the legs that allows the body to move in a

prescribed manner, one might be tempted to view the system as a single parallel system

with 6 x 21 = 126 DOF. In order to avoid the over constraint problems described above,

one must also consider the ground contact points to be continuous revolute joints with

continuous displacement compliance. This now makes the problem hybrid in several

ways. First, the walker having several legs in contact with the ground forms a

macroscopically parallel structure. Each of its legs is a serial arrangement of parallel

modules. This makes the walking robot a hybrid parallel-serial-parallel mechanism, a

challenge in itself to analyze. Further, the robot is a hybrid system between discrete and

continuous motions. With the requirement that trajectories are smooth in both Cartesian

and configuration space, this highly hybridized system becomes very computationally

difficult to solve quickly.

To get around this issue, the locomotion-planning problem was viewed from a

slightly different perspective. Rather than viewing the entire system as a single entity,

each leg was viewed as a single trajectory planning problem by itself. For computational

purposes, a virtual body position was created, defined to be the desired position of the

body for the next small time step. Each leg was then examined as though it were

attached to the virtual body, and the inverse kinematics were solved using the one-pass

combinatorial algorithm to make the leg move to the ground contact point (see Figure

2.19). Because the ground contact points move relative to the moving virtual body, the

problem is identical to the trajectory planning problem described in the previous section.

Chapter 2. System-Level Planning, Analysis, and Simulation 47



desired (virtual)
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new binary
configuration
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small error,
absorbed by
compliance

Figure 2.19. Computational process for planning the trajectories for each leg.

With the configuration of each leg being solved independently, the problem then

switches to a second optimization routine so that graphical representation of the robot is

realistic. The problem now becomes one of equilibrating two rigid bodies (the ground

and the fixed-configuration robot) connected by compliant elements (see Figure 2.20).

This problem can be solved by computing the potential energy stored in the compliance

between the two bodies and minimizing it by adjusting the bodies. With complex three-

dimensional geometries, deterministic optimization methods can become somewhat

involved. Instead, a random trial-and-error method was used which randomly adjusted

the robot a small amount relative to the ground until a near-minimum potential energy

was found.

Virtual Body Position Actual Body Position

Figure 2.20. Equilibrating the rigid robot to the ground in simulation: the potential energy in the
springs is minimized.
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By the discrete nature of the system, the actual body position does not coincide

exactly with the virtual (desired) body position, as can be seen in Figure 2.20. However,

the error between the two is small, as it is roughly the size of the errors in the legs

themselves, generally a few percent of the characteristic size (see Section 2.4.5). For

most real-world scenarios, these errors would be acceptable, since they are of the same

size as the measurement noise involved with detecting rough terrain from a mobile

platform (the algorithm assumes the topography of local terrain is known).

This planning method was observed to be reliable, fast, and effective. Using a

Pentium 1II 933 MHz processor, the simulated robot could plan and execute a stride

nearly once per second. Kinematic incompatibilities between ground and robot were

observed to be only a few percent of the leg length, a distance that would be naturally

absorbed by compliance in the leg, ground, or deformable shoe at the end of the leg. The

robot was able to execute side-stepping and turning motions in rough terrain with no

problems observed. The walking robot was seen to maintain static stability at all times

while walking on easy terrain (slopes less than 20 degrees) and lost static stability only a

few percent of the time while ascending, descending, and traversing slopes of around 45

degrees (although the model assumed infinite static friction). The loss of stability

represents problems not with the joint-level planning, but rather with the high-level

guidance of the robot, which was merely the automated generation of an alternating

tripod gait trajectory. This problem could be avoided simply by using more sophisticated

guidance algorithms [Latombe, 1991]. Regardless, the goal of this part of the research

was achieved: given a high-level guidance command, the solution of the joint-level

command sequences was shown to be feasible at speeds necessary for real-world

implementations.

2.7 Summary and Conclusions

This chapter presented the analytical challenges for the planning of binary robotic

systems, and discussed solution methods for them. The notion of a binary workspace was

described, and a method for optimizing robot designs based on uniformity of workspace
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density was demonstrated via example. The forward kinematics of binary systems was

discussed, and the computational simplicity of this operation relative to continuous

systems was shown mathematically. The inverse kinematics and trajectory planning

problems were contrasted to those of continuous systems, and several methods for

solving these problems were described and compared in the context of space systems

using simulations and mathematics. The small positioning errors of binary systems were

also quantified in a probabilistic manner. Finally, the trajectory planning methodologies

were adapted to the scenario of locomotion planning, which requires the coordinated

planning of several binary devices, and is representative of the significant and real

challenges to be encountered in future space explorers.

This chapter demonstrates the fundamental feasibility of planning binary robotic

systems in representative exploratory tasks. Although exhaustive brute force methods are

too cumbersome for implementation in most scenarios, other algorithms have been

demonstrated that avoid these problems. The real-time planning of moderately complex

systems has been shown to be feasible, even with today's limited computation speeds.

One can only expect further growth of planning capabilities in the 10 to 40 year time

frame as computation speeds increase.
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CHAPTER

3
FUNDAMENTAL HARDWARE DEMONSTRATIONS

3.1 Introduction

With the feasibility of many fundamental planning and control issues shown in

simulation, it is important to develop experimental demonstrations to explore the physical

issues involved with the compliance-based binary robotic concept. In this phase of the

study, several key principles of the concept were studied using basic physical

implementations. The goal was to provide a starting point for deeper experimental

exploration in the future. While none of the following implementations were intended to

demonstrate the complete self-transforming explorer (STX) vision, each explored

individual aspects of the concept in a building-block fashion.

In physical implementation, a compliant binary robotic device consists of flexible

elements to allow motions, binary actuators to provide the motions, and bi-stable

members to hold the binary state and reject disturbances. Depending on the type of

actuator, some mechanical amplification of the actuator motions might also be required.

The following sections discuss preliminary studies of these fundamental building blocks.

3.2 Bistable Joints

Many existing binary actuation technologies require power to maintain a fixed

state, even though there is no useful output of work. Uninsulated shape memory alloys,

for example, require the constant generation of heat in order to maintain one of their
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states. Capacitance-based polymer actuators such as conducting polymers and

electrostrictive polymers lose charge (and thus their binary state) slowly through small

trickle currents and therefore also require a small amount of power to maintain at least

one of their states. This leads to poor energy efficiency in slow-moving binary systems,

whose actuators spend most of their time in a fixed state. A system that spends a great

deal of energy maintaining its rigidity is not acceptable for most applications in space,

where power is a very limited resource.

In physical implementation, it is often advantageous to make use of bistable

joints. A bistable joint is a mechanism that passively latches a binary robot into its

discrete state without the use of actuators or power. This can be done in a variety of

ways, such as through the use of detents or with an over-throw design. Bistable

mechanisms will allow a robotic device to turn off power to those actuators that are

simply maintaining a desired state. In addition, well-designed bistable mechanisms give

a robotic device high repeatability, and the robot will maintain the desired binary

configuration in the presence of disturbances and environmental variations.

To begin to examine the concept of bistable joints, several simple designs were

examined in physical implementation. The goal was to get a qualitative understanding of

the integration and potential simplicity of the design of these devices. Designs were

conceived, drawn using AutoCAD, and rapidly manufactured from polymer materials

using a laser cutter. This allowed a simple trial-and-error approach to the qualitative

study.

Many mechanisms exhibit bistability. Light switches, shampoo bottle caps,

bicycle kickstands, tape measures, and retractable pens are all household examples. After

a general search of basic bistable mechanisms, at least two seemed appropriate for

incorporation into a rotary joint-based binary device (see Figure 3.1). One was a spring-

loaded over-throw hinge, the basic mechanism used in light switches, shampoo bottle

caps, etc. The second was a detent-based latch, with small interlocking knobs that prevent

rotation of the joint. The knob is pressed into the detent using the elasticity in the fingers

that surround the joint. Of these two mechanisms, the second was more straightforward

to realize in a low number of parts, and so was studied in further depth.
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detents

tension
spring elastic

fingers

Figure 3.1. Bistable rotary joint designs: (a) spring-loaded over-throw mechanism; (b) detent-
based latching mechanism.

Using a laser cutter, candidate designs were cut from plastic sheets having

thicknesses between one and ten millimeters. Nylon, ultra-high-molecular-weight

polyethylene, acrylic, polycarbonate, ABS (acrylonitrile butadiene styrene), and PETG

(polyethylene terepthalate glycol) were all tested for compatibility with the laser cutter

and quality of the part produced. In the end, PETG was found to have the best

combination of cutting properties and mechanical properties for the given application. It

cut very well on the laser cutter and had sufficient mechanical properties for most

applications. Polycarbonate had superior fatigue strength and creep properties and fair

cutting properties, and was also used in some prototypes after residue from the cutting

operation was removed by hand. All other plastics studied either had inferior mechanical

properties (acrylic, nylon, ABS), or inferior laser-cutting properties (polyethylene).

Several bistable rotary joints were designed and fabricated based on a sandwich of

the detent-based mechanism and elastic flexure elements (see Figure 3.2). In these

designs, the flexure elements added a great deal of out-of-plane rigidity to the joint and

largely reduced slop in the bistable mechanism. Some prototypes also incorporated

binary SMA actuators in a muscle-like fashion, although only poor actuation performance

was realized in these early designs. The design was also reduced in size to the practical
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limits of manufacture, with the entire mechanism being roughly 50 millimeters in length

(see Figure 3.3). The results of this preliminary study show the simplicity of many

bistable designs, and offer at least one interesting candidate that can be manufactured

from a very small number of parts in a near-monolithic fashion.

flexure beams

actuator
bistable joints SMA fixtures

actuators

Figure 3.2. Bistable joint: a sandwich of bistable members and elastic hinges.

Figure 3.3. Bistable joint prototype.
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3.3 Pantograph Mechanism

A second study was developed to study the concept of motion amplification in a

monolithic design. Most muscle-type actuators are currently able to achieve only small

motions. Shape memory alloy wires, for example, give usable elongations of only 3-5

percent of their length. Conducting polymer actuators presently can attain only 1-2

percent deformation, although much higher strains are predicted with time. For most

robotic devices, larger motions than these are required, and thus some form of motion

amplification is needed.

Many amplification methods were examined for the application of binary robotics

(see Figure 3.4). Each was studied for its ease of realization in a monolithic design and

its amplification properties. A simple lever can provide amplification of at least an order

of magnitude, however it does not lend itself well to a compact design. More complex

linkages were studied, but many of these were found to have very nonuniform

amplification over their range of motion, which is undesirable in this application. One

linkage that does provide relatively uniform motion amplification in a compact size is the

pantograph mechanism [Nielson, et al, 1998]. The basic mechanism can be configured in

a number of ways, including in a compound arrangement, where mechanisms are

cascaded to achieve higher amplification.
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Figure 3.4. Various amplification mechanisms.

Because of its good amplification behavior, compact size, and simple structure,

the pantograph was developed into a monolithic prototype (see Figures 3.5 and 3.6). In

this design, the revolute joints were replaced by beam flexures and the entire structure

(four bars and four flexures) was laser-cut as a single piece from 1/8-inch PETG sheet.

An SMA wire actuator was affixed to the mechanism with nuts, washers, and bolts,

which made adjustment and fine-tuning easier.

When current is supplied to the SMA, it heats up and contracts by 4.5 mm, raising

the output link a distance of 29 mm. The elasticity of the flexures provides a bias spring

that serves to return the mechanism to its original state when the SMA has been powered

down. This mechanism achieves an amplification ratio of about 6.5, somewhat less than

the amplification of 8.0 predicted from calculations. The discrepancy between these two

values is mostly due to unmodeled compliance in the structure and imperfections in the

hand-fabrication process.

linear
acuator

~\ output
v ~ motion
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SMA actuator 30 mm

0

flexures

.5. Pantograph mechanism schematic.

Figure 3.6. Pantograph mechanism prototype.

The pantograph clearly illustrates the simplicity of potential amplification

mechanisms and the compliance-based binary robotic concept. Without the electronics,

the device has a mass of only 10.5 grams. It is compact, having a length only slightly

larger than that of the actuator itself. This type of device is easily fabricated from a
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single piece of material. In this case, the prototype was laser-cut, however, many other

methods could be used, such as water jet cutting, stamping, machining, or injection

molding.

3.4 Binary Robotic Articulated Intelligent Device, Generation
2 (BRAID 2)

An area of ongoing work is the development of the Binary Robotic Articulated

Intelligent Device (BRAID). This system is a serial arrangement of 3-DOF binary

parallel stages (see Section 2.3, Figure 2.6). A first prototype was built in 1999 with

interesting results [Oropeza, 1999; Lichter, et al, 2000; Sujan, et al, 2001]. This system

was actuated using shape memory alloy wires, which opened the polyethylene linkages in

a muscle-like manner (see Figure 3.7). The elasticity in the flexures was used to return

the linkages to their closed state when power was removed from the actuators. This

resulted in a very lightweight design capable of being stowed in a small volume (see

Figure 3.8).

2 DOF Flexure Joint 7

1 DOF
Flexure
Joints

Muscle-type
Actuators

Figure 3.7. Single stage offirst BRAID prototype. [Sujan, et al, 2001]
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Figure 3.8. First generation BRAID prototype. [Oropeza, 1999]

The first prototype was able to achieve moderate motions and repeatability. This

was very good for a first prototype, but future prototypes will require some improvement.

Shape memory alloy actuators are not ideally suited to this application, as they contract

only a few percent of their length and require amplification. Because of their small

motions, the performance of the design is very sensitive to small fabrication

imperfections, and the mounting products available at the time were very limited. This

made the hand fabrication of the prototype difficult. Some difficulty was also

encountered in the manufacture of the flexures. The dimensions of the hinges require a

fair amount of precision that is difficult to achieve reliably with the manufacturing

techniques available. Ultimately, water jet cutting proved to be the most reliable, but

some of the linkages still exhibited a reduced fatigue life.

This research is now focusing on the development of the BRAID design as a way

to further demonstrate the STX vision. Materials and fabrication techniques are being

explored deeper to alleviate the fatigue life problems encountered in the first prototype.

The design of the flexures themselves is also being explored further in order to improve
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the fatigue life. Bistable mechanisms will be included in the next generation prototype to

improve repeatability. Alternative actuator technologies are being surveyed, with the

prime candidate currently electrostrictive polymers. To date, these actuators seem to

have the best motion characteristics, light weight, and simplicity and appear most

promising for this application. However, some development of this technology is still

required for integration with the BRAID, so for a short time conventional voice-coil

actuators will be used as a surrogate. This will allow the development of the flexures,

manufacturing, and electronics to occur in parallel with the actuator technologies.

A tentative design is now under construction and is composed primarily of Delrin

(acetal resin, polyoxymethylene), which has excellent fatigue, creep, friction, wear, and

machining properties. Analysis of the BRAID structure shows that high angular

deflections (±50 degrees) are required at the 3-DOF joint (see Appendix C, Figure C.3) in

order to provide large motions of the device and good system performance. For this

reason, spherical ball and socket joints are being considered to replace the flexural

elements for this joint. A tentative design for a second generation BRAID is shown in

Figure 3.9.

plastic stage

bistable detent
mechanisms ball magnetic material

cone (thin sheet of steel)

magonet

preload
coil magnet

two flexural plastic linkagebearings

Figure 3.9. Tentative design of a second generation BRAID. (Courtesy M. Hafez.)

An unactuated single stage was fabricated based on this design using a waterjet

cutter and hand assembly with epoxy (see Figure 3.10). This prototype was used to
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demonstrate manufacturing potential and verify elements of the structural design and

material properties. As can be seen in this prototype, cross flexural hinges were used to

greatly improve fatigue life, range of motion, and out-of-plane stiffness over the notch

flexures used in the first generation prototype. This type of flexure will likely see use in

the final operational prototype.

top stage top stage preload magnet

preload magnet 4 - socket (underneath stage)

socket (underneath stage) steel ball (epoxied to leg)
steel ball (epoxied to leg)

cross flexural hinge cross flexural hinges
(0.02" thickness) (0.02" thickness)

bistable latching mechanism
(flexural hinge within)

bottom stage (base) P' bttom stage (base)

Figure 3.10. Test prototype of an unactuated single BRAID stage.
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3.5 Summary and Conclusions

This chapter has described several experimental studies carried out to understand

practical limitations of the STX concept. Bistable mechanisms were explored via the

fabrication of many prototypes, with several being of a size expected in a real STX

design. These prototypes demonstrated their fundamental value in binary systems, as

they improved repeatability, stiffness, and disturbance rejection significantly in rotary

joints. A compliant pantograph was also built to demonstrate the simplicity of compliant

amplification mechanisms. Work is now progressing in this area with the development of

the BRAID system. The goal is to eventually embody all of the elements of embedded

binary actuation and compliant bistable mechanisms in a single useful device.

It appears that at this time the major obstacle to development of the STX vision

lies in the actuator technologies. Modem actuator technologies are presently hindered by

high power requirements, low displacements, very slow response, low stiffness, and/or

difficulty of fabrication or implementation. However, many of these problems will be

resolved with time and research, and no doubt will enable a wide range of new

engineering designs. Further developments in the areas of manufacturing and structural

materials will also prove valuable to the design and production of more integrated, high

performance STX-like systems.
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CHAPTER

4
CONCLUSIONS AND SUGGESTIONS FOR FUTURE

WORK

4.1 Contributions of this Work

This work has developed the concept of exploratory space robotics consisting of

embedded binary actuators and compliant bistable mechanisms.

Chapter 2 presents methods for solving the kinematics and planning issues of

complex binary systems with large numbers of actuators in real time. Existing methods

for solving the inverse kinematics were applied to specific kinematic structures and

developed in the context of the self-transforming explorer (STX) vision. Example

methods for optimizing robotic designs based on given functional requirements were also

demonstrated. Methods for dealing with the complexity of hybrid parallel-serial-parallel

and discrete-continuous systems (i.e. a multi-legged binary walking robot) were created

and demonstrated through simulations. Most importantly, the real-time joint-level

planning of representative STX tasks was demonstrated in simulation.

Chapter 3 presents preliminary experimental work that demonstrates elements of

the STX vision and will guide future studies. A qualitative exploration of bistable

mechanisms was performed that included the fabrication of prototype devices. Several

devices of a size appropriate to STX applications were realized using moderate precision

manufacturing methods. An integrated, one-piece pantograph mechanism was also

designed and fabricated to demonstrate the simplicity of compliant amplifier

mechanisms. Work is continuing in this area with the development of the BRAID design,
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a highly redundant articulated device, with the goal of eventually incorporating all

aspects of the STX concept in a functional prototype.

4.2 Suggestions for Future Work

Over the course of this research, a diversity of concepts has been explored. Much

of the emphasis has been placed on breadth rather than depth, especially in the case of the

experimental studies. For this reason, there are a number of topics that would prove

worthwhile to study in the future.

The optimization of robot topology and geometry based on workspace

requirements warrants deeper study. The study done here was primarily used to illustrate

the notion of such an optimization and showed the fundamental feasibility of the idea.

However, it was limited to a serial planar robot, with the understanding that the

underlying optimization problem is essentially the same for any robotic topology. The

details of the optimization of a more complex device are an interesting and unexplored

area.

Simulation studies could be taken further to demonstrate a higher level of

autonomous planning. The organization of several binary modules to complete a random

set of tasks has not been studied yet in this context. Communication methods and

architecture could be studied in simulation, to analyze efficient transfer of information

and command hierarchies. Concepts such as de-centralized and multi-agent control

would be useful to study to further demonstrate feasibility of the STX vision.

Work should continue in the development of experimental prototypes to study the

STX concept. Further integration of compliant bistable members and embedded binary

actuation is needed to more fully explore the vision. Current work is focused on the

redesign and development of the BRAID system.

As materials, computing, and manufacturing research progress, they will open up

new avenues for the robotics paradigm described here. Actuator technologies are

currently the biggest obstacle to the development of the STX vision. The introduction of

new engineering materials and fabrication methods will also enable new types of designs.
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Increased computation speeds and processor size reductions will give additional power to

autonomous planning and control. Given time and research, each of the elements of the

STX concept will reach a sufficient state of development to allow the full vision to be

realized.
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APPENDIX

A
COMBINATORIAL SEARCH ALGORITHM

SAMPLE CODE

//computes inverse kinematics of a binary mechanism using a combinatorial
//search algorithm

int i, j, k, //counters representing configuration bits

numberbits, //total number of binary DOF

bestbit_1, //best bits to flip in configuration for better fitness

bestbit_2,
bestbit_3,
configuration[MAX_BITS]; //array of 0's and l's representing

//binary configuration of robot

double bestfitness, //running tab of best fitness found
currentfitness; //fitness of current candidate configuration

do {
//measure the fitness of the original configuration (baseline)

bestfitness = compute fitness(configuration);

//mark the current configuration as the best for now

bestbit_1=-i;
bestbit_2=-l;
bestbit_3=-l;

for (i=0; i<number bits; i++) {
for (j=i+l; j<number-bits+l; j++) {

for (k=j+l; k<numberbits+2; k++) {

//flip three bits in the mechanism
configuration[i]=Iconfiguration[i];
configuration[j]=iconfiguration[j];
configuration[k]=Iconfiguration[k];

//compute the fitness of the new configuration
current_fitness=compute_fitness(configuration);

//see if this new configuration is better
if (currentfitness > bestfitness) {

//update the best fitness value
bestfitness=currentfitness;
//record the configuration if it is better

bestbitL=i;
bestbit_2=j;
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bestbit_3=k;
}

//flip the bits back to their original state

configuration[i]=!configuration[i];
configuration[jJ=lconfiguration[j];
configuration[k]=Iconfiguration[k];

} //(repeat for all 3-bit combinations)

}
}

//if a better configuration was found, record it

if (bestbit_1 > -1) (
configuration[best bit_1]=Iconfiguration[best bit_1];
configuration[best bit_2=iconfiguration[best-bit_2];
configuration[best-bit_3]=iconfiguration[best bit_3];

}

while (best bit_1 > -1);

//search all 3-bit modifications again, starting frcm this new
//configuration, until a better solution cannot be found
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APPENDIX

B
GENETIC ALGORITHM SAMPLE CODE

//computes inverse kinematics of a binary mechanism using a genetic algorithm

POPULATIONSIZE 100
NUMBERGENERATIONS 100
NUMBERSEPARATEEVOLUTIONS 10
STAGEMUTATIONFACTOR 0.1

//population size
//number of generations
//# of populations separately evolved
//probability of mutating a stage

double fitness[POPULATIONSIZE],
//an array describing the fitness of each individual in a generation

fitsum, //total sum of the fitnesses of the individuals

cumulprob,
//cumulative sum of the fitnesses of first i individuals in generation

test,
bestfitness,
overallbestfitness=O.;

//tenporary value
//fitness of best individual in generation
//fitness of best individual overall

conf iguration [POPULATIONSIZE] [MAXBITS] ,
//an array of arrays representing the binary configurations of all the
//individuals in a population for the current generation

prevconfiguration [POPULATIONSIZE] [N&XBITS],
//representation of the previous generation

overallbestconfig [MAXBITS],
//the configuration of the individual with the best fitness over all
//generations and all separately evolved populations

best-index,
tenv,
i,j,k,l;

//index of the most fit individual in a generation
//tenporary value
//counters

//run several separate evolutions with different initial populations
for (1=0; 1<NUMBERSEPARATEEVOLUTIONS; 1++) {

//population initialization

for (k=0; k<POPULATIONSIZE; k++) {
for (i=0; i<numberbits; i++) {

configuration[k][iJ=int(random)+.5); //bit is a random 0 or 1

)

//evolution of an initial population over a number of generations
for (j=0; j<NUMBERGENERATIONS; j++) (

#define
#define
#define
#define

int
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//evaluation
fitsum=O.;
bestfitness=O.;
for (k=O; k<POPULATIONSIZE; k++) {

//compute fitness of each individual in this generation
fitness[k]=compute_fitness(configuration[k]);
if (fitness[k] > bestfitness) {

bestfitness=fitness[k];
best index=k;

}
fitsum+=fitness[k];
//copy current configuration to previous configuration array
copyarray (prev-conf iguration [k] ,configuration [k]);

}

//proportional selection

for (k=O; k<POPULATIONSIZE; k++) {
test=random()*fitsum;
i=-1;
cumnulprob=O.;
while (test > cumulprob) {

cumul-prob+=fitness[i];
}
//copy individual frm previous generation to current
copyarray (conf iguration [k], prev-conf iguration [i] );

}

//uniform stage crossover (half of selected population is
for (k=O; k<POPULATIONSIZE/2; k+=2) {

for (i=0; i<number bits; i+=3) {
if (random() > .5) {

//trade first bit in stage...

generation

cross-bred)

temp=configuration[k] [i];
configurationEk] [i]=configuration[k+l] [i];
configuration[k+1][i]=temp;
//then second bit...

temp=configuration[k] [i+1];
configuration[k][i+1]=configuration[k+l][i+l];
configuration[k+l][i+l]=temp;
//then third bit

tenp=configuration[k] [i+2];
configuration[k][i+2]=configuration[k+l][i+2];
configuration[k+1][i+2]=temp;

}

//stage mutation
for (k=O; k<POPULATIONSIZE; k++) {

for (i=O; i<number bits; i+=3) {
if (random() < STAGEMUTATIONFACTOR) {

configuration[k][i]=int(randomo+.5);
configuration[k][i+1]=int(randomo+.5);
configuration[k] [i+2]=int(randomo+.5);

}
}

}

//mutate bit 1...
//then bit 2...
//then bit 3
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//determination of best individual from one population after full evolution

bestfitness=O.;
for (k=O; k<POPULATIONSIZE; k++) {

test=compute fitness (configuration [k]);
if (test > bestfitness) (

bestfitness=test;
bestindex=k;

}
}

//determination of best individual from all populations separately evolved

if (best_fitness > overallbest_fitness) {
overallbestfitness=bestfitness;
//copy best individual configuration to overall best individual config

copyarray (overallbestconf ig, configuration [best _index]);
}

}
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APPENDIX

C
FORWARD KINEMATICS OF THE BRAID

This appendix details the kinematics of the BRAID structure, including

homogeneous transformations and angles of deflection in the flexure hinges. A BRAID

device is composed of a serial stack of parallel stages (see Figure 2.6). Each of these

stages has three binary-actuated linkages, thus yielding three binary DOF per stage. This

results in 23 = 8 different binary configurations for a single stage (see Figure C.1).

Because of the discrete nature of the binary robotic concept, many of the complex

geometric computations need only be done once to be stored into memory for later use by

the real-time planner and controller.

000 001 010 011

100 101 110 11
Figure C. 1. One stage of the BRAID, showing its eight binary configurations.

1
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As described in Section 2.3, it is convenient to use homogeneous transformation

matrices that describe the position and orientation of the top ring of the stage (the end

frame) relative to the bottom ring (the base frame). By precomputing all the possible

transformations based on the binary configuration of the stage, it is easy to compute the

forward kinematics of an M-staged device. To do so, one simply multiplies the

transformations of each stage from the base to the end-effector of the device (see

Equation 2.1, Section 2.3).

The convention used in the following equations implies that a base frame is

situated at the center of the base ring (see Figure C.2). The x-y plane is coplanar with the

base ring, with the z-axis normal to the ring. The end frame is situated at the center of

the top ring, with the top ring in the x'-y' plane and the z'-axis normal to the top ring.

The binary-actuated links are numbered in counterclockwise order when viewed from

above, with link 1 being the link in the y-z plane.

Link 3 z'

y Link 2

z

Link I

Figure C.2. Coordinate frames for a single stage.

In a single BRAID stage, there are 15 rotational hinges (five at each link). The

axes of revolution of the five hinges in a single link are shown in Figure C.3.a. Axes 1, 2,
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and 3 are parallel to the x-axis, with axis 1 being in the x-y plane. Axis 5 is parallel to

the z-axis. Axis 4 is coincident with the y'-axis.

5 05

03

3
02

Figure C3. (a) Axes of revolution of thefiveflexural hinges in one link of a stage; (b) hinge
angle definitions.

C.1 State (000)

Ao,i" '

t

Figure C.4. Geometry of stage in state 000.

In state 000, all three links are in their closed position. The homogeneous

transformation matrix describing the top ring relative to the base can be described as a

translation in the z-direction as follows
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AO0 00 =translation(0,0,a)=
0

LO

0

1

0

0

0

0

1

0

0

0

a

II

The angles of each of the hinge joints can be computed as follows

6 (000) =6 () = 7+cos--( a
0 2 2L)

S (OW) = 7 - 2cos -1 a )

C.2 State (111)

Am '11

L

b jb
bb

b7

Figure C5. Geometry of stage in state 111.

In state 111, all three links are in their open position. The homogeneous

transformation matrix describing the top ring relative to the base can be described as a

translation in the z-direction as follows
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A, =translation(0,0,b) 0=
0

LO

0

1

0

0

0

0

1

0

0

0

b

IJ

The angles of each of the hinge joints can be computed as follows

0(111) =0 (111) = 7r+ Cos,( b
2 2L)

02 (111) =7-2cos-

04 (111) =05 (111) = 0
4 5

C.3 State (100)

A %1'1 00

Figure C.6. Geometry of stage in state 100.

In state 100, link one is open and the others are closed. The homogeneous

transformation matrix describing the top ring relative to the base can be described as a

translation in the y- and z-directions followed by a rotation about the x'-axis as follows
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A("0) =translation 0, h(sin , - 1),a+ cosO* rotation(y1 ,0,0)

1

0

0

1

0

0

0

- (sin 0,

0 0 1 a+

0 0 0

- 1)

hcos 013

-1

,0
0

_0

0

cos(y,)

sin (Y,)

0

0 01

-- sin(y1 ) 0
cos(y 1 ) 0

0 1-

S- 811 - 612 COS
b2 - a2 -2h2-

2h h2 +a 2

7zr

71 2

The angles of each of the hinge joints in link 1 can be computed as follows

01 (100) =tn- o0 "=tan~i(a-)+cos{,
(h )

(100) 02 (111)

03(100) =COSb a+

4(100) 05(100)

b2 +±a2

2b a 2+h 2

Cos

+ cos~1
b

2L

~2L)
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C.4 State (010)

Figure C.7. Geometry of stage in state 010.

In state 010, link two is open and the others are closed. The homogeneous

transformation matrix describing the top ring relative to the base is derived the same way

as that for state 100, only this time the axes are rotated about the z axis first, then rotated

back about the z' axis. That is

A0,1 (010) = rotation 0,0, *

27r ._ 27r
cos- -s1n -

3 (3

sin -- cos -27
3 3

0 0

0 0

A0,1( 00) * rotation 0,0, - 2r

0 0

0

1

0

0

1

* A01
100) *

-2,r . -2_
cos -- -sin --

3 (3

sin 2r o - 2z
3 3

0 0

0 0

The transition from state 000 to 010 is pure rotation about axis j-j an angle yi (see Figure

C.6 for a depiction of yi). The angles of each of the hinge joints in link 1 can be

computed as follows

0 0

0

1

0

0

1

I.... 
.. .i
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01(010)

2(010)

0(010)

05 (010)

4

9

_ (000)

_ (000)

=000 + sin *(sin~y}2

=-sin-1 sini(y ))

6 -tan-1 sin(y

7r _,h) -_a a2 +2h2 -b2 7
y -= - = 1tan +

2 a2hja2+ h2 2

C.5 State (001)

L A '

b

Figure C.8. Geometry of stage in state 001.

In state 001, link three is open and the others are closed. Again, the homogeneous

transformation matrix describing the top ring relative to the base is derived the same way

as that for state 100, and again the axes are rotated about the z axis first, then rotated back

about the z' axis. That is

A (001) = rotation 00, -2r * AO (100) * rotation 0,0, 2,i)
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- 27 r
co

-27r
sin

3
0

0

- sin 2 r

co j
3

0

0

0 0

0

1

0

0

1

* A01 (100) *

The angles of each of the hinge joints in link 1 are derived

and are thus

co{ 27r sin( 27J

si ( 3=ZN27 2
sin -- -s -

3 3

0 0

0 0

similarly to those for state 010

21

L

b

Figure C.9. Geometry of stage in state 011.

In state 011, link one is closed and the others are open. The homogeneous

transformation matrix describing the top ring relative to the base can be described as a

translation in the y- and z-directions followed by a rotation about the x'-axis as follows

0 0

0

1

0

0

1

1(001)

2(001)

63 (001)
3

04(001)

5 (001)

_ 1 (010)

0 (010)

03 (010)

-6 (010)

- 5 (010)

C.6 State (011)
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01 =translation 0,h (sin q2 - 1),b + h cos0 2 * rotation(Y2 ,0,0)

1 0 0 0
h

0 1 0 -(sin0 2 -1)3
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0 0 0 1
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The angles of each of the hinge joints in link 1 can be computed as follows

01 (011) tan {J

02(011) _ 2(00)

+ cos~ f

03(011) = COS a 2  b 2

04(011) = 05 (011) =0

a2 2 + cos
2ab 2 + h2 )

+ CoS{~~

Appedix . Frwar Kiematcs o th BRAD 8

where

_1 a )
2L)
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C.7 State (101)

Figure C.10. Geometry of stage in state 101.

In state 101, link two is closed and the others are open. The homogeneous

transformation matrix describing the top ring relative to the base is derived the same way

as that for state 011, only this time the axes are rotated about the z axis first, then rotated

back about the z' axis. That is

AO(101) = rotation 0,0, *

0 0
0 3
20 2r

sin - co--
13 3
0 0

0 0

0

1

0

0

1

A (011) * rotatio 0,0, - 27r

*A ,(011) *

-27r . -2
co -sin

sin -2r _

3 3
0 0

0 0

The transition from state 111 to 101 is pure rotation about axis k-k an angle y2 (see Figure

C.9 for a depiction of y2). The angles of each of the hinge joints in link 1 can be

computed as follows

0 0

0

1

0

0

1

b
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01(101) = 01(111)

0 (101) _ 0 (111)

3(101) _ 3 (111) + i 1 (Lsn(2

4101) = -sin~ sin(Y2 )

05(101) = 9 - tan- Q- sin (Y26

7r -b2+ 2h 2 -a2
Y2= 2= tan j+cos -2+h-2 2

C.8 State (110)

L

b

0,91

Figure C 11. Geometry of stage in state 110.

In state 110, link three is closed and the others are open. Again, the homogeneous

transformation matrix describing the top ring relative to the base is derived the same way

as that for state 011, and again the axes are rotated about the z axis first, then rotated back

about the z' axis. That is

Ae (110) = rotation( 0,0,_ * 7 AO,() * rotation( 0,0,3J
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co - 2 fl- sin - 2

3 3

sinr---- co{---
03 3
0 0

0 0

0 0

0

1 0

1

0* A0 (011) *

2r 2r
co 3  -sin -3

sin 32 7l o7-
3 3

0 0

0 0

The angles of each of the hinge joints in link 1 are derived similarly to those for state 101

and are thus

01(110) = 01(101)

2(110) = 2 (101)

3(110) = 0 (101)

4(110) = -04 (101)

5(110) = 5(101)
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0 0

0 0

1 0

1
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