5 research outputs found

    Water balance creates a threshold in soil pH at the global scale

    Full text link
    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate

    The globalsoilmap project: past, present, future, and national examples from france

    Get PDF
    International audienceSoils have critical relevance to global issues, such as food and water security, climate regulation, sustainable energy, desertification and biodiversity protection. As a consequence, soil is becoming one of the top priorities for the global environmental policy agenda . Conventional soil maps suffer from large limitations, i.e. most of them are static and often obsolete, are often generated at coarse scale, and can be uneasy to handle. Digital Soil Mapping has been developed as a solution to generate high - resolution maps of soil properties over large areas. Two projects, GlobalSoilMap and SoilGrids, presently aim at delivering the first generation of global, high - resolution soil property fine grids. In this paper, we briefly describe the GlobalSoilMap history, its present status and present achievements, and illustrate some of these with (mainly) French examples. At given moment there is still an enormous potential for forthcoming research and for delivering products more helpful for end users. Key here is the continuous progress in available covariates, in their spatial, spectral and tem-poral coverage and resolution through remote sensing products. All over the world, there is still a very large amount of point soil data still to be rescued and this effort should be pursued and encouraged. Statistically advances are ex-pected by exploring and implementing new models. Especially relevant are spa- tial - temporal models and contemporary Artificial Intelligence for handling the complex big data. Advances should be made and research efforts are needed on estimating the uncertainties, and even on estimating uncertainties on uncertain-ties.Attempts to merge different model strategies and products (for instance deriving from différent covariates, spatial extents, soil data sources, and models) should be made in order to get the most useful information from each of these predictions, and to identify how controlling factors may change depending on scales

    Soil legacy data rescue via GlobalSoilMap and other international and national initiatives

    Get PDF
    Legacy soil data have been produced over 70 years in nearly all countries of the world. Unfortunately, data, information and knowledge are still currently fragmented and at risk of getting lost if they remain in a paper format. To process this legacy data into consistent, spatially explicit and continuous global soil information, data are being rescued and compiled into databases. Thousands of soil survey reports and maps have been scanned and made available online. The soil profile data reported by these data sources have been captured and compiled into databases. The total number of soil profiles rescued in the selected countries is about 800,000. Currently, data for 117, 000 profiles are compiled and harmonized according to GlobalSoilMap specifications in a world level database (WoSIS). The results presented at the country level are likely to be an underestimate. The majority of soil data is still not rescued and this effort should be pursued. The data have been used to produce soil property maps. We discuss the pro and cons of top-down and bottom-up approaches to produce such maps and we stress their complementarity. We give examples of success stories. The first global soil property maps using rescued data were produced by a top-down approach and were released at a limited resolution of 1 km in 2014, followed by an update at a resolution of 250 m in 2017. By the end of 2020, we aim to deliver the first worldwide product that fully meets the GlobalSoilMap specifications

    Soil legacy data rescue via GlobalSoilMap and other international and national initiatives

    No full text
    Legacy soil data have been produced over 70 years in nearly all countries of the world. Unfortunately, data, information and knowledge are still currently fragmented and at risk of getting lost if they remain in a paper format. To process this legacy data into consistent, spatially explicit and continuous global soil information, data are being rescued and compiled into databases. Thousands of soil survey reports and maps have been scanned and made available online. The soil profile data reported by these data sources have been captured and compiled into databases. The total number of soil profiles rescued in the selected countries is about 800,000. Currently, data for 117, 000 profiles are compiled and harmonized according to GlobalSoilMap specifications in a world level database (WoSIS). The results presented at the country level are likely to be an underestimate. The majority of soil data is still not rescued and this effort should be pursued. The data have been used to produce soil property maps. We discuss the pro and cons of top-down and bottom-up approaches to produce such maps and we stress their complementarity. We give examples of success stories. The first global soil property maps using rescued data were produced by a top-down approach and were released at a limited resolution of 1 km in 2014, followed by an update at a resolution of 250 m in 2017. By the end of 2020, we aim to deliver the first worldwide product that fully meets the GlobalSoilMap specifications. © 2017 Elsevier Lt
    corecore