1,888 research outputs found

    Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis

    Get PDF
    It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better prediction of the ASRM performance. The multi-phase flow analysis using the FDNS code in the present research can be used as a design tool for solid rocket motor applications

    Liquid propellant rocket engine combustion simulation with a time-accurate CFD method

    Get PDF
    Time-accurate computational fluid dynamics (CFD) algorithms are among the basic requirements as an engineering or research tool for realistic simulations of transient combustion phenomena, such as combustion instability, transient start-up, etc., inside the rocket engine combustion chamber. A time-accurate pressure based method is employed in the FDNS code for combustion model development. This is in connection with other program development activities such as spray combustion model development and efficient finite-rate chemistry solution method implementation. In the present study, a second-order time-accurate time-marching scheme is employed. For better spatial resolutions near discontinuities (e.g., shocks, contact discontinuities), a 3rd-order accurate TVD scheme for modeling the convection terms is implemented in the FDNS code. Necessary modification to the predictor/multi-corrector solution algorithm in order to maintain time-accurate wave propagation is also investigated. Benchmark 1-D and multidimensional test cases, which include the classical shock tube wave propagation problems, resonant pipe test case, unsteady flow development of a blast tube test case, and H2/O2 rocket engine chamber combustion start-up transient simulation, etc., are investigated to validate and demonstrate the accuracy and robustness of the present numerical scheme and solution algorithm

    Numerical Modeling of Spray Combustion with an Unstructured-Grid Method

    Get PDF
    The present unstructured-grid method follows strictly the basic finite volume forms of the conservation laws of the governing equations for the entire flow domain. High-order spatially accurate formulation has been employed for the numerical solutions of the Navier-Stokes equations. A two-equation k-epsilon turbulence model is also incorporated in the unstructured-grid solver. The convergence of the resulted linear algebraic equation is accelerated with preconditioned Conjugate Gradient method. A statistical spray combustion model has been incorporated into the present unstructured-grid solver. In this model, spray is represented by discrete particles, rather than by continuous distributions. A finite number of computational particles are used to predict a sample of total population of particles. Particle trajectories are integrated using their momentum and motion equations and particles exchange mass, momentum and energy with the gas within the computational cell in which they are located. The interaction calculations are performed simultaneously and eliminate global iteration for the two-phase momentum exchange. A transient spray flame in a high pressure combustion chamber is predicted and then the solution of liquid-fuel combusting flow with a rotating cup atomizer is presented and compared with the experimental data. The major conclusion of this investigation is that the unstructured-grid method can be employed to study very complicated flow fields of turbulent spray combustion. Grid adaptation can be easily achieved in any flow domain such as droplet evaporation and combustion zone. Future applications of the present model can be found in the full three-dimensional study of flow fields of gas turbine and liquid propulsion engine combustion chambers with multi-injectors

    Numerical Investigation of Slag Behavior for RSRM

    Get PDF
    It is known that the flow field of the redesigned solid rocket motor (RSRM) is very complicated due to the complex characteristics of turbulent multi-phase flow, chemical reaction, particle combustion, evaporation, breakup and agglomeration etc. It requires multi-phase calculations, chemical reaction simulation, and particle combustion, evaporation, and breakup models to obtain a better understanding of thermophysics for the RSRM design using numerical methods. Also, the slag buildup due to the molten particles is another factor affecting the performance of the RSRM. To achieve this goal, the volume of fluid (VOF) method is used to capture the free surface motion so as to simulate the accumulation of the molten particles (slag) of the RSRM. A finite rate chemistry model is used to simulate the chemical reaction effects. For multi-phase calculations, the Hermsen combustion model is used for the aluminum particle combustion analysis and the Taylor Analogy Breakup (TAB) model is used for the particle breakup analysis. An interphase mas-exchange model introduced by Spalding is used for the evaporation calculation. The particle trajectories are calculated using a one-step implicit method for several groups of particle sizes by which the drag forces and heat fluxes are then coupled with the gas phase equations. The preliminary results predicted a reasonable physical simulation of the particle effects using a simple two dimensional solid rocket motor configuration. It shows that the AL/AL2O3 particle sizes are reduced due to the combustion, evaporation, and breakup. The flow field is disturbed by the particles. Mach number distributions in the nozzle are deformed due to the effect of particle concentrations away from the center line

    Peierls barrier characteristic and anomalous strain hardening provoked by dynamic-strain-aging strengthening in a body-centered-cubic high-entropy alloy

    Get PDF
    The temperature effect on the mechanical behavior of the HfNbTaTiZr high entropy alloy (HEA) was investigated at 77–673 K. The decrease of the yield strength with increasing the temperature was mechanistically analyzed by considering contributions from various strengthening mechanisms. An anomalous dependence of strain hardening on temperature was observed and was justified to be caused by dynamic strain aging (DSA) as an extra strengthening mechanism at elevated temperatures. A model was constructed to split the overall strain hardening into forest hardening and DSA hardening, both of which were theoretically quantified at all temperatures considered. The work quantifies the height of Peierls barriers in the bcc HfNbTaTiZr HEA, and reveals dynamic strain aging as the strengthening mechanism causing the anomalous strain hardening at elevated temperatures

    52-week efficacy and safety of telbivudine with conditional tenofovir intensification at week 24 in HBeAg-positive chronic Hepatitis B

    Get PDF
    Background and Aims: The Roadmap concept is a therapeutic framework in chronic hepatitis B for the intensification of nucleoside analogue monotherapy based on early virologic response. The efficacy and safety of this approach applied to telbivudine treatment has not been investigated. Methods: A multinational, phase IV, single-arm open-label study (ClinicalTrials.gov ID NCT00651209) was undertaken in HBeAg-positive, nucleoside-naive adult patients with chronic hepatitis B. Patients received telbivudine (600 mg once-daily) for 24 weeks, after which those with undetectable serum HBV DNA (<300 copies/mL) continued to receive telbivudine alone while those with detectable DNA received telbivudine plus tenofovir (300 mg once-daily). Outcomes were assessed at Week 52. Results: 105 patients commenced telbivudine monotherapy, of whom 100 were included in the efficacy analysis. Fifty-five (55%) had undetectable HBV DNA at Week 24 and continued telbivudine monotherapy; 45 (45%) received tenofovir intensification. At Week 52, the overall proportion of undetectable HBV DNA was 93% (93/100) by last-observation-carried-forward analysis (100% monotherapy group, 84% intensification group) and no virologic breakthroughs had occurred. ALT normalization occurred in 77% (87% monotherapy, 64% intensification), HBeAg clearance in 43% (65% monotherapy, 16% intensification), and HBeAg seroconversion in 39% (62% monotherapy, 11% intensification). Six patients had HBsAg clearance. Myalgia was more common in the monotherapy group (19% versus 7%). No decrease in the mean glomerular filtration rate occurred in either treatment group at Week 52. Conclusions: Telbivudine therapy with tenofovir intensification at Week 24, where indicated by the Roadmap strategy, appears effective and well tolerated for the treatment of chronic hepatitis B. Trial Registration: ClinicalTrials.gov NCT0065120

    Pollution control can help mitigate future climate change impact on European grayling in the UK

    Get PDF
    Aim: We compare the performance of habitat suitability models using climate data only or climate data together with water chemistry, land cover and predation pressure data to model the distribution of European grayling (Thymallus thymallus). From these models, we (a) investigate the relationship between habitat suitability and genetic diversity; (b) project the distribution of grayling under future climate change; and (c) model the effects of habitat mitigation on future distributions. Location: United Kingdom. Methods: Maxent species distribution modelling was implemented using a Simple model (only climate parameters) or a Full model (climate, water chemistry, land use and predation pressure parameters). Areas of high and low habitat suitability were designated. Associations between habitat suitability and genetic diversity for both neutral and adaptive markers were examined. Distribution under minimal and maximal future climate change scenarios was modelled for 2050, incorporating projections of future flow scenarios obtained from the Centre for Ecology and Hydrology. To examine potential mitigation effects within habitats, models were run with manipulation of orthophosphate, nitrite and copper concentrations. Results: We mapped suitable habitat for grayling in the present and the future. The Full model achieved substantially higher discriminative power than the Simple model. For low suitability habitat, higher levels of inbreeding were observed for adaptive, but not neutral, loci. Future projections predict a significant contraction of highly suitable areas. Under habitat mitigation, modelling suggests that recovery of suitable habitat of up to 10% is possible. Main conclusions: Extending the climate-only model improves estimates of habitat suitability. Significantly higher inbreeding coefficients were found at immune genes, but not neutral markers in low suitability habitat, indicating a possible impact of environmental stress on evolutionary potential. The potential for habitat mitigation to alleviate distributional changes under future climate change is demonstrated, and specific recommendations are made for habitat recovery on a regional basis

    Characterization of Turing diffusion-driven instability on evolving domains

    Get PDF
    In this paper we establish a general theoretical framework for Turing diffusion-driven instability for reaction-diffusion systems on time-dependent evolving domains. The main result is that Turing diffusion-driven instability for reaction-diffusion systems on evolving domains is characterised by Lyapunov exponents of the evolution family associated with the linearised system (obtained by linearising the original system along a spatially independent solution). This framework allows for the inclusion of the analysis of the long-time behavior of the solutions of reaction-diffusion systems. Applications to two special types of evolving domains are considered: (i) time-dependent domains which evolve to a final limiting fixed domain and (ii) time-dependent domains which are eventually time periodic. Reaction-diffusion systems have been widely proposed as plausible mechanisms for pattern formation in morphogenesis
    corecore