ADVANCED MULTI-PHASE FLOW CFD MODEL DEVELOPMENT FOR SOLID ROCKET MOTOR FLOWFIELD ANALYSIS*

Paul Liaw, Y.S. Chen, and H. M. Shang
Engineering Sciences, Inc.
Huntsville, AL
D. Doran
ED 32, NASA Marshall Space Flight Center

Abstract

It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor.

The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors.

FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended $k-\varepsilon$ models with compressibility corrections, multizone body-fitted formulations, and turbulence/particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to $(2 \mathrm{k} / 3)^{1 / 2}$ is used for the random turbulent velocity components.

The flow field in the aft-end cavity of the ASRM is analyzed to investigate its significant impact on the operation of the motor as well as its performance. It is known that heat flux and the pressure distributions in this region will cause recirculation and influence the design requirements. Chemical reaction of gas flow is a factor affecting the performance of the ASRM. An accurate analysis for chemically reacting flow is therefore important in the design of the ASRM. Twelve gas elements $\left(\mathrm{H}_{2} \mathrm{O}\right.$, $\mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{O}, \mathrm{H}, \mathrm{OH}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CL}, \mathrm{CL}_{2}, \mathrm{HCL}$, and N_{2}) were considered for the chemical reaction in present study. For multi-phase calculations, the particulate phase was injected at the propellant grain surface. The particulate phase was assumed to be aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ only. The mass fraction of the particulate phase was assumed to be 53% of the mixture.

The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better prediction of the ASRM performance. The multi-phase flow analysis using the FDNS code in the present research can be used as a design tool for solid rocket motor applications.

[^0]\[

$$
\begin{gathered}
\text { ADVANCED MULTI-PHASE FLOW CFD MODEL } \\
\text { DEVELOPMENT FOR SOLID ROCKET MOTOR } \\
\text { FLOWFIELD ANALYSIS } \\
\text { Paul Liaw, Y. S. Chen, and H. M. Shang } \\
\text { Engineering Sciences, Inc. }
\end{gathered}
$$
\]

11th Workshop for CFD Applications in Rocket Propulsion
April 20-22, 1993
OBJECTIVE

1. BACKGROUND AND GENERAL APPROACH
2. NUMERICAL METHOD
3. ASRM APPLICATION --- CURRENT STATUS
4. CONCLUSIONS
5. FOLLOWING WORK
BACKGROUND

- SIMULATIONS OF SOLID ROCKET MOTOR INTERNAL
FLOW FIELD WITH AL-BASED PROPELLANTS
REQUIRE COMPLEX MULTI-PHASE TURBULENT
FLOW MODEL
- CRUCIAL FACTORS SUCH AS THE PARTICLE SIZE
DISTRIBUTIONS AND PARTICLE COMBUSTION
INSIDE THE MOTOR ARE IMPORTANT FOR CORRECT
DESCRIPTION OF THE FLOW FIELD AND GOOD
PREDICTION OF THE MOTOR PERFORMANCE

NUMERICAL METHOD
- PRESSURE BASED FINITE DIFFERENCE NAVIER-
STOKES FLOW SOLVER (FDNS)
- TIME-ACCURATE ADAPTIVE SECOND-ORDER
UPWIND SCHEMES
- STANDARD \& EXTENDED k- ε TURBULENCE MODELS
WITH COMPRESSIBILITY CORRECTIONS
- MULTI-ZONE BODY-FITTED FORMULATIONS
- EULERIAN/LARGRANGIAN MULTI-PHASE SOLUTION
METHOD FOR MULTI-ZONE MESH
- TURBULENCE/PARTICLE INTERACTION MODEL

$$
\begin{aligned}
& \text { PENALTY FUNCTION CORRECTED EFFICIENT FINITE- } \\
& \text { RATE CHEMISTRY INTEGRATION METHOD } \\
& \text { HERMSEN CORRELATION EMPLOYED FOR THE AL } \\
& \text { PARTICLE COMBUSTION RATE }
\end{aligned}
$$

Turbulent Dispersion

SOLVLS LN'HYY 9 -- NOILVOI'TddV WYSV

1. 3-ZONE 2-D GEOMETRY (INCLUDING CHAMBER,
AFT-END CAVITY, AND SUBMERGED NOZZLE)
2. 6-ZONE 3-D GEOMETRY (INCLUDING CHAMBER,
AFT-END CAVITY, SUBMERGED NOZZLE,
INHIBITORS, AND GRAIN PORT)

- SIMULATION ${ }_{\wedge}$ STEADY-STATE FLOW FIELD AT LAUNCH
CONDITION
- MODELS:
- MODELS:

1. 3-ZONE 2-D GEOMETRY (INCLUDING CHAMBER,
AFT-END CAVITY, AND SUBMERGED NOZZLE)
2. 6-ZONE 3-D GEOMETRY (INCLUDING CHAMBER,
AFT-END CAVITY, SUBMERGED NOZZLE,
INHIBITORS, AND GRAIN PORT)

- SIMULATION OF STEADY-STATE FLOW FIELD AT LAUNCH
CONDITION
2-D GRID SYSTEM

contour levels
Io values $\begin{array}{ll}A & 000 e-00 \\ B & 1 \\ \text { A } & 028 E-01\end{array}$ ［ 2 日057E－01 D 4 2006E－01 E 5 6：14E－0：1 $5,0143 \mathrm{E}-61$ $\begin{array}{lll}\mathrm{G} & \mathrm{B} & 4172 \mathrm{E}-01 \\ \mathrm{H} & \mathrm{S} & \mathrm{B} 20 \mathrm{OE}-01\end{array}$ ［ $11222 E+00$ － 1 2625E＋00 $\llcorner\quad 15431 E+00$ M 1 6B34E＋00 $19237 E+00$
$19540 E+00$

PARTICLE DISTRIBUTIONS NEAR THE NOZZLE

CONTDUR LEVELS

[^1]MACH NUMBER DISTRIBUTIONS（WITH PARTICLE EFFECT）

TEMPERATURE DISTRIBUTIONS (WITH PARTICLE EFFECT)$17959 E+03$$18774 E+03$
$19590 E+3$
$\begin{array}{ll}2 & 405 E+01 \\ 2 & 1220 E+03\end{array}$
2 1220E+03
$22035 E+3$
2 2035E+03
$22051 E+3$
2 3666E+8
2 3666E+03
$244 \theta 1 E+3$
$2441 E+83$
$25296+83$
$25296 E+83$
2
2
$25112 E+13$
$25927 E+03$
$26927 E+13$
$27742 E+3$
$28557 E+03$
$28557 E+3$
$29373 E+3$

2 93 $168 E+6$

 \(31003 E+3\)
 \(318: 8 E+B\)

$32634 E+63$
3
3
3 3449E+63
$34264 E+03$
z Sel9E+03

contour levels
IO Vatues A 1 Vatues $14183 E+00$
$62819 E+00$ 1 1145E+el - $6009 \mathrm{E}+61$ $26872 E+01$
2
$5736 E+01$ 3 -599E-01
$35463 \mathrm{E}+61$
$3463 E+0$
$436 E+81$

$40326 E+81$
4
4

4
5
5
E.53E-61

$54917 E+01$
5 97ele.ed
$6454+E+0$
5 95e日t 01

7
7
7

- 409日E+01

9962E+0

- $3962 \mathrm{E}+0$
- $3826 \mathrm{E}+9$

3 8689E+01
$10355 E+2$
1 1841E+92
PRESSURE DISTRIBUTIONS (WITH PARTICLE EFFECT)
$11814 E+8$

ESI $]_{\text {Engineering Sciences, Inc. }}$

$\sqrt{ }$ ELOCITY VECTORS NEAR THE SECOND INHIBITOR

VELOCITY VECTORS FOR 2-D CASE (WITH PARTICLES)

PARTICLE DISTRIBUTIONS AND VELOCITY VECTORS FOR 3-D CASE (WITH PARTICLES)

rs Engineering Sciences, Inc.
CONCLUSIONS
1.THE FDNS CODE SUCCESSFULLY PREDICTED THE
MULTI-PHASE FLOW SIMULATION OF THE ASRM WITH
CHEMICAL REACTION AND TURBULENT PARTICLES.
THE COMPUTED FLOW FIELD IS REASONABLE BASED
ON THE KNOWN DATA AND THE PHYSICAL POINT OF
VIEW.
2.THE RECIRCULATION ZONE AT THE ENTRY OF THE AFT-
END CAVITY IS PREDICTED CORRECTLY. MORE
INVESTIGATIONS SHOULD BE DONE FOR FURTHER
EVALUATION OF THE EFFECT ON THE PERFORMANCE
OF ASRM DUE TO THE RECIRCULATION ZONE.

$$
\begin{aligned}
& \text { • INVESTIGATE THE PARTICLE COMBUSTION AND } \\
& \text { COLLISION/BREAKUP MODELS FOR BENCHMARK } \\
& \text { TESTING CASES (NAVAL POST-GRADUATE DATA, } \\
& \text { FRENCH DATA, ETC.) } \\
& \text { • INVESTIGATE THE EFFECT OF PARTICLE } \\
& \text { DEPOSITION ON THE CHAMBER WALL (MOVING } \\
& \text { BOUNDARY SCHEME WILL BE TESTED) }
\end{aligned}
$$

[^0]: * This work is supported by NASA Marshall Space Flight Center under Contract NAS8-39398.

[^1]: 10 VALUES
 －0000E＋00
 B 1 18日5E－01
 C 2 3770E－el
 3 5655E－01
 47548E－01
 S 9425E－01
 ，1310E－01
 －3195E－01
 $95000 \mathrm{E}-01$
 $10696 E+00$
 1885E＋00 $3073 E+00$ $4262 E+0 \theta$ $5450 E+00$ 5490E＋00 $6639 E+00$ $9627 E+0 \theta$
 $9016 E+9 日$ $901 E E+00$
 $024 E+00$ $04 E+0 \theta$
 $1393 E-\theta 0$
 S $21393 E \cdot 00$
 $+\quad 2581 E+00$
 U 2 377eE＋00
 $\checkmark 2495 E E+0$
 \downarrow 2 624TE＋e
 $\times \quad 2>335 \varepsilon+00$
 r 2 － $524 E+0$ 2 2 57：5E＋P0

