1,813 research outputs found

    A new numerical approach to Anderson (de)localization

    Full text link
    We develop a new approach for the Anderson localization problem. The implementation of this method yields strong numerical evidence leading to a (surprising to many) conjecture: The two dimensional discrete random Schroedinger operator with small disorder allows states that are dynamically delocalized with positive probability. This approach is based on a recent result by Abakumov-Liaw-Poltoratski which is rooted in the study of spectral behavior under rank-one perturbations, and states that every non-zero vector is almost surely cyclic for the singular part of the operator. The numerical work presented is rather simplistic compared to other numerical approaches in the field. Further, this method eliminates effects due to boundary conditions. While we carried out the numerical experiment almost exclusively in the case of the two dimensional discrete random Schroedinger operator, we include the setup for the general class of Anderson models called Anderson-type Hamiltonians. We track the location of the energy when a wave packet initially located at the origin is evolved according to the discrete random Schroedinger operator. This method does not provide new insight on the energy regimes for which diffusion occurs.Comment: 15 pages, 8 figure

    Numerical Modeling of Spray Combustion with an Unstructured-Grid Method

    Get PDF
    The present unstructured-grid method follows strictly the basic finite volume forms of the conservation laws of the governing equations for the entire flow domain. High-order spatially accurate formulation has been employed for the numerical solutions of the Navier-Stokes equations. A two-equation k-epsilon turbulence model is also incorporated in the unstructured-grid solver. The convergence of the resulted linear algebraic equation is accelerated with preconditioned Conjugate Gradient method. A statistical spray combustion model has been incorporated into the present unstructured-grid solver. In this model, spray is represented by discrete particles, rather than by continuous distributions. A finite number of computational particles are used to predict a sample of total population of particles. Particle trajectories are integrated using their momentum and motion equations and particles exchange mass, momentum and energy with the gas within the computational cell in which they are located. The interaction calculations are performed simultaneously and eliminate global iteration for the two-phase momentum exchange. A transient spray flame in a high pressure combustion chamber is predicted and then the solution of liquid-fuel combusting flow with a rotating cup atomizer is presented and compared with the experimental data. The major conclusion of this investigation is that the unstructured-grid method can be employed to study very complicated flow fields of turbulent spray combustion. Grid adaptation can be easily achieved in any flow domain such as droplet evaporation and combustion zone. Future applications of the present model can be found in the full three-dimensional study of flow fields of gas turbine and liquid propulsion engine combustion chambers with multi-injectors

    Does Informatics enable or inhibit the delivery of patient-centred, coordinated, and quality-assured care: a Delphi study. A contribution of the Imia Primary Health Care Informatics Working Group

    Get PDF
    Background: Primary care delivers patient-centred and coordinated care, which should be quality-assured. Much of family practice now routinely uses computerised medical record (CMR) systems, these systems being linked at varying levels to laboratories and other care providers. CMR systems have the potential to support care. Objective: To achieve a consensus among an international panel of health care professionals and informatics experts about the role of informatics in the delivery of patient-centred, coordinated, and quality-assured care. Method: The consensus building exercise involved 20 individuals, five general practitioners and 15 informatics academics, members of the International Medical Informatics Association Primary Care Informatics Working Group. A thematic analysis of the literature was carried out according to the defined themes. Results:The first round of the analysis developed 27 statements on how the CMR, or any other information system, including paper-based medical records, supports care delivery. Round 2 aimed at achieving a consensus about the statements of round one. Round 3 stated that there was an agreement on informatics principles and structures that should be put in place. However, there was a disagreement about the processes involved in the implementation, and about the clinical interaction with the systems after the implementation. Conclusions: The panel had a strong agreement about the core concepts and structures that should be put in place to support high quality care. However, this agreement evaporated over statements related to implementation. These findings reflect literature and personal experiences: whilst there is consensus about how informatics structures and processes support good quality care, implementation is difficult

    Pollution control can help mitigate future climate change impact on European grayling in the UK

    Get PDF
    Aim: We compare the performance of habitat suitability models using climate data only or climate data together with water chemistry, land cover and predation pressure data to model the distribution of European grayling (Thymallus thymallus). From these models, we (a) investigate the relationship between habitat suitability and genetic diversity; (b) project the distribution of grayling under future climate change; and (c) model the effects of habitat mitigation on future distributions. Location: United Kingdom. Methods: Maxent species distribution modelling was implemented using a Simple model (only climate parameters) or a Full model (climate, water chemistry, land use and predation pressure parameters). Areas of high and low habitat suitability were designated. Associations between habitat suitability and genetic diversity for both neutral and adaptive markers were examined. Distribution under minimal and maximal future climate change scenarios was modelled for 2050, incorporating projections of future flow scenarios obtained from the Centre for Ecology and Hydrology. To examine potential mitigation effects within habitats, models were run with manipulation of orthophosphate, nitrite and copper concentrations. Results: We mapped suitable habitat for grayling in the present and the future. The Full model achieved substantially higher discriminative power than the Simple model. For low suitability habitat, higher levels of inbreeding were observed for adaptive, but not neutral, loci. Future projections predict a significant contraction of highly suitable areas. Under habitat mitigation, modelling suggests that recovery of suitable habitat of up to 10% is possible. Main conclusions: Extending the climate-only model improves estimates of habitat suitability. Significantly higher inbreeding coefficients were found at immune genes, but not neutral markers in low suitability habitat, indicating a possible impact of environmental stress on evolutionary potential. The potential for habitat mitigation to alleviate distributional changes under future climate change is demonstrated, and specific recommendations are made for habitat recovery on a regional basis

    A Deep Learning Parameterization for Ozone Dry Deposition Velocities

    Get PDF
    The loss of ozone to terrestrial and aquatic systems, known as dry deposition, is a highly uncertain process governed by turbulent transport, interfacial chemistry, and plant physiology. We demonstrate the value of using Deep Neural Networks (DNN) in predicting ozone dry deposition velocities. We find that a feedforward DNN trained on observations from a coniferous forest site (Hyytiala, Finland) can predict hourly ozone dry deposition velocities at a mixed forest site (Harvard Forest, Massachusetts) more accurately than modern theoretical models, with a reduction in the normalized mean bias (0.05 versus similar to 0.1). The same DNN model, when driven by assimilated meteorology at 2 degrees x 2.5 degrees spatial resolution, outperforms the Wesely scheme as implemented in the GEOS-Chem model. With more available training data from other climate and ecological zones, this methodology could yield a generalizable DNN suitable for global models. Plain Language Summary Ozone in the lower atmosphere is a toxic pollutant and greenhouse gas. In this work, we use a machine learning technique known as deep learning, to simulate the loss of ozone to Earth's surface. We show that our deep learning simulation of this loss process outperforms existing traditional models and demonstrate the opportunity for using machine learning to improve our understanding of the chemical composition of the atmosphere.Peer reviewe

    Movement patterns of forest elephants (Loxodonta cyclotis Matschie, 1900) in the Odzala-Kokoua National Park, Republic of Congo

    Full text link
    [Otros] Les éléphants de forêt d'Afrique (Loxodonta cyclotis Matschie, 1900) sont des ingénieurs en écologie qui jouent un rôle fondamental dans la dynamique de la végétation. L'espèce constitue une préoccupation immédiate pour la conservation, mais elle est relativement peu étudiée. Pour combler cette lacune de connaissances, nous avons étudié les facteurs de déplacements quotidiens (déplacements linéaires) des éléphants de forêt ¿ caractérisés par un ensemble de variables géographiques, météorologiques et anthropiques ¿ dans le Parc National d'Odzala¿Kokoua, en République du Congo. Concrètement, nous avons utilisé la forêt d'arbres décisionnels pour modéliser et démêler les principaux facteurs environnementaux régissant les déplacements de six éléphants de forêt, équipés de colliers GPS et suivis pendant 16 mois. Les résultats ont montré que les femelles se déplaçaient plus loin que les mâles, tandis que la présence de routes ou d¿établissements humains perturbait le comportement des éléphants, ce qui accélérait les déplacements. Les éléphants de forêt se déplaçaient plus rapidement dans les cours d¿eau et dans les forêts dont le sous¿bois était dominé par les forêts de Marantaceae et les bais, mais se déplaçait plus lentement dans les savanes. Enfin, les zones inondables ¿ characterisées par l¿altitude et les précipitations accumulées ¿ et les températures plus élevées empêchaient des déplacements plus longs. Nous espérons que ces résultats amélioreront les connaissances sur les mouvements des espèces à travers différents habitats, ce qui serait bénéfique pour la gestion de leur conservation.[EN] African forest elephants (Loxodonta cyclotis Matschie, 1900) are ecological engineers that play a fundamental role in vegetation dynamics. The species is of immediate conservation concern, yet it is relatively understudied. To narrow this knowledge gap, we studied the drivers of daily movement patterns (linear displacements) of forest elephants¿characterised by a set of geographical, meteorological and anthropogenic variables¿in the Odzala¿Kokoua National Park, Republic of Congo. Explicitly, we used conditional random forest to model and disentangle the main environmental factors governing the displacements of six forest elephants,fitted with GPS collars and tracked over 16 months. Results indicated that females moved further distances than males, while the presence of roads or human settlements disrupted elephant behaviour resulting in faster displacements. Forest elephants moved faster along watercourses and through forest with understory dominated by Marantaceae forests and bais, but moved slower in savannahs. Finally, flood¿prone areas¿described by elevation and accumulated precipitation¿and higher temperatures prevented longer displacements. We expect these results to improve the knowledge on the species movements through different habitats, which would benefit its conservation management.The fieldwork was financed by African Parks. We are grateful to the Congolese wildlife authorities (Ministère de l'Économie Forestière et de l'Environnement) for the permission to carry out this study, and we are deeply indebted to the director of the OKNP and to the conservation, wildlife monitoring and research manager, Erik Marav, respectively, for their continued support during our study. We are particularly grateful to Dr. Mike Kock, veterinarian, for collaring the elephants and to the field tracking team. We are also grateful to Séan Cahill for the useful comments and English correction that helped improve this manuscript. The authors of the present study certify that they have no affiliations with or involvement in any organisation or entity with any financial or nonfinancial interest in the subject matter or materials discussed in this manuscript.Molina-Vacas, G.; Muñoz-Mas, R.; Martinez-Capel, F.; Rodriguez-Teijeiro, JD.; Le Fohlic, G. (2019). Movement patterns of forest elephants (Loxodonta cyclotis Matschie, 1900) in the Odzala-Kokoua National Park, Republic of Congo. African Journal of Ecology. 58:23-33. https://doi.org/10.1111/aje.12695S233358Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054Bermejo, M. (1999). Status and conservation of primates in Odzala National Park, Republic of the Congo. Oryx, 33(4), 323-331. doi:10.1046/j.1365-3008.1999.00081.xBirkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M., & Slotow, R. (2012). Animal Perception of Seasonal Thresholds: Changes in Elephant Movement in Relation to Rainfall Patterns. PLoS ONE, 7(6), e38363. doi:10.1371/journal.pone.0038363Blake, S., Deem, S. L., Strindberg, S., Maisels, F., Momont, L., Isia, I.-B., … Kock, M. D. (2008). Roadless Wilderness Area Determines Forest Elephant Movements in the Congo Basin. PLoS ONE, 3(10), e3546. doi:10.1371/journal.pone.0003546Blake, S., Douglas-Hamilton, I., & Karesh, W. B. (2001). GPS telemetry of forest elephants in Central Africa: results of a preliminary study. African Journal of Ecology, 39(2), 178-186. doi:10.1046/j.1365-2028.2001.00296.xBlake, S., Strindberg, S., Boudjan, P., Makombo, C., Bila-Isia, I., Ilambu, O., … Maisels, F. (2007). Forest Elephant Crisis in the Congo Basin. PLoS Biology, 5(4), e111. doi:10.1371/journal.pbio.0050111Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K., & Douglas-Hamilton, I. (2014). Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Movement Ecology, 2(1). doi:10.1186/2051-3933-2-2Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324Breuer, T., Maisels, F., & Fishlock, V. (2016). The consequences of poaching and anthropogenic change for forest elephants. Conservation Biology, 30(5), 1019-1026. doi:10.1111/cobi.12679Buij, R., McShea, W. J., Campbell, P., Lee, M. E., Dallmeier, F., Guimondou, S., … Alonso, A. (2007). Patch-occupancy models indicate human activity as major determinant of forest elephant Loxodonta cyclotis seasonal distribution in an industrial corridor in Gabon. Biological Conservation, 135(2), 189-201. doi:10.1016/j.biocon.2006.10.028CLARK, C. J., POULSEN, J. R., MALONGA, R., & ELKAN, Jr., P. W. (2009). Logging Concessions Can Extend the Conservation Estate for Central African Tropical Forests. Conservation Biology, 23(5), 1281-1293. doi:10.1111/j.1523-1739.2009.01243.xCrooks, K. R., Burdett, C. L., Theobald, D. M., King, S. R. B., Di Marco, M., Rondinini, C., & Boitani, L. (2017). Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proceedings of the National Academy of Sciences, 114(29), 7635-7640. doi:10.1073/pnas.1705769114De Beer, Y., & van Aarde, R. J. (2008). Do landscape heterogeneity and water distribution explain aspects of elephant home range in southern Africa’s arid savannas? Journal of Arid Environments, 72(11), 2017-2025. doi:10.1016/j.jaridenv.2008.07.002De Knegt, H. J., van Langevelde, F., Skidmore, A. K., Delsink, A., Slotow, R., Henley, S., … Prins, H. H. T. (2010). The spatial scaling of habitat selection by African elephants. Journal of Animal Ecology, 80(1), 270-281. doi:10.1111/j.1365-2656.2010.01764.xDi Marco, M., Buchanan, G. M., Szantoi, Z., Holmgren, M., Grottolo Marasini, G., Gross, D., … Rondinini, C. (2014). Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1643), 20130198. doi:10.1098/rstb.2013.0198Vladimir, D., & Jon, H. (2018). Mammalwatching: A new source of support for science and conservation. International Journal of Biodiversity and Conservation, 10(4), 154-160. doi:10.5897/ijbc2017.1162Elliot, N. B., Cushman, S. A., Loveridge, A. J., Mtare, G., & Macdonald, D. W. (2014). Movements vary according to dispersal stage, group size, and rainfall: the case of the African lion. Ecology, 95(10), 2860-2869. doi:10.1890/13-1793.1Fishlock, V., & Lee, P. C. (2013). Forest elephants: fission–fusion and social arenas. Animal Behaviour, 85(2), 357-363. doi:10.1016/j.anbehav.2012.11.004Friedman, J. H. (2001). machine. The Annals of Statistics, 29(5), 1189-1232. doi:10.1214/aos/1013203451GOBUSH, K. S., MUTAYOBA, B. M., & WASSER, S. K. (2008). Long-Term Impacts of Poaching on Relatedness, Stress Physiology, and Reproductive Output of Adult Female African Elephants. Conservation Biology, 22(6), 1590-1599. doi:10.1111/j.1523-1739.2008.01035.xGoldenberg, S. Z., Douglas-Hamilton, I., Daballen, D., & Wittemyer, G. (2016). Challenges of using behavior to monitor anthropogenic impacts on wildlife: a case study on illegal killing of African elephants. Animal Conservation, 20(3), 215-224. doi:10.1111/acv.12309Goldenberg, S. Z., Douglas-Hamilton, I., & Wittemyer, G. (2018). Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proceedings of the Royal Society B: Biological Sciences, 285(1879), 20180286. doi:10.1098/rspb.2018.0286Gonzalez-Voyer, A., González-Suárez, M., Vilà, C., & Revilla, E. (2016). Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution, 70(6), 1364-1375. doi:10.1111/evo.12943Graham, M. D., Douglas-Hamilton, I., Adams, W. M., & Lee, P. C. (2009). The movement of African elephants in a human-dominated land-use mosaic. Animal Conservation, 12(5), 445-455. doi:10.1111/j.1469-1795.2009.00272.xHarris, G., Thirgood, S., Hopcraft, J., Cromsight, J., & Berger, J. (2009). Global decline in aggregated migrations of large terrestrial mammals. Endangered Species Research, 7, 55-76. doi:10.3354/esr00173Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651-674. doi:10.1198/106186006x133933Johnson, D. D. P., Kays, R., Blackwell, P. G., & Macdonald, D. W. (2002). Does the resource dispersion hypothesis explain group living? Trends in Ecology & Evolution, 17(12), 563-570. doi:10.1016/s0169-5347(02)02619-8Kolowski, J. M., Blake, S., Kock, M. D., Lee, M. E., Henderson, A., Honorez, A., & Alonso, A. (2010). Movements of four forest elephants in an oil concession in Gabon, Central Africa. African Journal of Ecology, 48(4), 1134-1138. doi:10.1111/j.1365-2028.2009.01204.xLAURANCE, W. F., CROES, B. M., TCHIGNOUMBA, L., LAHM, S. A., ALONSO, A., LEE, M. E., … ONDZEANO, C. (2006). Impacts of Roads and Hunting on Central African Rainforest Mammals. Conservation Biology, 20(4), 1251-1261. doi:10.1111/j.1523-1739.2006.00420.xLoarie, S. R., Aarde, R. J. V., & Pimm, S. L. (2009). Fences and artificial water affect African savannah elephant movement patterns. Biological Conservation, 142(12), 3086-3098. doi:10.1016/j.biocon.2009.08.008Maisels, F., Strindberg, S., Blake, S., Wittemyer, G., Hart, J., Williamson, E. A., … Amsini, F. (2013). Devastating Decline of Forest Elephants in Central Africa. PLoS ONE, 8(3), e59469. doi:10.1371/journal.pone.0059469May, R., Dandy, G., & Maier, H. (2011). Review of Input Variable Selection Methods for Artificial Neural Networks. Artificial Neural Networks - Methodological Advances and Biomedical Applications. doi:10.5772/16004Metsio Sienne, J., Buchwald, R., & Wittemyer, G. (2013). Differentiation in mineral constituents in elephant selected versus unselected water and soil resources at Central African bais (forest clearings). European Journal of Wildlife Research, 60(2), 377-382. doi:10.1007/s10344-013-0781-0Mills, E. C., Poulsen, J. R., Fay, J. M., Morkel, P., Clark, C. J., Meier, A., … White, L. J. T. (2018). Forest elephant movement and habitat use in a tropical forest-grassland mosaic in Gabon. PLOS ONE, 13(7), e0199387. doi:10.1371/journal.pone.0199387Muñoz-Mas, R., Fukuda, S., Pórtoles, J., & Martínez-Capel, F. (2018). Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics, 43, 24-37. doi:10.1016/j.ecoinf.2017.10.008Muñoz-Mas, R., Fukuda, S., Vezza, P., & Martínez-Capel, F. (2016). Comparing four methods for decision-tree induction: A case study on the invasive Iberian gudgeon ( Gobio lozanoi ; Doadrio and Madeira, 2004). Ecological Informatics, 34, 22-34. doi:10.1016/j.ecoinf.2016.04.011Poulsen, J. R., Koerner, S. E., Moore, S., Medjibe, V. P., Blake, S., Clark, C. J., … White, L. J. T. (2017). Poaching empties critical Central African wilderness of forest elephants. Current Biology, 27(4), R134-R135. doi:10.1016/j.cub.2017.01.023Poulsen, J. R., Rosin, C., Meier, A., Mills, E., Nuñez, C. L., Koerner, S. E., … Sowers, M. (2018). Ecological consequences of forest elephant declines for Afrotropical forests. Conservation Biology, 32(3), 559-567. doi:10.1111/cobi.13035Ripple, W. J., Abernethy, K., Betts, M. G., Chapron, G., Dirzo, R., Galetti, M., … Young, H. (2016). Bushmeat hunting and extinction risk to the world’s mammals. Royal Society Open Science, 3(10), 160498. doi:10.1098/rsos.160498Sánchez‐Montoya, M. M., Moleón, M., Sánchez‐Zapata, J. A., & Tockner, K. (2016). Dry riverbeds: corridors for terrestrial vertebrates. Ecosphere, 7(10). doi:10.1002/ecs2.1508Schuttler, S. G., Blake, S., & Eggert, L. S. (2012). Movement Patterns and Spatial Relationships Among African Forest Elephants. Biotropica, 44(4), 445-448. doi:10.1111/j.1744-7429.2012.00889.xSHORT, J. C. (1983). Density and seasonal movements of forest elephant (Loxodonta africana cyclotis, Matschie) in Bia National Park, Ghana. African Journal of Ecology, 21(3), 175-184. doi:10.1111/j.1365-2028.1983.tb01179.xSnyman, S. L. (2012). The role of tourism employment in poverty reduction and community perceptions of conservation and tourism in southern Africa. Journal of Sustainable Tourism, 20(3), 395-416. doi:10.1080/09669582.2012.657202Stokes, E. J., Strindberg, S., Bakabana, P. C., Elkan, P. W., Iyenguet, F. C., Madzoké, B., … Rainey, H. J. (2010). Monitoring Great Ape and Elephant Abundance at Large Spatial Scales: Measuring Effectiveness of a Conservation Landscape. PLoS ONE, 5(4), e10294. doi:10.1371/journal.pone.0010294Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1). doi:10.1186/1471-2105-8-25Strobl, C., Hothorn, T., & Zeileis, A. (2009). Party on! The R Journal, 1(2), 14. doi:10.32614/rj-2009-013Turkalo, A. K. (2013). Estimating forest elephant age. African Journal of Ecology, 51(3), 501-505. doi:10.1111/aje.12087Turkalo, A. K., Wrege, P. H., & Wittemyer, G. (2013). Long-Term Monitoring of Dzanga Bai Forest Elephants: Forest Clearing Use Patterns. PLoS ONE, 8(12), e85154. doi:10.1371/journal.pone.0085154Wasser, S. K., Brown, L., Mailand, C., Mondol, S., Clark, W., Laurie, C., & Weir, B. S. (2015). Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science, 349(6243), 84-87. doi:10.1126/science.aaa2457WILLIAMS, T. M. (1990). Heat transfer in elephants: thermal partitioning based on skin temperature profiles. Journal of Zoology, 222(2), 235-245. doi:10.1111/j.1469-7998.1990.tb05674.xWittemyer, G., Northrup, J. M., Blanc, J., Douglas-Hamilton, I., Omondi, P., & Burnham, K. P. (2014). Illegal killing for ivory drives global decline in African elephants. Proceedings of the National Academy of Sciences, 111(36), 13117-13121. doi:10.1073/pnas.1403984111WREGE, P. H., ROWLAND, E. D., THOMPSON, B. G., & BATRUCH, N. (2010). Use of Acoustic Tools to Reveal Otherwise Cryptic Responses of Forest Elephants to Oil Exploration. Conservation Biology, 24(6), 1578-1585. doi:10.1111/j.1523-1739.2010.01559.xYoung, K. D., Ferreira, S. M., & Van Aarde, R. J. (2009). Elephant spatial use in wet and dry savannas of southern Africa. Journal of Zoology, 278(3), 189-205. doi:10.1111/j.1469-7998.2009.00568.
    corecore