152 research outputs found

    Mitochondrial glycolysis in a major lineage of eukaryotes

    Get PDF
    This is the author accepted manuscript. The final version is freely available from OUP via the DOI in this recordThe establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by the bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.TAW is supported by a Royal Society University Research Fellowship and NERC grant NE/P00251X/1. Work in the lab of MvdG was supported by Wellcome Trust grant 078566/A/05/Z. PGK wishes to acknowledge support by the German Research Foundation (DFG, grant KR 1661/6-1) and the Gordon and Betty Moore Foundation GBMF 4966 (grant DiaEdit)

    Is the Unitarity of the quark-mixing-CKM-matrix violated in neutron ÎČ\beta-decay?

    Full text link
    We report on a new measurement of neutron ÎČ\beta-decay asymmetry. From the result \linebreak A0A_0 = -0.1189(7), we derive the ratio of the axial vector to the vector coupling constant λ\lambda = gA/gV{\it g_A/g_V} = -1.2739(19). When included in the world average for the neutron lifetime τ\tau = 885.7(7)s, this gives the first element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix VudV_{ud} . With this value and the Particle Data Group values for VusV_{us} and VubV_{ub}, we find a deviation from the unitarity condition for the first row of the CKM matrix of Δ\Delta = 0.0083(28), which is 3.0 times the stated error

    Sharpening Low-Energy, Standard-Model Tests via Correlation Coefficients in Neutron Beta-Decay

    Get PDF
    The correlation coefficients a, A, and B in neutron beta-decay are proportional to the ratio of the axial-vector to vector weak coupling constants, g_A/g_V, to leading recoil order. With the advent of the next generation of neutron decay experiments, the recoil-order corrections to these expressions become experimentally accessible, admitting a plurality of Standard Model (SM) tests. The measurement of both a and A, e.g., allows one to test the conserved-vector-current (CVC) hypothesis and to search for second-class currents (SCC) independently. The anticipated precision of these measurements suggests that the bounds on CVC violation and SCC from studies of nuclear beta-decay can be qualitatively bettered. Departures from SM expectations can be interpreted as evidence for non-V-A currents.Comment: 4 pages, REVTeX, intro. broadened, typos fixed, to appear in PR

    A Hypothesis for the Evolution of Nuclear-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase Genes in “Chromalveolate” Members

    Get PDF
    Eukaryotes bearing red alga-derived plastids — photosynthetic alveolates (dinoflagellates plus the apicomplexan Toxoplasma gondii plus the chromerid Chromera velia), photosynthetic stramenopiles, haptophytes, and cryptophytes — possess unique plastid-targeted glyceraldehyde-3-phosphate dehydrogenases (henceforth designated as “GapC1”). Pioneering phylogenetic studies have indicated a single origin of the GapC1 enzymes in eukaryotic evolution, but there are two potential idiosyncrasies in the GapC1 phylogeny: Firstly, the GapC1 tree topology is apparently inconsistent with the organismal relationship among the “GapC1-containing” groups. Secondly, four stramenopile GapC1 homologues are consistently paraphyletic in previously published studies, although these organisms have been widely accepted as monophyletic. For a closer examination of the above issues, in this study GapC1 gene sampling was improved by determining/identifying nine stramenopile and two cryptophyte genes. Phylogenetic analyses of our GapC1 dataset, which is particularly rich in the stramenopile homologues, prompt us to propose a new scenario that assumes multiple, lateral GapC1 gene transfer events to explain the incongruity between the GapC1 phylogeny and the organismal relationships amongst the “GapC1-containing” groups. Under our new scenario, GapC1 genes uniquely found in photosynthetic alveolates, photosynthetic stramenopiles, haptophytes, and cryptopyhytes are not necessarily a character vertically inherited from a common ancestor

    Unusually thick dinosaur eggshell fragments from the Spanish Late Cretaceous

    Full text link
    [EN] Fieldwork carried out recently in the southeastern branch of the Iberian Range (Valencia Province, Spain) has led to the collection of a large volume of dinosaur eggshell fragments of unusual thickness. These specimens, up to 4.9 mm thick, were recovered from palustrine grey marls of the upper Campanian-lower Maastrichtian Sierra Perenchiza Formation, which comprises a wetland paleoenvironment deposit. These eggshell fragments have a characteristic compactituberculate ornamentation, dinosauroid-spherulitic organisation, and exhibit a complex canaliculate respiratory system. The external tuberculate surface of the shell as well as the internal microstructure enable referral to Megaloolithus aff. siruguei, the most common megaloolithid oospecies known from the Iberian Peninsula and southern France. The biostratigraphic range of M. siruguei matches the temporal distribution of titanosaurid dinosaurs across the Iberian Range, tentatively considered to be potential producers.This work was supported by the Ministerio de Economia y Competitividad of Spain [Secretaria de Estado de Investigacion, Desarrollo e Innovacion, projects CGL2013-47521-P and CGL2014-53548-P]Company RodrĂ­guez, J. (2017). Unusually thick dinosaur eggshell fragments from the Spanish Late Cretaceous. Historical Biology (Online). 31(2):203-210. https://doi.org/10.1080/08912963.2017.1357717S203210312Allain, R., & Suberbiola, X. P. (2003). Dinosaurs of France. Comptes Rendus Palevol, 2(1), 27-44. doi:10.1016/s1631-0683(03)00002-2Bravo, A. M., & Gaete, R. (2014). Titanosaur eggshells from the Tremp Formation (Upper Cretaceous, Southern Pyrenees, Spain). Historical Biology, 27(8), 1079-1089. doi:10.1080/08912963.2014.934231Canudo, J. I., Oms, O., Vila, B., Galobart, À., Fondevilla, V., PuĂ©rtolas-Pascual, E., 
 Blanco, A. (2016). The upper Maastrichtian dinosaur fossil record from the southern Pyrenees and its contribution to the topic of the Cretaceous–Palaeogene mass extinction event. Cretaceous Research, 57, 540-551. doi:10.1016/j.cretres.2015.06.013Cruzado-Caballero, P., Ruiz-Omeñaca, J. I., Gaete, R., Riera, V., Oms, O., & Canudo, J. I. (2013). A new hadrosaurid dentary from the latest Maastrichtian of the Pyrenees (north Spain) and the high diversity of the duck-billed dinosaurs of the Ibero-Armorican Realm at the very end of the Cretaceous. Historical Biology, 26(5), 619-630. doi:10.1080/08912963.2013.822867Chiappe, L. M., Coria, R. A., Dingus, L., Jackson, F., Chinsamy, A., & Fox, M. (1998). Sauropod dinosaur embryos from the Late Cretaceous of Patagonia. Nature, 396(6708), 258-261. doi:10.1038/24370Company J. 2004. Vertebrados continentales del CretĂĄcico superior (Campaniense-Maastrichtiense) de Valencia [PhD dissertation]. Valencia: Universidad de Valencia.Company, J., & Szentesi, Z. (2012). Amphibians from the Late Cretaceous Sierra Perenchiza Formation of the Chera Basin, Valencia Province, Spain. Cretaceous Research, 37, 240-245. doi:10.1016/j.cretres.2012.04.003Csiki-Sava, Z., Buffetaut, E., Ɛsi, A., Pereda-Suberbiola, X., & Brusatte, S. L. (2015). Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys, 469, 1-161. doi:10.3897/zookeys.469.8439Erben, H. K., Hoefs, J., & Wedepohl, K. H. (1979). Paleobiological and isotopic studies of eggshells from a declining dinosaur species. Paleobiology, 5(4), 380-414. doi:10.1017/s0094837300016900GarcĂ­a, R. A. (2007). An «egg-tooth»–like structure in titanosaurian sauropod embryos. Journal of Vertebrate Paleontology, 27(1), 247-252. doi:10.1671/0272-4634(2007)27[247:aesits]2.0.co;2Garcia, G., & Vianey-Liaud, M. (2001). Dinosaur eggshells as biochronological markers in Upper Cretaceous continental deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1-2), 153-164. doi:10.1016/s0031-0182(01)00215-2Grellet-Tinner, G., Chiappe, L. M., & Coria, R. (2004). Eggs of titanosaurid sauropods from the Upper Cretaceous of Auca Mahuevo (Argentina). Canadian Journal of Earth Sciences, 41(8), 949-960. doi:10.1139/e04-049Grigorescu, D., Garcia, G., Csiki, Z., Codrea, V., & Bojar, A.-V. (2010). Uppermost Cretaceous megaloolithid eggs from the HaĆŁeg Basin, Romania, associated with hadrosaur hatchlings: Search for explanation. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(3-4), 360-374. doi:10.1016/j.palaeo.2010.03.031Izquierdo LA, Montero D, PĂ©rez G, UriĂ©n V, Meijide M. 2001. Macroestructura de huevos de dinosaurios en el CretĂĄcico superior de “La Rosaca” (Burgos, España). Actas de las I Jornadas Internacionales Sobre PaleontologĂ­a de Dinosaurios y su Entorno. Ed. Colectivo ArqueolĂłgico y PaleontolĂłgico de Salas. Salas de los Infantes. p. 389–395.Jackson FD. 2007. Titanosaur reproductive biology: comparison of the Auca Mahuevo Titanosaur nesting locality (Argentina), to the Pinyes Megaloolithus nesting locality (Spain) [PhD dissertation]. Bozeman (MT): Montana State University.Jackson, F. D., Garrido, A., Schmitt, J. G., Chiappe, L. M., Dingus, L., & Loope, D. B. (2004). Abnormal, multilayered titanosaur (Dinosauria: Sauropoda) eggs from in situ clutches at the Auca Mahuevo locality, Neuquen Province, Argentina. Journal of Vertebrate Paleontology, 24(4), 913-922. doi:10.1671/0272-4634(2004)024[0913:amtdse]2.0.co;2Jackson, F. D., Varricchio, D. J., Jackson, R. A., Vila, B., & Chiappe, L. M. (2008). Comparison of water vapor conductance in a titanosaur egg from the Upper Cretaceous of Argentina and a Megaloolithus siruguei egg from Spain. Paleobiology, 34(2), 229-246. doi:10.1666/0094-8373(2008)034[0229:cowvci]2.0.co;2LĂłpez-Martı́nez, N., Moratalla, J. J., & Sanz, J. L. (2000). Dinosaurs nesting on tidal flats. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(1-2), 153-163. doi:10.1016/s0031-0182(00)00063-8Mohabey, D. M. (1998). Systematics of Indian Upper Cretaceous dinosaur and chelonian eggshells. Journal of Vertebrate Paleontology, 18(2), 348-362. doi:10.1080/02724634.1998.10011063Moratalla JJ. 1993. Restos indirectos de dinosaurios del registro español: paleoicnologĂ­a de la Cuenca de (JurĂĄsico superior-CretĂĄcico inferior) y paleoologĂ­a del CretĂĄcico superior [PhD dissertation]. Madrid: Universidad AutĂłnoma de Madrid.Moreno-Azanza, M., Bauluz, B., Canudo, J. I., Gasca, J. M., & Torcida FernĂĄndez-Baldor, F. (2016). Combined Use of Electron and Light Microscopy Techniques Reveals False Secondary Shell Units in Megaloolithidae Eggshells. PLOS ONE, 11(5), e0153026. doi:10.1371/journal.pone.0153026Moreno-Azanza, M., Bauluz, B., Canudo, J. I., PuĂ©rtolas-Pascual, E., & SellĂ©s, A. G. (2013). A re-evaluation of aff. Megaloolithidae eggshell fragments from the uppermost Cretaceous of the Pyrenees and implications for crocodylomorph eggshell structure. Historical Biology, 26(2), 195-205. doi:10.1080/08912963.2013.786067Oms, O., DinarĂšs-Turell, J., Vicens, E., Estrada, R., Vila, B., Galobart, À., & Bravo, A. M. (2007). Integrated stratigraphy from the Vallcebre Basin (southeastern Pyrenees, Spain): New insights on the continental Cretaceous−Tertiary transition in southwest Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 255(1-2), 35-47. doi:10.1016/j.palaeo.2007.02.039Ortega, F., Bardet, N., Barroso-Barcenilla, F., Callapez, P. M., Cambra-Moo, O., Daviero- GĂłmez, V., 
 Sanz, J. L. (2015). The biota of the Upper Cretaceous site of «Lo Hueco» (Cuenca, Spain). Journal of Iberian Geology, 41(1). doi:10.5209/rev_jige.2015.v41.n1.48657Rasskin-Gutman, D., Elez, J., Esteve-Altava, B., & LĂłpez-MartĂ­nez, N. (2020). Reconstruction of the internal structure of the pore system of a complex dinosaur eggshell (Megaloolithus siruguei). Spanish Journal of Palaeontology, 28(1), 61. doi:10.7203/sjp.28.1.17831Riera, V., Oms, O., Gaete, R., & Galobart, À. (2009). The end-Cretaceous dinosaur succession in Europe: The Tremp Basin record (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 283(3-4), 160-171. doi:10.1016/j.palaeo.2009.09.018SellĂ©s, A. G., Bravo, A. M., DelclĂČs, X., Colombo, F., MartĂ­, X., Ortega-Blanco, J., 
 Galobart, À. (2013). Dinosaur eggs in the Upper Cretaceous of the Coll de NargĂł area, Lleida Province, south-central Pyrenees, Spain: Oodiversity, biostratigraphy and their implications. Cretaceous Research, 40, 10-20. doi:10.1016/j.cretres.2012.05.004Tanaka, K., & Zelenitsky, D. K. (2014). Comparisons between experimental and morphometric water vapor conductance in the eggs of extant birds and crocodiles: implications for predicting nest type in dinosaurs. Canadian Journal of Zoology, 92(12), 1049-1058. doi:10.1139/cjz-2014-0078Vianey-Liaud, M., Khosla, A., & Garcia, G. (2003). Relationships between European and Indian dinosaur eggs and eggshells of the oofamily Megaloolithidae. Journal of Vertebrate Paleontology, 23(3), 575-585. doi:10.1671/0272-4634(2003)023[0575:rbeaid]2.0.co;2Vianey-Liaud, M., & Lopez-Martinez, N. (1997). Late Cretaceous dinosaur eggshells from the Tremp Basin, southern Pyrenees, Lleida, Spain. Journal of Paleontology, 71(6), 1157-1171. doi:10.1017/s002233600003609xVila, B., Galobart, À., Canudo, J. I., Le Loeuff, J., DinarĂšs-Turell, J., Riera, V., 
 Gaete, R. (2012). The diversity of sauropod dinosaurs and their first taxonomic succession from the latest Cretaceous of southwestern Europe: Clues to demise and extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 350-352, 19-38. doi:10.1016/j.palaeo.2012.06.008(2010). Lethaia, 43(2). doi:10.1111/let.2010.43.issue-2Vila, B., Jackson, F. D., Fortuny, J., SellĂ©s, A. G., & Galobart, À. (2010). 3-D Modelling of Megaloolithid Clutches: Insights about Nest Construction and Dinosaur Behaviour. PLoS ONE, 5(5), e10362. doi:10.1371/journal.pone.0010362Vila, B., Riera, V., Bravo, A. M., Oms, O., Vicens, E., Estrada, R., & Galobart, À. (2011). The chronology of dinosaur oospecies in south-western Europe: Refinements from the Maastrichtian succession of the eastern Pyrenees. Cretaceous Research, 32(3), 378-386. doi:10.1016/j.cretres.2011.01.009Vila, B., SellĂ©s, A. G., & Brusatte, S. L. (2016). Diversity and faunal changes in the latest Cretaceous dinosaur communities of southwestern Europe. Cretaceous Research, 57, 552-564. doi:10.1016/j.cretres.2015.07.003Vissers, R. L. M., & Meijer, P. T. (2012). Iberian plate kinematics and Alpine collision in the Pyrenees. Earth-Science Reviews, 114(1-2), 61-83. doi:10.1016/j.earscirev.2012.05.001Wright, V. P., & Platt, N. H. (1995). Seasonal wetland carbonate sequences and dynamic catenas: a re-appraisal of palustrine limestones. Sedimentary Geology, 99(2), 65-71. doi:10.1016/0037-0738(95)00080-

    Low mass dimuon production in proton and ion induced interactions at SPS

    Get PDF
    The low mass dimuon spectra collected in p-U collisions by the NA38 experiment significantly exceeds the total cross section expected from previous analysis, done by other experiments. The `excess' events have a harder \pt\ distribution than the muon pairs from η\eta and ω\omega Dalitz decays, expected to dominate the mass window 0.4--0.65~GeV/c2c^2. We conjecture that the excess events might be due to \qqbar\ annihilations, negligible at low \pt\ but made visible by the \mt\ cut applied in the NA38 data. Taking this assumption to parametrise the p-U spectra, we proceed with the analysis of the S-Cu, S-U and Pb-Pb data, collected by the NA38 and NA50 experiments, where we find that the measured mass spectra does not seem to exceed the expected low mass `cocktail' by more than 20\,\%

    Low mass dimuon production in proton and ion induced interactions at SPS

    Get PDF
    The low mass dimuon spectra collected in pp-U collisions by the NA38 experiment significantly exceeds the total cross section expected from previous analysis, done by other experiments. The 'excess' events have a harder pTp_{T} distribution than the muon pairs from η\eta and ω\omega Dalitz decays, expected to dominate the mass window 0.4—0.65~GeV/c2c^2. We conjecture that the excess events might be due to qqˉq\bar{q} annihilations, negligible at low pTp_{T} but made visible by the mTm_{T} cut applied in the NA38 data. Taking this assumption to parametrise the pp-U spectra, we proceed with the analysis of the S-Cu, S-U and Pb-Pb data, collected by the NA38 and NA50 experiments, where we find that the measured mass spectra does not seem to exceed the expected low mass `cocktail' by more than 20%
    • 

    corecore