7 research outputs found

    Characterization of dentine to assess bond strength of dental composites

    Get PDF
    This study was performed to develop alternating dentine adhesion models that could help in the evaluation of a self-bonding dental composite. For this purpose dentine from human and ivory was characterized chemically and microscopically before and after acid etching using Raman and SEM. Mechanical properties of dentine were determined using 3 point bend test. Composite bonding to dentine, with and without use of acid pre-treatment and/or the adhesive, were assessed using a shear bond test. Furthermore, micro gap formation after restoration of 3 mm diameter cavities in dentine was assessed by SEM. Initial hydroxyapatite level in ivory was half that in human dentine. Surface hydroxyapatites decreased by approximately half with every 23 s of acid etch. The human dentine strength (56 MPa) was approximately double that of ivory, while the modulus was almost comparable to that of ivory. With adhesive use, average shear bond strengths were 30 and 26 MPa with and without acid etching. With no adhesive, average bond strength was 6 MPa for conventional composites. This, however, increased to 14 MPa with a commercial flowable "self-bonding" composite or upon addition of low levels of an acidic monomer to the experimental composite. The acidic monomer additionally reduced micro-gap formation with the experimental composite. Improved bonding and mechanical properties should reduce composite failures due to recurrent caries or fracture respectively

    Hybrid Fuzzy Logic Scheme for Efficient Channel Utilization in Cognitive Radio Networks

    Get PDF
    © 2013 IEEE. The proliferation of mobile devices and the heterogeneous environment of wireless communications have increased the need for additional spectrum for data transmission. It is not possible to altogether allocate a new band to all networks, which is why fully efficient use of the already available spectrum is the demand of the day. Cognitive radio (CR) technology is a promising solution for efficient spectrum utilization, where CR devices, or secondary users (SUs), can opportunistically exploit white spaces available in the licensed channels. SUs have to immediately vacate the licensed channel and switch to another available channel when they detect the arrival of the incumbent primary user. However, performance for the SU severely degrades if successive channel switching happens. Moreover, taking the channel-switching decisions based on crisp logic is not a suitable approach in the brain-empowered CR networks (CRNs) where sensing information is not only imprecise and inaccurate but also involves a major uncertainty factor. In this paper, we propose a fuzzy logic-based decision support system (FLB-DSS) that jointly deals with channel selection and channel switching to enhance the overall throughput of CRNs. The proposed scheme reduces the SU channel switching rate and makes channel selection more adaptable. The performance of the proposed scheme is evaluated using a Matlab simulator, and a comprehensive comparison study with a baseline scheme is presented. The simulation results are promising in terms of the throughput and the number of handoffs and making our proposed FLB-DSS a good candidate mechanism for SUs while making judicious decisions in the CR environment

    Socially and biologically inspired computing for self-organizing communications networks

    Get PDF
    The design and development of future communications networks call for a careful examination of biological and social systems. New technological developments like self-driving cars, wireless sensor networks, drones swarm, Internet of Things, Big Data, and Blockchain are promoting an integration process that will bring together all those technologies in a large-scale heterogeneous network. Most of the challenges related to these new developments cannot be faced using traditional approaches, and require to explore novel paradigms for building computational mechanisms that allow us to deal with the emergent complexity of these new applications. In this article, we show that it is possible to use biologically and socially inspired computing for designing and implementing self-organizing communication systems. We argue that an abstract analysis of biological and social phenomena can be made to develop computational models that provide a suitable conceptual framework for building new networking technologies: biologically inspired computing for achieving efficient and scalable networking under uncertain environments; socially inspired computing for increasing the capacity of a system for solving problems through collective actions. We aim to enhance the state-of-the-art of these approaches and encourage other researchers to use these models in their future work

    The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3

    Get PDF
    Abstract The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of  ℒ = 2 × 1034 cm-2 s-1 was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of  ℒ = 2 × 1034 cm-2 s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.</jats:p
    corecore