2,522 research outputs found

    Novel critical point drying (CPD) based preparation and transmission electron microscopy (TEM) imaging of protein specific molecularly imprinted polymers (HydroMIPs)

    Get PDF
    We report the transmission electron microscopy (TEM) imaging of a hydrogel-based molecularly imprinted polymer (HydroMIP) specific to the template molecule bovine haemoglobin (BHb). A novel critical point drying based sample preparation technique was employed to prepare the molecularly imprinted polymer (MIP) samples in a manner that would facilitate the use of TEM to image the imprinted cavities, and provide an appropriate degree of both magnification and resolution to image polymer architecture in the <10 nm range. For the first time, polymer structure has been detailed that clearly displays molecularly imprinted cavities, ranging from 5-50 nm in size, that correlate (in terms of size) with the protein molecule employed as the imprinting template. The modified critical point drying sample preparation technique used may potentially play a key role in the imaging of all molecularly imprinted polymers, particularly those prepared in the aqueous phase

    Tensile Strength of Geological Discontinuities Including Incipient Bedding, Rock Joints and Mineral Veins

    Get PDF
    Geological discontinuities have a controlling influence for many rock-engineering projects in terms of strength, deformability and permeability, but their characterisation is often very difficult. Whilst discontinuities are often modelled as lacking any strength, in many rock masses visible rock discontinuities are only incipient and have tensile strength that may approach and can even exceed that of the parent rock. This fact is of high importance for realistic rock mass characterisation but is generally ignored. It is argued that current ISRM and other standards for rock mass characterisation, as well as rock mass classification schemes such as RMR and Q, do not allow adequately for the incipient nature of many rock fractures or their geological variability and need to be revised, at least conceptually. This paper addresses the issue of the tensile strength of incipient discontinuities in rock and presents results from a laboratory test programme to quantify this parameter. Rock samples containing visible, natural incipient discontinuities including joints, bedding, and mineral veins have been tested in direct tension. It has been confirmed that such discontinuities can have high tensile strength, approaching that of the parent rock. Others are, of course, far weaker. The tested geological discontinuities all exhibited brittle failure at axial strain less than 0.5 % under direct tension conditions. Three factors contributing to the tensile strength of incipient rock discontinuities have been investigated and characterised. A distinction is made between sections of discontinuity that are only partially developed, sections of discontinuity that have been locally weathered leaving localised residual rock bridges and sections that have been ‘healed’ through secondary cementation. Tests on bedding surfaces within sandstone showed that tensile strength of adjacent incipient bedding can vary considerably. In this particular series of tests, values of tensile strength for bedding planes ranged from 32 to 88 % of the parent rock strength (intact without visible discontinuities), and this variability could be attributed to geological factors. Tests on incipient mineral veins also showed considerable scatter, the strength depending upon the geological nature of vein development as well as the presence of rock bridges. As might be anticipated, tensile strength of incipient rock joints decreases with degree of weathering as expressed in colour changes adjacent to rock bridges. Tensile strengths of rock bridges (lacking marked discolouration) were found to be similar to that of the parent rock. It is concluded that the degree of incipiency of rock discontinuities needs to be differentiated in the process of rock mass classification and engineering design and that this can best be done with reference to the tensile strength relative to that of the parent rock. It is argued that the science of rock mass characterisation may be advanced through better appreciation of geological history at a site thereby improving the process of prediction and extrapolating properties

    Water dispersible microbicidal cellulose acetate phthalate film

    Get PDF
    BACKGROUND: Cellulose acetate phthalate (CAP) has been used for several decades in the pharmaceutical industry for enteric film coating of oral tablets and capsules. Micronized CAP, available commercially as "Aquateric" and containing additional ingredients required for micronization, used for tablet coating from water dispersions, was shown to adsorb and inactivate the human immunodeficiency virus (HIV-1), herpesviruses (HSV) and other sexually transmitted disease (STD) pathogens. Earlier studies indicate that a gel formulation of micronized CAP has a potential as a topical microbicide for prevention of STDs including the acquired immunodeficiency syndrome (AIDS). The objective of endeavors described here was to develop a water dispersible CAP film amenable to inexpensive industrial mass production. METHODS: CAP and hydroxypropyl cellulose (HPC) were dissolved in different organic solvent mixtures, poured into dishes, and the solvents evaporated. Graded quantities of a resulting selected film were mixed for 5 min at 37°C with HIV-1, HSV and other STD pathogens, respectively. Residual infectivity of the treated viruses and bacteria was determined. RESULTS: The prerequisites for producing CAP films which are soft, flexible and dispersible in water, resulting in smooth gels, are combining CAP with HPC (other cellulose derivatives are unsuitable), and casting from organic solvent mixtures containing ≈50 to ≈65% ethanol (EtOH). The films are ≈100 µ thick and have a textured surface with alternating protrusions and depressions revealed by scanning electron microscopy. The films, before complete conversion into a gel, rapidly inactivated HIV-1 and HSV and reduced the infectivity of non-viral STD pathogens >1,000-fold. CONCLUSIONS: Soft pliable CAP-HPC composite films can be generated by casting from organic solvent mixtures containing EtOH. The films rapidly reduce the infectivity of several STD pathogens, including HIV-1. They are converted into gels and thus do not have to be removed following application and use. In addition to their potential as topical microbicides, the films have promise for mucosal delivery of pharmaceuticals other than CAP

    Phase Structure and Compactness

    Get PDF
    In order to study the influence of compactness on low-energy properties, we compare the phase structures of the compact and non-compact two-dimensional multi-frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and non-compact models coincides, but their low-energy behaviors differ. The critical frequency β2=8π\beta^2 = 8\pi at which the sine-Gordon model undergoes a topological phase transition is found to be unaffected by the compactness of the field since it is determined by high-energy scaling laws. However, the compact two-frequency sine-Gordon model has first and second order phase transitions determined by the low-energy scaling: we show that these are absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for publication in JHE

    Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells

    Get PDF
    The molecular nature of calcium (Ca2+)-dependent mechanisms and the ion channels having a major role in the apoptosis of cancer cells remain a subject of debate. Here, we show that the recently identified Orai1 protein represents the major molecular component of endogenous store-operated Ca2+ entry (SOCE) in human prostate cancer (PCa) cells, and constitutes the principal source of Ca2+ influx used by the cell to trigger apoptosis. The downregulation of Orai1, and consequently SOCE, protects the cells from diverse apoptosis-inducing pathways, such as those induced by thapsigargin (Tg), tumor necrosis factor α, and cisplatin/oxaliplatin. The transfection of functional Orai1 mutants, such as R91W, a selectivity mutant, and L273S, a coiled-coil mutant, into the cells significantly decreased both SOCE and the rate of Tg-induced apoptosis. This suggests that the functional coupling of STIM1 to Orai1, as well as Orai1 Ca2+-selectivity as a channel, is required for its pro-apoptotic effects. We have also shown that the apoptosis resistance of androgen-independent PCa cells is associated with the downregulation of Orai1 expression as well as SOCE. Orai1 rescue, following Orai1 transfection of steroid-deprived cells, re-established the store-operated channel current and restored the normal rate of apoptosis. Thus, Orai1 has a pivotal role in the triggering of apoptosis, irrespective of apoptosis-inducing stimuli, and in the establishment of an apoptosis-resistant phenotype in PCa cells

    Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.

    Get PDF
    BackgroundTo determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed.MethodsTen CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system.ResultsAn average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q &lt; 0.05, fold change &gt;2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value &lt;0.05, minimum inclusion level difference &gt;0.1).ConclusionThe RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis

    Dislocation-induced spatial ordering of InAs quantum dots: Effects on optical properties

    Get PDF
    Misfit dislocations were used to modify the surface morphology and to attain spatial ordering of quantum dots (QDs) by molecular beam epitaxy. Effects of anneal time and temperature on strain-relaxed InxGa1-xAs/GaAs layers and subsequent spatial ordering of InAs QDs were investigated. Photoluminescence (PL) and time-resolved PL was used to study the effects of increased QD positional ordering, increased QD uniformity, and their proximity to dislocation arrays on their optical properties. Narrower inhomogeneous PL broadening from the QDs ordered on dislocation arrays were observed, and differences in PL dynamics were found. (C) 2002 American Institute of Physics
    corecore