319 research outputs found

    Cerebral sparganosis in children: epidemiological, clinical and MR imaging characteristics

    Get PDF
    Background Cerebral sparganosis in children is an extremely rare disease of central nervous system, and caused by a tapeworm larva from the genus of Spirometra. In this study, we discussed and summarized epidemiological, clinical and MR imaging characteristics of eighteen children with cerebral sparganosis for a better diagnosis and treatment of the disease. Methods Eighteen children with cerebral sparganosis verified by pathology, serological tests and MR presentations were retrospectively investigated, and the epidemiologic and clinical characteristics of the disease were studied. Results Twenty-seven lesions were found in the eighteen children. Twelve lesions in twelve patients were solitary while the lesions in the rest six patients were multiple and asymmetrical. The positions of the lesions were: seven in frontal, eleven in parietal, four in temporal and two in occipital lobes, one in basal ganglia, one in cerebella hemisphere and one in pons. The lesions were presented as slight hypointensity on T1-weighted images but moderate hyperintensity on T2-weighted images with perilesional brain parenchyma edema. Enhanced MR scans by using Gadopentetic Acid Dimeglumine Salt were performed in the patients, and the images demonstrated abnormal enhancements with the patterns of a peripheral ring, or a tortuous beaded, or a serpiginous tubular shape. Follow-up MR scans were preformed for eight patients, and three out of the eight cases exposed migrations and changes in shapes of the lesion areas. Conclusions The MR presentations in our study in general were similar to those in previous studies. However serpiginous tubular and comma-shaped enhancements of lesions have not been previously reported. The enhanced MR imaging and follow-up MR scans with the positive results from serological tests are the most important methods for the clinical diagnosis of cerebral sparganosis in children

    Evaluation of the neonatal sequential organ failure assessment and mortality risk in neonates with respiratory distress syndrome: A retrospective cohort study

    Get PDF
    BackgroundRespiratory distress syndrome (RDS) is one of the leading causes of neonatal death in the neonatal intensive care unit (NICU). Previous studies have suggested that the development of neonatal RDS may be associated with inflammation and lead to organ dysfunction. The neonatal sequential organ failure assessment (nSOFA) scoring system is an operational definition of organ dysfunction, but whether it can be used to predict mortality in neonates RDS is unknown. The aim of this study was to clarify the performance of the nSOFA score in predicting mortality in patients with neonatal RDS, with the aim of broadening the clinical application of the nSOFA score.MethodsNeonates with RDS were identified from the Medical Information Mart for Intensive Care (MIMIC)-III database. Cox proportional hazards model were used to assess the association between nSOFA score and mortality. Propensity score matched analysis were used to assess the robustness of the analytical results.ResultsIn this study of 1,281 patients with RDS of which 57.2% were male, death occurred in 40 cases (3.1%). Patients with high nSOFA scores had a higher mortality rate of 10.7% compared with low nSOFA scores at 0.3%. After adjusting for confounding, multivariate Cox proportional risk analysis showed that an increase in nSOFA score was significantly associated with increased mortality in patients with RDS [adjusted Hazards Ratio (aHR): 1.48, 95% Confidence Interval (CI): 1.32–1.67; p < 0.001]. Similarly, the High nSOFA group was significantly associated with higher mortality in RDS patients (aHR: 19.35, 95% CI: 4.41–84.95; p < 0.001) compared with the low nSOFA group.ConclusionThe nSOFA score was positively associated with the risk of mortality in cases of neonatal RDS in the NICU, where its use may help clinicians to quickly and accurately identify high risk neonates and implement more aggressive intervention

    Operator radiation dose during trans-hepatic arterial chemoembolization: different patients’ positions via transradial or transfemoral access

    Get PDF
    PURPOSEThis study aimed to compare the radiation dose received by the operator among different patients’ positions via transradial access (TRA) or transfemoral access (TFA) during transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC).METHODSA total of 120 patients with HCC undergoing TACE for the first time between January and November 2019 were randomized into 4 groups with 30 patients in each group. In group A, patients were placed in the foot-first position with the left upper arm abducted, and TACE was performed via the left radial artery. In group B, patients were placed in the conventional headfirst position with the left hand placed at the left groin, and TACE was performed via the left radial artery. In group C, patients were placed in the conventional head-first position, and TACE was performed via the right radial artery. In group D, patients were placed in the conventional head-first position, and TACE was performed via the right femoral artery. Before each procedure, thermoluminescent dosimeters were taped at 7 different body parts of the operator and the radiation dose was measured and collected after the procedure. The normalized radiation dose was also calculated. Procedural parameters included radiation dose, fluoroscopy time (FT), dose–area product (DAP), and air kerma (AK) were recorded. Patients’ demographics, tumor baseline characteristics, radiation dose, and procedural parameters were compared between groups.RESULTSNo significant differences were found in patients’ demographics, tumor baseline characteristics, as well as in total FT, DAP, and AK. However, significant differences were found in the total radiation dose received by the operator and the doses on the pelvic cavity and the right wrist (P < .05). In group C, the radiation doses received on the pelvic cavity, the right wrist, and the total radiation doses were relatively higher. Significant differences were also found in the normalized radiation doses received by the operator on the thyroid, chest, left wrist, right wrist, and pelvic cavity, and the total normalized doses (all P < .05). Similarly, the radiation doses received by the operator at the aforementioned parts in group C were higher, while those in group A were lower.CONCLUSIONNo statistically significant differences were observed in the FT, DAP, and AK in TACE via TRA when patients were placed in different positions. However, TACE via the left TRA, with patients in the feet-first position, reduced the radiation dose received by the operator, thereby reducing the radiation risk

    Investigating the simultaneous fracture propagation from multiple perforation clusters in horizontal wells using 3D block discrete element method

    Get PDF
    Multi-cluster horizontal well fracturing is one of the key technologies to develop the unconventional reservoirs such as shales. However, the field data shows that some perforation clusters have little production contribution. In this study, a three-dimensional (3D) numerical model for simulating the multiple fracture propagation based on 3D block discrete element method was established, and this model considers the stress interference, perforation friction and fluid-mechanical coupling effect. In order to determine the most appropriate measures to improve the uniformity of multiple fracture propagation, the effect of the geologic and engineering parameters on the multiple fracture propagation in shale reservoirs is investigated. The modeling results show that the geometry of each fracture within a stage is different, and the outer fractures generally receive more fracturing fluid than the interior fractures. The vertical stress almost has no effect on the geometries of multiple fractures. However, higher horizontal stress difference, larger cluster spacing, smaller perforation number, higher injection rate, and smaller fracturing fluid viscosity are conducive to promote the uniform propagation of multiple fractures. The existence of bedding planes will increase the fluid filtration, resulting in a reduction in fracture length. The middle two fractures receive less fluid and the width of them is smaller. Through analyzing the numerical results, a large amount of fracturing fluid should be injected and the proppant with smaller size is suggested to be used to effectively prop the bedding planes. Cluster spacing and perforation number should be controlled in an appropriate range according to reservoir properties. Increasing the injection rate and reducing the viscosity of fracturing fluid are important means to improve the geometry of each fracture

    Estrogen Receptor α36 Mediates a Bone-Sparing Effect of 17β-Estrodiol in Postmenopausal Women

    Get PDF
    Recently, a membrane-based estrogen receptor (ER), ER-α36, was identified and cloned that transduces membrane-initiated estrogen signaling such as activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway. Here we show that the postmenopausal level of estradiol (E2) induces mitogenic, antiapoptotic, and antiosteogenic effects and proapoptotic effects in postmenopausal osteoblasts and osteoclasts with high levels of ER-α36 expression, respectively. We also found that ER-α36 mediated the effects of postmenopausal-level E2 on proliferation, apoptosis, and differentiation of osteoblasts through transient activation of the MAPK/ERK pathway, whereas ER-α36-mediated postmenopausal-level E2 induces apoptosis of osteoclasts through prolonged activation of the MAPK/ERK pathway with the involvement of reactive oxygen species. We also show that the levels of ER-α36 expression in bone are positively associated with bone mineral density but negatively associated with bone biochemical markers in postmenopausal women. Thus the higher levels of ER-α36 expression are required for preserving bone mass in postmenopausal and menopausal women who become osteoporotic if ER-α36-mediated activities are dysregulated. © 2011 American Society for Bone and Mineral Research

    Sodium Butyrate Ameliorates Streptozotocin-Induced Type 1 Diabetes in Mice by Inhibiting the HMGB1 Expression

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease characterized by the immune cell-mediated progressive destruction of pancreatic β-cells. High-mobility group box 1 protein (HMGB1) has been recognized as a potential immune mediator to enhance the development of T1D. So we speculated that HMGB1 inhibitors could have anti-diabetic effect. Sodium butyrate is a short fatty acid derivative possessing anti-inflammatory activity by inhibiting HMGB1. In the current study, we evaluated the effects of sodium butyrate in streptozotocin (STZ)-induced T1D mice model. Diabetes was induced by multiple low-dose injections of STZ (40 mg/kg/day for 5 consecutive days), and then sodium butyrate (500 mg/kg/day) was administered by intraperitoneal injection for 7 consecutive days after STZ treatment. Blood glucose, incidence of diabetes, body weight, pancreatic histopathology, the amounts of CD4+T cell subsets, IL-1β level in serum and pancreatic expressions levels of HMGB1, and NF-κB p65 protein were analyzed. The results showed that sodium butyrate treatment decreased blood glucose and serum IL-1β, improved the islet morphology and decreased inflammatory cell infiltration, restored the unbalanced Th1/Th2 ratio, and down-regulated Th17 to normal level. In addition, sodium butyrate treatment can inhibit the pancreatic HMGB1 and NF-κB p65 protein expression. Therefore, we proposed that sodium butyrate should ameliorate STZ-induced T1D by down-regulating NF-κB mediated inflammatory signal pathway through inhibiting HMGB1

    Regional Brain and Spinal Cord Volume Loss in Spinocerebellar Ataxia Type 3

    Get PDF
    Background: Given that new therapeutic options for spinocerebellar ataxias are on the horizon, there is a need for markers that reflect disease-related alterations, in particular, in the preataxic stage, in which clinical scales are lacking sensitivity. Objective: The objective of this study was to quantify regional brain volumes and upper cervical spinal cord areas in spinocerebellar ataxia type 3 in vivo across the entire time course of the disease. Methods: We applied a brain segmentation approach that included a lobular subsegmentation of the cerebellum to magnetic resonance images of 210 ataxic and 48 preataxic spinocerebellar ataxia type 3 mutation carriers and 63 healthy controls. In addition, cervical cord cross-sectional areas were determined at 2 levels. Results: The metrics of cervical spinal cord segments C3 and C2, medulla oblongata, pons, and pallidum, and the cerebellar anterior lobe were reduced in preataxic mutation carriers compared with controls. Those of cervical spinal cord segments C2 and C3, medulla oblongata, pons, midbrain, cerebellar lobules crus II and X, cerebellar white matter, and pallidum were reduced in ataxic compared with nonataxic carriers. Of all metrics studied, pontine volume showed the steepest decline across the disease course. It covaried with ataxia severity, CAG repeat length, and age. The multivariate model derived from this analysis explained 46.33% of the variance of pontine volume. Conclusion: Regional brain and spinal cord tissue loss in spinocerebellar ataxia type 3 starts before ataxia onset. Pontine volume appears to be the most promising imaging biomarker candidate for interventional trials that aim at slowing the progression of spinocerebellar ataxia type 3. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
    corecore