86 research outputs found

    The role of omnivory in mediating metacommunity robustness to habitat destruction

    Get PDF
    Omnivores have long been known to play an important role in determining the stability of ecological communities. Recent theoretical studies have suggested that they may also increase the resilience of their communities to habitat destruction, one of the major drivers of species extinctions globally. However, these outcomes were obtained for minimal food webs consisting of only a single omnivore and its prey species, while much more complex communities can be anticipated in nature. In this study, we undertake a systematic comparative analysis of the robustness of metacommunities containing various omnivory structures to habitat loss and fragmentation using a mathematical model. We observe that, in general, omnivores are better able to survive facing habitat destruction than specialist predators of similar trophic level. However, the community as a whole does not always benefit from the presence of omnivores, as they may drive their intraguild prey to extinction. We also analyze the frequency with which these modules occur in a set of empirical food webs, and demonstrate that variation in their rate of occurrence is consistent with our model predictions. Our findings demonstrate the importance of considering the complete food web in which an omnivore is embedded, suggesting that future study should focus on more holistic community analysis

    Habitat loss alters effects of intransitive higher-order competition on biodiversity: a new metapopulation framework

    Get PDF
    Recent studies have suggested that intransitive competition, as opposed to hierarchical competition, allow more species to coexist. Furthermore, it is recognized that the prevalent paradigm, which assumes that species interactions are exclusively pairwise, may be insufficient. More importantly, whether and how habitat loss, a key driver of biodiversity loss, can alter these complex competition structures and therefore species coexistence remain unclear. We thus present a new simple yet comprehensive metapopulation framework which can account for any competition pattern and more complex higher-order interactions (HOIs) among species. We find that competitive intransitivity increases community diversity and that HOIs generally enhance this effect. Essentially, intransitivity promotes species richness by preventing the dominance of a few species unlike hierarchical competition, while HOIs facilitate species coexistence through stabilizing community fluctuations. However, variation in species vital rates and habitat loss can weaken or even reverse such higher-order effects, as their interaction can lead to a more rapid decline in competitive intransitivity under HOIs. Thus, it is essential to correctly identify the most appropriate interaction model for a given system before models are used to inform conservation efforts. Overall, our simple model framework provides a more parsimonious explanation for biodiversity maintenance than existing theory

    Habitat heterogeneity mediates effects of individual variation on spatial species coexistence

    Get PDF
    Numerous studies have documented the importance of individual variation (IV) in determining the outcome of competition between species. However, little is known about how the interplay between IV and habitat heterogeneity (i.e. variation and spatial autocorrelation in habitat quality) affects species coexistence at the landscape scale. Here, we incorporate habitat heterogeneity into a competition model with IV, in order to explore the mechanism of spatial species coexistence. We find that individual-level variation and habitat heterogeneity interact to promote species coexistence, more obviously at lower dispersal rates. This is in stark contrast to early non-spatial models, which predicted that IV reinforces competitive hierarchies and therefore speeds up species exclusion. In essence, increasing variation in patch quality and/or spatial habitat autocorrelation moderates differences in the competitive ability of species, thereby allowing species to coexist both locally and globally. Overall, our theoretical study offers a mechanistic explanation for emerging empirical evidence that both habitat heterogeneity and IV promote species coexistence and therefore biodiversity maintenance

    A patch-dynamic metacommunity perspective on the persistence of mutualistic and antagonistic bipartite networks

    Get PDF
    The structure of interactions between species within a community plays a key role in maintaining biodiversity. Previous studies have found that the effects of these structures might substantially differ depending on interaction type, for example, a highly connected and nested architecture stabilizes mutualistic communities, while the stability of antagonistic communities is enhanced in modular and weakly connected structures. Here we show that, when network dynamics are modelled using a patch-dynamic metacommunity framework, the qualitative differences between antagonistic and mutualistic systems disappear, with nestedness and modularity interacting to promote metacommunity persistence. However, the interactive effects are significantly weaker in antagonistic metacommunities. Our model also predicts an increase in connectance, nestedness and modularity over time in both types of interaction, except in antagonistic networks where nestedness declines. At steady state, we find a strong negative correlation between nestedness and modularity in both mutualistic and antagonistic metacommunities. These predictions are consistent with the structural trends found in a large dataset of real-world antagonistic and mutualistic communities

    Metacommunity robustness of plant–fly–wasp tripartite networks with specialization to habitat loss

    Get PDF
    Recent observations have found plant‐species‐specific fly‐host selection (i.e., specialization) of wasp parasitoids (wasps) in plant–fly–wasp (P–F–W) tripartite networks, yet no study has explored the dynamical implications of such high‐order specialization for the persistence of this network. Here we develop a patch‐dynamic framework for a unique P–F–W tripartite network with specialization observed in eastern Tibetan Plateau and explore its metacommunity robustness to habitat loss. We show that specialization in parasitoidism promotes fly species diversity, while the richness of both plant and wasp decreases. Compared to other two null models, real network structure favors plant species coexistence but increases the extinction risk for both flies and wasps. However, these effects of specialization and network structure would be weakened and ultimately disappear with increasing habitat loss. Interestingly, intermediate levels of habitat loss can maximize the diversity of flies and wasps, while increasing or decreasing habitat loss results in more species losses, supporting intermediate disturbance hypothesis. Finally, we observe that high levels of habitat loss initiate a bottom‐up cascade of species extinction from plants to both flies and wasps, resulting in a rapid collapse of the whole tripartite networks. Overall, this theoretical framework is the first attempt to characterize the dynamics of whole tripartite metacommunities interacting in realistic high‐order ways, offering new insights into complex multipartite networks

    Spatial variation in branch size promotes metapopulation persistence in dendritic river networks

    Get PDF
    1. Despite years of attention, the dynamics of species constrained to disperse within riverine networks are not well captured by existing metapopulation models, which often ignore local dynamics within branches. 2. We develop a modelling framework, based on traditional metapopulation theory, for occupancy dynamics subject to local colonization-extinction dynamics within branches and directional dispersal between branches in size-structured, bifurcating riverine networks. Using this framework, we investigate whether and how spatial variation in branch size affects species persistence for dendritic systems with directional dispersal. 3. Variation in branch size generally promotes species persistence more obviously at higher relative extinction rate, suggesting that previous studies ignoring differences in branch size in real riverine systems might overestimate species extinction risk. 4. Two-way dispersal is not always superior to one-way dispersal as a strategy for metapopulation persistence especially at high relative extinction rate. The type of dispersal which maximizes species persistence is determined by the hierarchical level of the largest, and hence most influential, branch within the network. When considering the interactive effects of up- and down-stream dispersal, we find that moderate upstream-biased dispersal maximizes metapopulation viability, mediated by spatial branch arrangement. 5. Overall, these results suggest that both branch-size variation and species traits interact to determine species persistence, theoretically demonstrating the ecological significance of their interplay

    Bilirubin Restrains the Anticancer Effect of Vemurafenib on BRAF-Mutant Melanoma Cells Through ERK-MNK1 Signaling

    Get PDF
    Melanoma, the most threatening cancer in the skin, has been considered to be driven by the carcinogenic RAF-MEK1/2-ERK1/2 signaling pathway. This signaling pathway is usually mainly dysregulated by mutations in BRAF or RAS in skin melanomas. Although inhibitors targeting mutant BRAF, such as vemurafenib, have improved the clinical outcome of melanoma patients with BRAF mutations, the efficiency of vemurafenib is limited in many patients. Here, we show that blood bilirubin in patients with BRAF-mutant melanoma treated with vemurafenib is negatively correlated with clinical outcomes. In vitro and animal experiments show that bilirubin can abrogate vemurafenib-induced growth suppression of BRAF-mutant melanoma cells. Moreover, bilirubin can remarkably rescue vemurafenib-induced apoptosis. Mechanically, the activation of ERK-MNK1 axis is required for bilirubin-induced reversal effects post vemurafenib treatment. Our findings not only demonstrate that bilirubin is an unfavorable for patients with BRAF-mutant melanoma who received vemurafenib treatment, but also uncover the underlying mechanism by which bilirubin restrains the anticancer effect of vemurafenib on BRAF-mutant melanoma cells

    Dispersal network heterogeneity promotes species coexistence in hierarchical competitive communities

    Get PDF
    Understanding the mechanisms of biodiversity maintenance is a fundamental issue in ecology. The possibility that species disperse within the landscape along differing paths presents a relatively unexplored mechanism by which diversity could emerge. By embedding a classical metapopulation model within a network framework, we explore how access to different dispersal networks can promote species coexistence. While it is clear that species with the same demography cannot coexist stably on shared dispersal networks, we find that coexistence is possible on unshared networks, as species can surprisingly form self‐organised clusters of occupied patches with the most connected patches at the core. Furthermore, a unimodal biodiversity response to an increase in species colonisation rates or average patch connectivity emerges in unshared networks. Increasing network size also increases species richness monotonically, producing characteristic species–area curves. This suggests that, in contrast to previous predictions, many more species can co‐occur than the number of limiting resources

    Complex oscillatory responses of biodiversity to multiple environmental drivers

    No full text
    <p>There are four code programs corresponding to four figures in the main text. In each program, there is Readme.txt that can instruct you to run the code.</p&gt
    • 

    corecore