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Abstract

The structure of interactions between species within a community plays a key

role in maintaining biodiversity. Previous studies found that the effects of

these structures might vary substantially depending on interaction type, for

example, a highly connected and nested architecture stabilizes mutualistic

communities, while the stability of antagonistic communities is enhanced in

modular and weakly connected structures. Here we show that, when network

dynamics are modeled using a patch-dynamic metacommunity framework,

the qualitative differences between antagonistic and mutualistic systems disap-

pear, with nestedness and modularity interacting to promote metacommunity

persistence. However, the interactive effects are significantly weaker in antago-

nistic metacommunities. Our model also predicts an increase in connectance,

nestedness, and modularity over time in both types of interaction, except in

antagonistic networks, where nestedness declines. At steady state, we find a

strong negative correlation between nestedness and modularity in both mutu-

alistic and antagonistic metacommunities. These predictions are consistent

with the structural trends found in a large data set of real-world antagonistic

and mutualistic communities.

KEYWORD S
antagonism, ecological networks, metacommunity persistence, modularity, mutualism,
nestedness, network structure

INTRODUCTION

How complexity arises and persists in natural communi-
ties is a key question in ecology that still lacks a conclu-
sive answer (Allesina & Tang, 2012; May, 1972; McCann,
2000). In particular, the relationship between diversity
and stability has fascinated ecologists for a long time.
Before the 1970s, ecologists believed that increasing spe-
cies diversity should enhance community stability (Elton,
1958; MacArthur, 1955; Odum, 1953). Yet this early

intuitive idea was challenged by May (1972). Conducting
a linear stability analysis on models with randomly struc-
tured communities, May (1972) found that diversity
tended to destabilize community dynamics. Since then,
the so-called diversity–stability debate has become a
long-standing theoretical puzzle for ecologists, and
numerous researchers have begun exploring the factors
contributing to community stability or instability (e.g.,
Allesina & Tang, 2012; McCann, 2000). For example,
Jacquet et al. (2016) performed a stability analysis of 116
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quantitative food webs sampled worldwide and found no
relationship between community complexity (including
species richness, connectance, and interaction strength)
and stability. Furthermore, an increasing number of the-
oretical models have been used to investigate the effects
of antagonism, mutualism, nonlinear feedback, and dis-
persal on stability (Allesina & Tang, 2012; Baron & Galla,
2020; Galla, 2018; Sidhom & Galla, 2020), greatly
enriching our understanding of the complexity–stability
relationship. In addition, the structure of the interaction
networks underlying natural communities can also theo-
retically affect stability (Allesina & Tang, 2012; Bastolla
et al., 2009; Landi et al., 2018; May, 1972; Thébault &
Fontaine, 2010). Theoretical studies have identified the
level of nestedness and modularity of interaction net-
works as important determinants of community stability
(Allesina & Tang, 2012; Bastolla et al., 2009; Okuyama &
Holland, 2008; Santamaría & Rodríguez-Gironés, 2007;
Stouffer & Bascompte, 2011; Thébault & Fontaine, 2010).
These studies further found structural differences in how
network architecture modulated stability in mutualistic
versus antagonistic networks. In particular, Thébault and
Fontaine (2010) demonstrated that weakly connected,
modular network structures promoted the stability of
antagonistic communities and high connectance and
nestedness could stabilize mutualistic communities.

The aforementioned models focused primarily on a
single level of organization (i.e., local scale) by assuming
that each species can interact with all potential partners
in a network. However, many natural communities con-
sist of relatively isolated subcommunities, linked by spe-
cies dispersal, within a landscape (Albouy et al., 2019;
Baiser et al., 2019; Galiana et al., 2018; Gravel et al., 2011,
2016; Guimarães Jr., 2020; Pillai et al., 2011; Poisot et al.,
2014). In this context, there are at least two levels on
which an interaction structure can be characterized—
first, the interaction networks of individual subcommu-
nities and, second, the structure of the overall meta-
network of all possible interactions (Kissling &
Schleuning, 2015; Tylianakis & Morris, 2017). The inter-
action networks of subcommunities are, by definition,
subnetworks of the meta-network, but it does not
necessarily follow that they have the same structural
characteristics. Thus, existing models provide little
insight into the effects of the structure of a meta-network
on the persistence of the metacommunity (Cagnolo
et al., 2009; Fenoglio et al., 2012; Grass et al., 2018;
Spiesman & Inouye, 2013; Valverde et al., 2020; V�azquez
et al., 2009).

The population dynamics of landscape-scale meta-
communities can be straightforwardly modeled using the
patch-dynamic framework (Fortuna & Bascompte, 2006;
Jabot & Bascompte, 2012; Liao, Bearup, & Blasius, 2017;

Liao, Bearup, & Fagan, 2020; Liao, Bearup, Wang, et al.,
2017; Pillai et al., 2010, 2011). While this framework is
spatially implicit, it can be used to describe the mean-
field effects of the spatial partitioning of a met-
acommunity into subcommunities. In other words, the
patch-dynamic framework allows for a spatial perspective
on ecological networks by viewing networks as the
regional assembly of simpler, spatially distributed subnet-
works. This framework has been used as the basis of sev-
eral modeling studies that considered specific aspects of
the relationship between interaction network structure
and metacommunity persistence (Fortuna & Bascompte,
2006; Grass et al., 2018; Liao, Xi, et al., 2020; McWilliams
et al., 2019; Schleuning et al., 2016; Staniczenko et al.,
2017). However, a systematic comparative analysis of the
architecture–persistence relationship for antagonistic ver-
sus mutualistic networks from a metacommunity per-
spective is still lacking. More importantly, it remains
unclear whether the structure of an interaction network
plays the same role in regulating the persistence of antag-
onistic versus mutualistic metacommunities on the land-
scape scale as it does on a local scale (Thébault &
Fontaine, 2010). In this study, we address both of these
questions using the models of mutualistic and antagonis-
tic metacommunities, based on the patch-dynamic frame-
work, and compare our predictions to the observed
structures of empirical communities.

METHODS

Theoretical framework

On the landscape scale, population monitoring is often
performed by recording the presence, or absence, of a
species on habitat patches. The metapopulation frame-
work, originally developed by Levins (1969), is ideally
suited to describing such data. In this approach, popula-
tion size is measured in terms of the proportion of pat-
ches occupied, or patch occupancy. Occupancy changes
when populations are found in a new patch (coloniza-
tion) or when populations are not observed in a previ-
ously occupied patch (extinction). As such, in a typical
model (Hastings, 1980; Nee & May, 1992; Tilman, 1994),
the patch occupancy p of a species is given by

dp
dt

¼ cp 1�pð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Colonization

�ep|{z}
Extinction

, ð1Þ

where c and e denote the rates at which patches transi-
tion from unoccupied to occupied and vice versa. Note
that colonization is restricted by the availability of
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unoccupied patches, that is, 1�p. Furthermore, coloni-
zation from outside the system is not possible, so species
extinction is permanent in this metapopulation model.

Two-species system

First, we consider a mutualistic system with one plant (P)
and one animal (A) in the landscape. Following existing
patch-dynamic models (Fortuna & Bascompte, 2006),
we have

dP
dt

¼ cPA 1�Pð Þ� ePP, ð2Þ

dA
dt

¼ cAA P�Að Þ� eAA: ð3Þ

In the colonization terms, cP and cA are the colonization
rates of the plant P and the animal A, respectively, when
the plant is pollinated or dispersed by the animal. These
colonization terms summarize both reproduction and
subsequent patch establishment of offspring via random
dispersal across the landscape (e.g., seed long-range dis-
persal for plants). We assume that the animal cannot sur-
vive in a patch without the plant, while the plant can
survive in the absence of the animal but cannot repro-
duce without it (e.g., plant–pollinator network or plant–
seed disperser network). Consequently, the fraction of
patches occupied by the animal is a subset of the patches
occupied by the plant (A⊆P). The colonization term for
the plant depends on the fraction of patches occupied by
both the plant and the animal (e.g., pollination) (A), and
the fraction of patches unoccupied by the plant 1�Pð Þ.
Similarly, colonization by the animal depends on the
fraction of patches occupied by the animal (A) and the
fraction of patches available for the animal colonization
P�Að Þ, that is, the plant-occupied patches without the

animal. In the extinction terms, eP and eA are the extinc-
tion rates of the plant P and the animal A separately,
encapsulating all forms of density-independent mortality
experienced by them.

Similarly, we describe the patch dynamics for a tro-
phic system (e.g., herbivory or predation) with one plant
(P) and one animal (A) subject to the colonization–
extinction–predation processes (Meli�an & Bascompte,
2002; Pillai et al., 2010, 2011) in the landscape:

dP
dt

¼ cPP 1�Pð Þ� ePP�μA, ð4Þ

dA
dt

¼ cAA P�Að Þ� eAA, ð5Þ

In this case, the plant does not require the presence of
the animal for reproduction and colonization, so its colo-
nization term (Equation 4) now depends on the fraction
of patches it occupies P. However, it is subject to addi-
tional extinction pressure due to predation represented
by the term �μA (μ is the top-down extinction rate). The
patch dynamics for the animal in Equation (5) are the
same as in the mutualistic system (Equation 3).

Multispecies system

We can generalize these two-species models for multi-
species metacommunities consisting of two classes of spe-
cies, plants and animals, which interact according to a
single common relationship type: mutualism or antago-
nism. In either case, we do not consider competition
within classes of species in order to focus on the effects of
interactions between these classes and, as before, assume
that animals require suitable plants to be present in a
patch in order to colonize it. Thus, each patch in our
model can accommodate a local community consisting of
multiple interacting species.

Similar to Fortuna and Bascompte (2006), we can
write the patch occupancy dynamics of an animal Aj in a
metacommunity consisting of nP plants and nA animals
(i.e., with species richness S¼nPþnA)

dAj

dt
¼ cAj Aj Ωj tð Þ�Aj

� �� eAj Aj, ð6Þ

regardless of interaction type (see parameter definitions
in Table 1). Apart from defining that each animal species
has its own colonization and extinction rate, cAj and eAj ,
respectively, this formula is very similar to Equations (3)
and (5). The only change is that the habitat available to
this animal is not the entire landscape, but rather the pat-
ches occupied by a suitable (mutualist or resource) plant
species at a given time t, that is, Ωj tð Þ�Aj

� �
. The variable

Ωj tð Þ denotes the fraction of patches that are occupied by
at least one of the animal j’s mutualists or resources. This
must be continuously determined from the state of the
system. Assuming that plants are uniformly distributed
across the landscape via random dispersal, the value of
Ωj tð Þ can be determined from (a) the number of plants
that the focal animal can interact with, (b) the patch
occupancies of these plants (i.e., the probability that a
given patch is occupied by a given plant i: Pi), and (c) the
overlap among these plants within patches. In particular,
we estimate Ωj tð Þ by finding the probability that a patch
is not occupied by any plant species that can interact
with animal j, that is,
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Ωj tð Þ¼ 1�
YnP

i¼1
1�θjiPi
� �h i

, ð7Þ

where θji is the element of the adjacency matrix of the
interaction network, with θji=1 if plant i interacts with
animal j and 0 otherwise (Fortuna & Bascompte, 2006;
Liao, Xi, et al., 2020).

To derive the patch dynamics of plants, we assume
that (i) those associated animals within the i-patches
(occupied by plant i) are uniformly distributed via ran-
dom dispersal; (ii) in cases where multiple animals inter-
act with a common focal plant, these interactions are not
additive, that is, the plant colonization and top-down
extinction rates do not increase with the number of inter-
acting animals present because they may interact with
other plants within patches; (iii) in mutualistic networks,
plants are only able to colonize unoccupied patches from
patches in which they co-occur with a suitable animal (e.
g., plant–pollinator network or plant–seed disperser net-
work); and (iv) in antagonistic networks, plant species
have an increased rate of extinction when a consumer is
present in the same patch (i.e., top-down predation)
(Liao, Bearup, & Fagan, 2020; Liao, Xi, et al., 2020;
Meli�an & Bascompte, 2002; Pillai et al., 2010, 2011).
Thus, the patch occupancy of a plant (Pi) can be derived
by modifying Equations (2) and (4) to obtain

dPi

dt
¼ cPi Φi tð ÞPi 1�Pið Þ� ePi Pi ð8Þ

if the interaction is mutualistic, and

dPi

dt
¼ cPi Pi 1�Pið Þ� ePi þμPi Φi tð Þ

� �
Pi ð9Þ

if the interaction is antagonistic (see parameter defini-
tions in Table 1). For simplicity, the top-down extinction
rate for the focal plant i (μPi ) does not change when it is
consumed by different predators.

To account for the effect of animals on plants, a new
variable Φi tð Þ is introduced. This represents the fraction
of the i-patches that are also occupied by at least one ani-
mal that can interact with it. For a mutualistic network,
Φi tð Þ is applied to the colonization rate (Equation 8),
while for an antagonistic network it increases the extinc-
tion rate (i.e., top-down predation in Equation 9). Similar
to Ωj tð Þ, the value of Φi tð Þ can be estimated from the sys-
tem state. Animals can only occur in patches where at
least one suitable plant is present, that is, in a subhabitat
of size Ωj tð Þ for animal j. We can then estimate Φi tð Þ by
determining the probability that a given i-patch is not
occupied by any animal that can interact with plant i

Φi tð Þ¼ 1�
YnA

j¼1
1�θijAj

Pi

Ωj tð Þ
1
Pi

� �	 

, ð10Þ

in which θijAj
Pi

Ωj tð Þ
1
Pi
¼ θij

Aj

Ωj tð Þ represents the proportion of
the i-patches being occupied by animal j when both of
them can interact (θij ¼ 1), with Pi

Ωj tð Þ being the fraction of
the i-patches accounting for all the potential patches in
which animal j can establish. Thus the term Φi tð ÞPi in
Equations (8) and (9) represents the probability that a
given patch is both occupied by plant i and at least one
animal with which it interacts on the landscape scale.

Numerical simulations

Since the resulting models for multispecies meta-
communities are difficult to investigate analytically (but
see Appendix S1: Section S1 for a system analysis of a
simplified neutral model), numerical methods are the pri-
mary tool with which we analyze these systems. We use
such methods (via ODE45; Matlab 2016a) to derive the
nontrivial steady states of systems describing mutualistic
and antagonistic metacommunities. The species that sur-
vive in these steady states are identified, and in particular
the number of such species and, hence, the steady-state
species richness are determined. Using these data, we
undertake a systematic analysis of the effects of network

TAB L E 1 Definitions and the range of values of variables and

parameters in this study

Symbols Definitions
Range
values

Pi Patch occupancy of plant species i [0, 1]

Aj Patch occupancy of animal species j [0, 1]

cPi Colonization rate of plant species i [0.4,
0.8]

cAj Colonization rate of animal species j [0.4,
0.8]

ePi Extinction rate of plant species i [0, 0.3]

eAj Extinction rate of animal species j [0, 0.3]

μPi Top-down extinction rate of plant
species i due to predation in
antagonistic metacommunities

[0, 0.2]

θij θij ¼ 1 if plant i can interact with

animal j and 0 otherwise

0 or 1

Ωj tð Þ Fraction of patches being occupied by
at least one of animal j’s mutualists
or resources at time t

[0, 1]

Φi tð Þ Fraction of i-patches (occupied by
plant i) also being occupied by at
least one animal that can interact
with it

[0, 1]
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structure on the fraction of surviving species at steady
state (metacommunity persistence) for mutualism and
antagonism.

Metacommunity structure is described in the form of
bipartite networks of interactions between plants and ani-
mals. Following Thébault and Fontaine (2010), we con-
struct an ensemble of 5760 random networks by varying 4
network structure metrics: network size (number of species
S = 24, 64, 96, and 120), connectance (relative number of
interactions C = 0.07, 0.1, 0.15, and 0.2), nestedness (level
of sharing of interaction partners among species
N = NODF/100 using the vegan package in R to calculate
NODF, i.e., nestedness metric based on overlap and
decreasing fill) (Almeida-Neto et al., 2008; Oksanen et al.,
2013), and modularity (degree of compartmentalization Q
using the igraph R package) (Guimerà & Amaral, 2005;
Newman & Girvan, 2004). Network modularity and
nestedness are controlled by varying the probabilities that
network connections will be made within one of four mod-
ules of equal size (pcomp) and within a nestedness struc-
ture (pnest) between 0 and 1 in increments of 0.2. Ten
random networks are constructed for each combination of
these parameters. These four metrics are also calculated for
the steady-state metacommunities that emerge from our
simulations, offering complementary information as to
how interactions are organized in final stable systems. For
standardization, the Z-scores for nestedness (N) and modu-
larity (Q) are estimated using Z Nð Þ¼ Nobs�Nnull

σ Nnullð Þ and
Z Qð Þ¼ Qobs�Qnull

σ Qnullð Þ , where Nobs and Qobs are nestedness and
modularity for an observed network at steady state, Nnull

and Qnull are the mean nestedness and modularity of 100
replicates of a particular null model, and σ Nnullð Þ and
σ Qnullð Þ are their standard deviations of the 100 null
models. While Z-scores are not appropriate for comparing
nestedness between different networks (Song et al., 2017),
they provide a good means for assessing whether there are
significant differences in nestedness between observed net-
works and the null model. Specifically, three types of null
model are considered—equiprobable, probabilistic, and
fixed models, where the equiprobable model assigns the
same probability to each potential interaction in the net-
work, the probabilistic model assigns a probability to each
potential interaction proportional to the number of
observed interactions between species, and the fixed model
randomly reshuffles the interactions while preserving the
observed number of interacting partners of each species
(Bascompte et al., 2003; Payrat�o-Borràs et al., 2019; Song
et al., 2017; Strona et al., 2018; Ulrich et al., 2009).

Initial patch occupancies are equal for all species, and
patch dynamics are simulated until the metacommunity
reaches a steady state (Appendix S3: Figure S1). For each
simulation, the colonization and extinction rates for each
species in the metacommunity are drawn randomly from

an appropriate uniform distribution. To explore a broad
range of biologically reasonable parameter combinations,
several different uniform distributions are used for sensi-
tivity analysis, including setting different ranges of colo-
nization and extinction rates between plants and animals
(Figure 1 and Appendix S3: Figures S2–S7). Generally,
results are qualitatively consistent across these simula-
tions, so we present a single representative case through-
out (with parameter values summarized in Table 1).

Analysis of empirical community structure

To compare with our modeling predictions, we compile a
large data set of ecological networks from previously pub-
lished work containing 186 mutualistic and 135 antago-
nistic bipartite networks observed in nature (see details
in Table 2; data set and sources seen in data). The mutu-
alistic communities consist of 148 plant–pollinator, 34
plant–seed disperser, and 4 plant–ant systems, while the
antagonistic communities include 17 plant–herbivore, 83
host–parasite, 1 seed-eating bird, 30 fish–parasite, 1 fly–
wasp, 1 plant–fly, 1 seed-eating insect, and 1 seed-eating
rodent systems. In this study, we attempt to conduct sta-
tistical analyses for all these empirical data together to
check whether our predicted networks (obtained from
the initial 5760 networks with diverse architectures) have
the same structural trends as these observed networks
from diverse natural ecosystems.

We analyze the relationship between the structural
properties of these observed networks, including network
size (S), connectance (C), nestedness (N = NODF/100),
and modularity (Q) and their Z-scores. In addition, we
compare the nestedness and modularity of the observed
networks to the expected nestedness (Nnull) and modular-
ity (Qnull) of 100 replicates of the null models, again
including the equiprobable, probabilistic, and fixed
models. As shown in Figures 3 and 4 and Appendix S3:
Figures S8–S11, Z-scores derived from different null
models can yield different patterns, confirming previous
work (Payrat�o-Borràs et al., 2019; Song et al., 2017;
Strona et al., 2018; Strona & Fattorini, 2014). However,
both theoretical and empirical networks display, in gen-
eral, qualitative consistency in their structural trends
regardless of the selected null model, reinforcing our
findings. Thus, we focus here on the results stemming
from the probabilistic null model (while reporting the
results from the alternative null models in Appendix S3:
Figures S8–S11), which has been the preferred choice in
the majority of work dealing with network structure and
stability (Bascompte et al., 2003; Fortuna et al., 2010;
Olesen et al., 2007; Rodríguez-Gironés & Santamaría,
2006; Thébault & Fontaine, 2010).
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RESULTS

Model analysis

We began by comparing the initial structure of meta-
communities with that obtained at steady state (Figure
1). Since the links to specialist species are most

vulnerable to the metacommunity dynamics, their dis-
ruption and the resulting extinctions of these specialists
naturally led to changes in the entire community struc-
ture (Appendix S3: Figures S1 and S12), particularly in
connectance (C), nestedness (N), and modularity (Q).
Irrespective of interaction type, metacommunities
evolved more connected and modular structures than the

F I GURE 1 Steady-state structure of (a–c) mutualistic and (d–f) antagonistic networks against their initial structure, at different levels
of initial community diversity (S = 24, 64, 96, 120 in different colors) and connectance (C = 0.07, 0.1, 0.15, and 0.2). The mean difference in

these characteristics ΔX ¼XFinal�X Initial;
�

including connectance C, Z-scores of nestedness N =NODF/100 and modularity Q using the

probabilistic null model with average of 100 replicates) indicates overall change. Parameters: species colonization rates are randomly

sampled from the uniform distribution cPi = cAj �unif[0.4, 0.8], species extinction rates ePi = eAj � unif[0, 0.3] and top-down extinction rates

μPi � unif[0, 0.2]

TAB L E 2 Empirical data sets analyzed in this study

Interaction Type No. network S C N Q

Mutualism Plant–pollinator 148 8–1500 0.02–0.64 0–0.85 0–0.62

Plant–seed disperser 34 6–317 0.05–0.69 0.11–1 0–0.59

Plant–ant 4 10–89 0.125–0.54 0.04–0.59 0.05–0.78

Antagonism Plant–herbivore 17 33–590 0.06–0.32 0.09–0.47 0–0.69

Host–parasite 83 10–95 0.05–0.57 0.08–0.88 0–0.5

Seed–eating systems 3 25–78 0.18–0.61 0.03–0.75 0–0.65

Fish–parasite 30 22–399 0.02–0.38 0.039–0.59 0.08–0.83

Plant–fly 1 38 0.44 0.448 0

Fly–wasp 1 38 0.40 0.457 0.09

Note: S, total no. species; C, connectance; N, nestedness (=NODF/100); Q, modularity.
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initial networks, with the change measured using the dif-
ference in mean Z-scores (ΔZ = ZFinal�ZInitial) (Figure
1c,f). The nestedness in mutualistic metacommunities
also increased (ΔZ Nð Þ¼ 0:20) (Figure 1b) but decreased
in antagonistic metacommunities (ΔZ Nð Þ =� 0.014)
(Figure 1e).

We then assessed the relative importance of initial
community structure in determining metacommunity
persistence (i.e., fraction of species that are able to sur-
vive at steady state relative to initial network size), using
structural equation models (SEMs). Specifically, initial
diversity and connectance were hypothesized to be direct
potential causes of metacommunity persistence. In addi-
tion, they are known to affect the level of network
nestedness and modularity (Almeida-Neto et al., 2008),
which in turn can affect metacommunity persistence. To
disentangle the effects of diversity and connectance, we
tried different SEMs for path analysis (Figure 2 and
Appendix S3: Figures S13 and S14), and the best per-
forming of these models was presented in Figure 2
(Appendix S2: Section S1). Most structural properties,
including initial network size (positive), connectance
(positive), nestedness (negative), and modularity (nega-
tive), showed qualitatively similar direct effects on met-
acommunity persistence in both mutualistic and
antagonistic networks (Figure 2). Regardless of interac-
tion type, the overall effects (combining direct and indi-
rect effects) of these structural properties on
metacommunity persistence were positive (Figure 2),
except for the overall effect of nestedness in antagonistic
networks (which had a weak negative effect). Comparing

these factors, we found that the interaction (N � Q) of
nestedness and modularity had a strong positive effect on
persistence, with this interaction always promoting final
diversity (Figure 2). However, these interactive effects
were substantially stronger in mutualistic networks than
in antagonistic ones (Figure 2).

The emergent metacommunities were also compared
to structures generated from the probabilistic null model
(Figure 3). Both mutualistic and antagonistic meta-
communities showed a negative linear relationship
between network size and connectance (with a log–log
scale in Figure 3a). Moreover, mutualistic networks
tended to be more connected than antagonistic ones, but
the magnitude of this difference dwindled and eventually
disappeared as network size was increased. For both
types of interaction, we also observed a strong negative
correlation between nestedness and modularity, that is,
networks with low modularity tended to be highly
nested, and vice versa (Figure 3b). Both nestedness and
modularity in emergent metacommunities were higher
than those obtained in the probabilistic null model (see
average on Z-scores in Figure 3c,d).

Analysis of empirical data

To check whether theoretical and empirical networks
deviate from the probabilistic null model in the same
way, we finally analyzed the structural features of a large
set of empirical mutualistic and antagonistic communi-
ties (Figure 4). As commonly observed in natural

F I GURE 2 Path analysis of initial network architecture on persistence of (a) mutualistic and (b) antagonistic metacommunities (S—
diversity, C—connectance, N—nestedness with N = NODF/100, Q—modularity, and N � Q—interaction between nestedness and

modularity), obtained from Figure 1. Different structural equation models are used for path analysis, finding that the one presented here is

the best-performing one (Appendix S2: Section S1 and Appendix S3: Figures S13 and S14). The thickness of the arrows is scaled to

standardized coefficients from path analysis, indicating the relative effect strength. Negative and positive effects are represented in red and

black, respectively
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ecosystems, both types of community displayed a nega-
tive linear relationship between community size and con-
nectance (on a log–log scale in Figure 4a), similar to our
theoretical results (Figure 3a). However, antagonistic net-
works tended to be more connected than mutualistic net-
works if the community size was relatively small
(S < 100), in contrast to the case in highly diverse com-
munities (S > 100). Irrespective of interaction type, the
metacommunities showed a negative correlation between
nestedness and modularity (Figure 4b), in line with our
modeling predictions (Figure 3b). Both types of

community were typically more nested and modular than
the probabilistic null model (Figure 4c,d), as predicted by
our model (Figure 3c,d). Interestingly, mutualistic net-
works displayed higher Z-scores in nestedness than
antagonistic ones, confirming our model prediction.

DISCUSSION

In our patch-dynamic framework, increasing network
size (diversity) and connectance promotes

F I GURE 3 Analysis of structural properties of simulated mutualistic and antagonistic bipartite networks at steady state, obtained from

Figure 1. Each point corresponds to the steady state of a simulated mutualistic or antagonistic network, with the distribution of each metric

being summarized in adjacent violin plots. (a) Relationship between network size (S) and connectance (C). (b) Relationship between

nestedness (N = NODF/100) and modularity (Q). (c, d) Nestedness and modularity of simulated networks against their corresponding

probabilistic null models (average of 100 replicates) (right: distribution of Z-scores for nestedness and modularity with mean Z). The mean

difference in nestedness (ΔN ¼NFinal�NNull) and modularity (ΔQ¼QFinal�QNull) between final structures and null models was calculated

separately for mutualism and antagonism
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metacommunity persistence, irrespective of whether the
underlying ecological interactions are antagonistic or
mutualistic. In addition, the interactive effects of
nestedness and modularity on metacommunity persis-
tence are also positive in both mutualistic and antagonis-
tic networks. Thus, these theoretical outcomes generally
support the positive complexity–stability relationship
found by Gravel et al. (2011) and Pillai et al. (2011), in
contrast with the negative relationship typically identi-
fied by local stability analysis (May, 1972). McCann
et al. (2005) and Gravel et al. (2016) demonstrated that a
spatially distributed community has increased stability
relative to the well-mixed (local) communities studied by
May (1972), partially explaining this result. In our model,
increasing the connectance and diversity essentially
increases the number of available resource patches acces-
sible to predators or mutualists, thereby promoting met-
acommunity persistence.

Our results show little qualitative difference in how
interaction network structure affects metacommunity
persistence between mutualism and antagonism. This
can be explained by considering that, in the patch-
dynamic framework, the persistence of animal species
depends on finding suitable partner plant species within
a landscape. Interactions between specialists are readily
disrupted by animal extinctions, regardless of the type of
interaction (as observed by Cagnolo et al., 2009). This
results in an increase of network connectance,
nestedness, and modularity by the breakage of rare links
between highly connected subnetworks (Appendix S3:
Figure S12). In a large network with high levels of
nestedness, those generalists interact with many other
species, thereby forming a dense core that might be very
robust to environmental disturbances, such as habitat
loss (Fortuna & Bascompte, 2006). In turn, the generalist
species can promote the persistence of associated

F I GURE 4 Analysis of structural properties of real-world mutualistic and antagonistic bipartite networks. Each point corresponds to an

empirically observed network of either mutualistic or antagonistic, with the distribution of each metric being summarized in adjacent violin

plots. (a) Relationship between network size (S) and connectance (C). (b) Relationship between nestedness (N = NODF/100) and modularity

(Q). (c, d) Nestedness and modularity of observed networks against their corresponding probabilistic null models (average of 100 replicates)

(right: distribution of Z-scores for nestedness and modularity with mean Z)
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specialists, consistent with Strona et al. (2013) and Strona
& Lafferty (2016), further promoting metacommunity
persistence. However, specialists that are not involved in
this dense core will be very vulnerable to extinction,
because of lower effective patch availability and
recolonization opportunities. Similarly, if a large network
is divided into small cliques with these generalist cores
and species interact more frequently within cliques than
between cliques (i.e., increasing modularity tends to
shape more isolated but well-connected subnetworks;
Fortuna et al., 2010), each subnetwork will be very robust
to perturbation (Stouffer & Bascompte, 2011). By con-
trast, in a less compartmentalized network, species are
less tightly linked to such cores, and thus more species
are at risk of extinction. As a result, the interaction
between nestedness and modularity greatly increases
metacommunity persistence (Figure 2). The interplay
between network structure and spatial community
assembly strongly affects species that highly depend on
other species and, thus, applies regardless of whether
interactions are mutualistic or antagonistic.

Despite having similar qualitative effects on persis-
tence, the interactive effects of modularity and
nestedness are much weaker when interactions are
antagonistic (Figure 2). This stems from the fact that
predated plant species are not dependent on their preda-
tors. In fact, plant species linked to fewer animal preda-
tors can persist more easily because of lower predation
pressure, which can strengthen the robustness of links
between specialists. In contrast, plant species linked to
many predators are more vulnerable to extinction
because of strong top-down control, which reduces net-
work asymmetry (Appendix S1: Section S1). Taken
together, these two facts directly result in a decline in
nestedness in antagonistic communities. Yet, in mutualis-
tic communities, both the plant and the animal species
are strongly dependent on each other. Because the links
between specialists are disrupted more easily than those
involving at least one plant or animal generalist (Appen-
dix S1: Section S1), network nestedness is expected to
increase over time in mutualistic systems. Consequently,
metacommunity dynamics increase the level of
nestedness for mutualism but decrease nestedness for
antagonism (Figure 1). This explains why the overall
effect of nestedness switches from promoting (mutual-
ism) to suppressing (antagonism) metacommunity persis-
tence, as predicted by nonspatial models (Thébault &
Fontaine, 2010).

The previously described mechanism also drives the
changes we observe in network structure at steady state
(Figure 3). Because of the vulnerable links between spe-
cialists, network connectance, nestedness, and modular-
ity tend to increase, except in antagonistic communities

where nestedness declines (Figure 1). These linking pat-
terns have been observed previously (Grass et al., 2018;
Spiesman & Inouye, 2013), for example, losses of these
links between specialists, resulting from regional habitat
loss, can lead to more connected and modular plant–pol-
linator networks. Both theoretical and empirical analyses
show a consistent, strong negative correlation between
nestedness and modularity for both mutualistic and
antagonistic systems (Figures 3 and 4). The prevalence of
these structural patterns confirms that they play an
important role in stabilizing communities. More impor-
tantly, our results demonstrate how these features could
emerge naturally from relatively unstructured communi-
ties when they are embedded in a spatial context. These
structural similarities in both types of interaction suggest
that it should be difficult to differentiate between mutual-
istic and antagonistic networks based solely on their
architecture, as observed previously (Michalska-Smith &
Allesina, 2019).

Our modeling framework relies on several assump-
tions that require further discussion. First, we assumed
that all species could randomly disperse into any patch
across the landscape (i.e., global dispersal without restric-
tion). This type of dispersal is too ideal to reflect the
broad range of different dispersal behaviors in nature.
This omission could be further explored by comparing
our predictions with those models that use more realistic
dispersal ranges (e.g., characterized by a dispersal ker-
nel). Second, our model did not consider variation in
interaction strength/frequency between each plant–ani-
mal pair, nor were intraguild competitive interactions
considered (Ghazoul, 2006; van Veen et al., 2006). One
could anticipate that a trade-off between interaction
strength and generalism might have a substantial effect
on network persistence, deserving further investigation.
Third, it is also common for predators to reduce the prey
colonization rate by feeding on seeds or propagules (e.g.,
Olff & Ritchie, 1998; Ryberg et al., 2012; Ryberg & Chase,
2007). In addition, some field observations find that prey
species can even avoid places with perceived high preda-
tion risk (e.g., Resetarits & Binckley, 2013). The effects of
predators on colonization may have qualitatively differ-
ent outcomes than their effects on extinction, so future
studies could conceptualize these different effects into
models for comparison. Finally, comparing steady-state
metacommunities with real-world networks might be
inappropriate because of the different spatial scales
(regional vs. local) of the underlying networks. Yet, if we
treat each empirical network as an isolated spatial sys-
tem, these diverse natural systems can be treated as possi-
ble instances of our model structure. For example, in
these local communities, we assume that each colony site
can only accommodate one individual of a species instead
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of one population, and each species can establish in any
site and interact with other species randomly, similar to
our patch-dynamic framework. In addition, our spatially
implicit framework can characterize mean-field effects as
nonspatial models (e.g., Thébault & Fontaine, 2010), so it
can be used to describe site colonization–extinction
dynamics for these empirical communities, despite hav-
ing different spatial scales.

Our model demonstrates that, at the landscape scale,
the architecture–persistence relationships are only par-
tially affected by the type of interaction, which provides a
novel perspective complementing and advancing current
knowledge (Allesina & Tang, 2012; Bastolla et al., 2009;
Grass et al., 2018; Thébault & Fontaine, 2010). In particu-
lar, the structural patterns we predict are in good agree-
ment with those observed in real-world networks,
demonstrating the validity of our model. More generally,
by integrating both metacommunity and network theo-
ries, this study provides a mechanistic explanation for the
architecture–persistence relationship from a met-
acommunity perspective, providing further evidence for
the importance of spatial assembly in regulating biodiver-
sity maintenance.

ACKNOWLEDGMENTS
We thank Dr. György Barab�as for constructive sugges-
tions on this manuscript and Miss Yang Shen for instruc-
tions on MATLAB. Jinbao Liao is supported by the
National Science Foundation of China (31901175 and
31760172) and the Key Youth Project of Jiangxi Province
(20192ACBL21029).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Jinbao Liao conceived this study, built the model, wrote
the MATLAB codes and performed simulations, and
wrote the first draft. Jinbao Liao and Daniel Bearup ana-
lyzed the results and rewrote the manuscript. Giovanni
Strona discussed the results and contributed substantially
to revisions.

DATA AVAILABILITY STATEMENT
Data (Liao et al., 2022) are available on Dryad: https://
doi.org/10.5061/dryad.mkkwh7121.

ORCID
Jinbao Liao https://orcid.org/0000-0002-9520-3235

REFERENCES
Albouy, C., P. Archambault, W. Appeltans, M. B. Araújo, D.

Beauchesne, K. Cazelles, A. R. Cirtwill, et al. 2019. “The

Marine Fish Food Web Is Globally Connected.” Nature Ecology
& Evolution 3: 1153–61.

Allesina, S., and S. Tang. 2012. “Stability Criteria for Complex Eco-
systems.” Nature 483: 205–8.

Almeida-Neto, M., P. Guimarães, P. R. Guimarães, Jr., R. D. Loyola,
and W. Ulrich. 2008. “A Consistent Metric for Nestedness
Analysis in Ecological Systems: Reconciling Concept and Mea-
surement.” Oikos 117: 227–1239.

Baiser, B., D. Gravel, A. R. Cirtwill, J. A. Dunne, A. K. Fahimipour,
L. J. Gilarranz, J. A. Grochow, et al. 2019. “Ecogeographical
Rules and the Macroecology of Food Webs.” Global Ecology
and Biogeography 28: 1204–18.

Baron, J. W., and T. Galla. 2020. “Dispersal-Induced Instability in
Complex Ecosystems.” Nature Communications 11: 6032.

Bascompte, J., P. Jordano, C. J. Meli�an, and J. M. Olesen. 2003.
“The Nested Assembly of Plant–Animal Mutualistic Net-
works.” Proceedings of the National Academy of Sciences of the
United States of America 100: 9383–7.

Bastolla, U., M. A. Fortuna, A. Pascual-García, A. Ferrera, B.
Luque, and J. Bascompte. 2009. “The Architecture of Mutualis-
tic Networks Minimizes Competition and Increases Biodiver-
sity.” Nature 458: 1018–20.

Cagnolo, L., G. Valladares, A. Salvo, M. Cabido, and M. Zak. 2009.
“Habitat Fragmentation and Species Loss across Three Inter-
acting Trophic Levels: Effects of Life-History and Food-Web
Traits.” Biological Conservation 23: 1167–75.

Elton, C. S. 1958. Ecology of Invasions by Animals and Plants. Lon-
don: Chapman & Hall.

Fenoglio, M. S., D. Srivastava, G. Valladares, L. Cagnolo, and A.
Salvo. 2012. “Forest Fragmentation Reduces Parasitism Via
Species Loss at Multiple Trophic Levels.” Ecology 93: 2407–20.

Fortuna, M. A., and J. Bascompte. 2006. “Habitat Loss and the
Structure of Plant–Animal Mutualistic Networks.” Ecology Let-
ters 9: 281–6.

Fortuna, M. A., D. B. Stouffer, J. M. Olesen, P. Jordano, D.
Mouillot, B. R. Krasnov, R. Poulin, and J. Bascompte. 2010.
“Nestedness Versus Modularity in Ecological Networks: Two
Sides of the Same Coin?” Journal of Animal Ecology 79: 811–7.

Galiana, N., M. Lurgi, B. Claramunt-L�opez, M. J. Fortin, S. Leroux,
K. Cazelles, D. Gravel, and J. M. Montoya. 2018. “The Spatial
Scaling of Species Interaction Networks.” Nature Ecology &
Evolution 2: 782–90.

Galla, T. 2018. “Dynamically Evolved Community Size and Stability
of Random Lotka-Volterra Ecosystems.” Europhysics Letters
123: 48004.

Ghazoul, J. 2006. “Floral Diversity and the Facilitation of Pollina-
tion.” Journal of Ecology 94: 295–304.

Grass, I., B. Jauker, I. Steffan-Dewenter, T. Tscharntke, and F. Jauker.
2018. “Past and Potential Future Effects of Habitat Fragmenta-
tion on Structure and Stability of Plant-Pollinator and Host-
Parasitoid Networks.” Nature Ecology & Evolution 2: 1408–17.

Gravel, D., E. Canard, F. Guichard, and N. Mouquet. 2011. “Persis-
tence Increases with Diversity and Connectance in Trophic
Metacommunities.” PLoS One 6: e19374.

Gravel, D., F. Massol, and M. A. Leibold. 2016. “Stability and Com-
plexity in Model Meta-Ecosystems.” Nature Communications
7: 12457.
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