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Abstract 17 

Numerous studies have documented the importance of individual variation (IV) in 18 

determining the outcome of competition between species. However, little is known 19 

about how the interplay between IV and habitat heterogeneity (i.e. variation and 20 

spatial autocorrelation in habitat quality) affects species coexistence at the landscape 21 

scale. Here we incorporate habitat heterogeneity into a competition model with IV, in 22 

order to explore the mechanism of spatial species coexistence. We find that 23 

individual-level variation and habitat heterogeneity interact to promote species 24 

coexistence, more obviously at lower levels of dispersal rates. This is in stark contrast 25 

to early non-spatial models, which predicted that IV reinforces competitive 26 

hierarchies and therefore speeds up species exclusion. In essence, increasing variation 27 

in patch quality and/or spatial habitat autocorrelation moderates differences in the 28 

competitive ability of species, thereby allowing species to coexist both locally and 29 

globally. Overall, our theoretical study offers a mechanistic explanation for emerging 30 

empirical evidence that both habitat heterogeneity and IV promote species 31 

coexistence and therefore biodiversity maintenance. 32 

Keywords: Beverton-Holt model, spatial competition, habitat heterogeneity, 33 

intraspecific variability  34 
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1. Introduction 35 

Understanding the underlying mechanism of species coexistence in space and 36 

therefore biodiversity maintenance, is a fundamental issue in ecology [1, 2]. Recent 37 

developments in spatial competition theory have already advanced our understanding 38 

of competitive coexistence in spatially structured habitats [3-7]. In general, 39 

coexistence requires species to be different in the way they affect, and are affected by, 40 

competitors and available resources, resulting in niche difference or average fitness 41 

difference between species [3, 7-11]. Differences in the ecological niches occupied by 42 

the species within a community act to stabilize the system, with large differences 43 

promoting coexistence [10, 11]. By contrast, differences in the fitness of those species 44 

drive competitive exclusion, with large differences suppressing coexistence [8, 9]. As 45 

the major forces driving interspecific differences, both individual-level variation and 46 

habitat heterogeneity can play a vital role in mediating the demographic 47 

characteristics of species, thereby altering population dynamics and species 48 

coexistence [11-13]. 49 

Recent work, including both theoretical and empirical studies, has begun to 50 

highlight the importance of individual-level variation (e.g. life-history processes, 51 

functional traits) in determining coexistence outcomes of species [14-19]. Individual 52 

variation (IV) can affect species dynamics and community structure through Jensen’s 53 

inequality (i.e. variation around the trait mean can alter the average interaction 54 

strength if the interaction depends nonlinearly on a species’ trait) [14, 20], increased 55 
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degree of species interaction (i.e. strength of heterospecific interaction) [21-23], and 56 

the Portfolio effect (i.e. intraspecific trait variation can protect populations from 57 

extreme temporal fluctuations in population density) [24]. A series of studies found 58 

that IV has a positive effect on coexistence when differences in competitive ability 59 

among conspecific individuals can break down competitive hierarchies of species, 60 

such that intraspecific competition is stronger than interspecific competition [4, 25, 61 

26]. In contrast, other studies predicted that intraspecific variation should increase 62 

niche overlap between species and thus suppress coexistence [14, 27]. This 63 

discrepancy is probably a result of the fact that almost all studies involving IV are 64 

non-spatial, omitting the vital role of spatiality. For instance, species in nature are 65 

often spatially structured, and their demographic traits might be strongly selected for 66 

by habitat heterogeneity resulting from climate change and anthropogenic disturbance 67 

[4, 28, 29]. As such, the effects of individual-level variation on demography are likely 68 

to be altered by habitat heterogeneity. Although Uriarte and Menge [4] explored 69 

species regional coexistence with IV, they only simulated two different patches (with 70 

different species preferring different patches) [4], omitting the potential for variation 71 

and spatial autocorrelation in habitat quality. 72 

In recent decades, the importance of habitat heterogeneity for species coexistence 73 

has received great attention [30-34]. In spatially heterogeneous landscapes, the 74 

demographic characteristics of species (e.g. mortality and fecundity) are likely to vary 75 

across environmental gradients, resulting in intra- and inter-specific variation within 76 
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the community. For instance, empirical evidence showed that the germination rate and 77 

per-germinant fecundity of plants might be subject to local habitat suitability (e.g. 78 

light, moisture or soil nutrients) [35, 36]. In addition, competitive hierarchies of 79 

species might shift in a spatial context due to the effects of biotic and abiotic 80 

heterogeneity [5]. In particular, habitat heterogeneity (e.g. resulting from land use 81 

change, pollution, over-exploitation and climate change) can have a significant effect 82 

on species coexistence for suitable spatial scales, for example, the ‘grain’ of the 83 

heterogeneity should be smaller than the ‘extent’ of the community [30, 37]. 84 

Although the individual effects of IV and habitat heterogeneity on species 85 

coexistence have been well documented, very few studies have explored their 86 

interactive effects on the outcomes of competition at a regional scale. Spatial habitat 87 

heterogeneity can be expected to add another axis, in addition to IV, over which 88 

species can differ [3]. Consequently, systems incorporating both forms of variation 89 

could produce asynchronous community dynamics, as spatial habitat heterogeneity 90 

can directly result in individual-level variation among patches. In this study, we 91 

incorporate IV into the classical Beverton-Holt model of two competitors [38] with 92 

neighbour dispersal in spatially heterogeneous landscapes. With the model, we 93 

attempt to answer the following questions. (i) Whether and how IV interacts with 94 

habitat heterogeneity to alter competitive outcomes and what is the underlying 95 

mechanism? (ii) How does increasing species dispersal rate modulate the interactive 96 

effect of IV and habitat heterogeneity on spatial coexistence? 97 
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2. Modelling description 98 

2.1 Beverton-Holt model with IV 99 

We base this study on the competition model for two annual plant species developed 100 

by Beverton and Holt [38]. This model is well characterized analytically [39] and can 101 

describe plant community dynamics in the field [40]. In addition, recently it has been 102 

applied to explore the effect of IV on species coexistence [4,15]. In the absence of IV 103 

and habitat heterogeneity, the dynamics of the first species are described by 104 

𝑛1,𝑡+1 = 𝑔1𝜆1𝑛1,𝑡/(1 + 𝛼11𝑔1𝑛1,𝑡 + 𝛼12𝑔2𝑛2,𝑡),             (1) 105 

where 𝑛1,𝑡 is the density of seeds of species 1 at time t, 𝑔1 is the germination rate of 106 

the seeds, 𝜆1 is the low density fecundity of the germinated seed, and 𝛼11 and 𝛼12 107 

are the interaction coefficients describing the per-capita effects of conspecifics and 108 

heterospecifics on seed production. The dynamics of the second species are given by 109 

an equation of the same form.  110 

According to Godoy et al. [41], the interaction coefficient between 111 

heterospecifics (𝛼12) can be decomposed into species 1’s generic response to 112 

competition (competitive sensitivity 𝑟1) and the effect of species 2 on all other species 113 

(𝑒2), i.e. 𝛼12 = 𝑟1𝑒2. This simplification can be further applied to diverse 114 

communities, as it primarily focuses on the competition between each pair of species 115 

(i.e. pairwise interaction), instead of higher-order interactions involving multiple 116 

species. In this form, the competitive ability of species 1 becomes a trait of the species 117 

independent of the identity of its competitors [41, 42], characterized by 118 
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               (𝑔1𝜆1 − 1)/𝑟1                           (2) 119 

In the absence of niche difference and IV in the demographic and competitive 120 

parameters in eqn 2, the superior competitor can outcompete the inferior species [41].  121 

Recently, Hart et al. ([14] and more detail therein) investigated the effects of IV 122 

on local coexistence by incorporating IV into the competitive sensitivity r. In 123 

particular, they reformulated eqn 1 as an integro-difference equation 124 

𝑛1,𝑡+1 = 𝑛1,𝑡 ∫
𝑔1𝜆1

1+𝑟1(𝑒1𝑔1𝑛1,𝑡+𝑒2𝑔2𝑛2,𝑡)
𝑝1(𝑟1)𝑑𝑟1               (3) 125 

where 𝑝1(𝑟1) is the probability distribution of 𝑟1. Thus the integral represents the 126 

mean effect of intra- and inter-specific (with species 2) interactions on species 1. Note 127 

that, following previous studies on the effects of variation in species demographic 128 

properties on population dynamics [15, 43], the variation in competitive sensitivity r 129 

is assumed to be constant across generations.  130 

2.2 Spatially structured competition model 131 

Next, we introduce spatial habitat heterogeneity into the above competition model. 132 

Specifically, we assume that individuals of the two species with intraspecific variation 133 

in r compete in a lattice-structured landscape consisting of 10×10 patches with 134 

periodic boundary conditions (i.e. acting as a torus). The local patch quality (e.g. 135 

nutrients, moisture) was assumed to vary and, thus, to affect species low density 136 

fecundity (𝜆) [35, 44]. This assumption introduces a spatial factor that influences 137 

competitive outcomes, since in this model, fecundity affects those outcomes. 138 

Following typical assumptions for metacommunity models, we assume that the two 139 
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species compete only in patches where they co-occur.  140 

The two species were assumed to disperse within the landscape using neighour 141 

dispersal. In particular, they were able to colonize patches that share an edge with 142 

those in which they were already present (i.e. a von Neumann neighborhood z = 4) 143 

[45]. In our framework, we divided habitat heterogeneity into two elements [34]: 144 

variation in patch quality and spatial autocorrelation of patch quality (i.e. the 145 

clustering degree of patches with similar quality).  146 

We assume that competitive sensitivity is not heritable but rather a population 147 

level variation, thus in each generation seeds mature into plants with sensitivity drawn 148 

from the sensitivity distribution for their species ri. However, the fecundity of mature 149 

plants is determined by the quality of the patch in which they reside, and so, in 150 

particular, the number of seeds L they produce varies by patch. These seeds can either 151 

be dispersed into neighbouring patches or stay in the natal patch. Thus we derive the 152 

following equations for the dynamics of species 1 in a given patch i 153 

𝑛1,𝑡+1,𝑖 = ((1 − ∑ 𝑚1,𝑖→𝑗𝑗 )𝐿1,𝑡,𝑖 + ∑ 𝑚1,𝑗→𝑖𝐿1,𝑡,𝑗𝑗 )              (4a) 154 

𝐿1,𝑡,𝑖 = ∫
𝑔1,𝑖𝜆1,𝑖𝑛1,𝑡,𝑖

1+𝑟1(𝑒1,𝑖𝑔1,𝑖𝑛1,𝑡,𝑖+𝑒2,𝑖𝑔2,𝑖𝑛2,𝑡,𝑖)
𝑝1(𝑟1)𝑑𝑟1                (4b) 155 

𝐿1,𝑡,𝑗 = ∫
𝑔1,𝑗𝜆1,𝑗𝑛1,𝑡,𝑗

1+𝑟1(𝑒1,𝑗𝑔1,𝑗𝑛1,𝑡,𝑗+𝑒2,𝑗𝑔2,𝑗𝑛2,𝑡,𝑗)
𝑝1(𝑟1)𝑑𝑟1              (4c) 156 

where 𝑚1,𝑖→𝑗 is the proportion of species 1’s seeds dispersing from patch i to patch j. 157 

𝐿1,𝑡,𝑖 is the seed number of species 1 in patch i, while 𝐿1,𝑡,𝑗 is the seed number of 158 

species 1 in patch j. The dynamics of the two species within any patch can be 159 

expressed with equations of the form eqn 4a-c with appropriate changes in subscripts. 160 
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Following Hart et al. [14] and Uriarte et al. [4], we consider individual variation in 161 

competitive sensitivity (r) and assume it obeys a four-parameter beta distribution 162 

(characterized by the mean �̅�, variance 𝜎𝑟
2, the maximum and the minimum), 163 

regardless of patch quality. The variance 𝜎𝑟
2 can reflect the magnitude of IV, with IV 164 

at 𝜎𝑟
2 > 0 but no IV if 𝜎𝑟

2 = 0.  165 

We simulate the lattice-structured landscape with periodic boundaries, consisting 166 

of 10×10 patches (cells) of varying habitat quality and spatial habitat autocorrelation 167 

(figure 1a, b). Variation in patch quality (ℎ𝑖) is characterized using a probability 168 

distribution (uniform or gamma) with the mean ℎ̅ and the variance 𝜎ℎ
2 (𝜎ℎ

2 = 0 169 

representing the homogeneous landscape). We assume the low-density fecundity 𝜆𝑖 170 

of individuals inhabiting a patch i is positively correlated to the local patch quality (i.e. 171 

𝜆𝑖1 = 𝑎ℎ𝑖, 𝜆𝑖2 = 𝑏ℎ𝑖). Equation 2 demonstrates that both greater 𝜆 and lower r have 172 

a positive effect on competitive ability [41]. As such, we assume that there exists a 173 

tradeoff between 𝜆 and r for both competitors (i.e. higher fecundity implies greater 174 

sensitivity to competition and vice versa). This is implemented by assuming that 𝑎 >175 

𝑏 > 0 and �̅�1 > �̅�2. To make our results comparable to Hart et al. [14], we set �̅�1 =176 

0.012 and �̅�2 = 0.011. In our study, two types of landscape are considered by 177 

generating spatially correlated random fields based on variogram models [46] 178 

(electronic supplementary material, appendix A and figure S1 in appendix C): 179 

randomly structured (Moran’s I = 0) and spatially autocorrelated (Moran’s I = 0.75) 180 

landscapes (e.g. figure 1a, b). Additional simulations with intermediate Moran’s I = 181 
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0.5 are provided in figures S2-S4 (electronic supplementary material, appendix C). 182 

Using R [47], we simulate three scenarios (see Table 1): (i) the separate effect of 183 

habitat heterogeneity and IV on the coexistence of two competitors; (ii) the interactive 184 

effect of IV and landscape heterogeneity on competitive coexistence; and (iii) the 185 

effect of dispersal rates on spatial competition.. Specifically, we study spatial 186 

coexistence by modelling invasion dynamics, i.e. an exotic species (greater fecundity 187 

or lower competitive sensitivity) with low initial density invades into the patches 188 

housing a resident species until the system reaches the equilibrium state [14]. 189 

However, for display purposes, we show competitive dynamics by initially assigning 190 

an intermediate density to each species in each patch (see figure 1 and sensitivity 191 

anlaysis in electronic supplementary material, figures S5-S6 in appendix C). We run 192 

simulations up to 1000 timesteps (sufficient for the system to reach its equilibrium 193 

state) with 50 replicates for each scenario (varying IV, habitat heterogeneity, spatial 194 

autocorrelation, or dispersal rate), and quantify the competition dynamics over the 195 

landscape (population densities of the two species across space and time). A new 196 

landscape was generated for each simulation run, by randomly drawing the habitat 197 

quality of each patch from a normal distribution with a given variance. These patch 198 

properties determined the fecundity of each species within that patch for the duration 199 

of the run. A broad range of biologically reasonable parameter combinations were 200 

explored and found to yield qualitatively consistent competitive patterns (see 201 

electronic supplementary material, figures S2-S10 in appendix C). As such, we use 202 
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one of these parameter combinations as a representative reference parameter set 203 

throughout.  204 

3. Results 205 

Firstly, we undertook a systematic comparison of competitive dynamics in random vs. 206 

autocorrelated landscapes (Figure 1). In both landscapes, only the combination of IV 207 

and patch-quality variation results in species coexistence (blue lines in figure 1c, d), 208 

while other cases lead to the exclusion of the inferior species. In particular, the cases 209 

without IV result in rapid species exclusion, regardless of habitat heterogeneity (red 210 

and black lines in figure 1c, d). In the homogeneous landscape including IV (all 211 

patches with the same quality) slows down species exclusion (green lines in figure 1c, 212 

d) but does not prevent it. We find that there is little difference between random and 213 

auto-correlated landscapes, with the coexistence (or exclusion) patterns remaining the 214 

same and very small changes in equilibrium population levels. 215 

 Here the combined effects of IV in r and variation in habitat quality facilitate 216 

species coexistence because the negative, concave-up relationship between 217 

competitive sensitivity (r) and seed production (L) can alter the dominance of the 218 

superior species in heterogeneous landscapes (figure 2). Specifically, if the low 219 

density fecundities (𝜆) of the two species are the same (e.g. for homogeneous 220 

landscapes), it is clear that the relationship between r and L is also the same. Thus, IV 221 

in r speeds up competitive exclusion and species 2 (with lower mean r) wins (figure 222 

2a). In the heterogeneous landscape, variation in habitat quality induces differences in 223 
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fecundity between patches. Thus, the nonlinear relationship between r and L is not 224 

only species-specific but also patch-specific, and the degree of dominance of the 225 

superior species in one patch might decline in another (figure 2b). For instance, for 226 

two neighbouring patches i and j with variation in patch quality, the mean seed 227 

production of species 1 in patch j can be greater than that of species 2 in patch i. This 228 

allows dispersal of species 1 from patch j to compensate for species 1’s higher 229 

sensitivity to competition, ultimately allowing it to dominate patch i. Thus, regional 230 

coexistence can occur. The underlying mechanism can be thought of the interplay of 231 

nonlinear averaging and source-sink dynamics. 232 

 Secondly, we evaluated the effect of individual variation on competitive 233 

outcomes through varying IV in r between species in random and autocorrelated 234 

landscapes (figure 3a, b). For limited dispersal rates (m = 0.01), the species with 235 

larger IV dominates in either landscape type. If the difference in IV between two 236 

species is too small, then IV fosters species coexistence. Furthermore, the coexistence 237 

region expands in autocorrelated landscapes relative to random landscapes, reducing 238 

the region where species 2 dominates. This indicates that spatial autocorrelation in 239 

habitat quality weakens the competitive ability of species 2. 240 

The degree of variation in patch quality also has significant effects on species 241 

coexistence (figure 3c). In the homogeneous landscape (𝜎ℎ
2 = 0) or landscapes with 242 

small variation in patch quality, the dominant species 1 (with greater fecundity) 243 

outcompetes species 2 (with lower competitive sensitivity). However, increasing 244 
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variation in patch quality creates high quality patches which favour species 2’s lower 245 

competitive sensitivity. This allows the two species to co-occur regionally. At high 246 

variation in patch quality, the population density of species 2 exceeds species 1, and 247 

thus the dominance shifts from species 1 to species 2. 248 

 Thirdly, since individual dispersal can alter population dynamics in 249 

heterogeneous landscapes, we systematically investigated the effects of dispersal rate 250 

on species coexistence. At zero dispersal rate, species can coexist, with species 2 251 

having a higher final population density (figure 4a). At low dispersal rates, the 252 

dominance of species 2 increases with dispersal rate. However, this trend reverses at 253 

high dispersal rates with species 1 becoming dominant and excluding species 2. When 254 

the dispersal rate varies between species, large differences in dispersal rate result in 255 

competitive exclusion, and the species with the lower dispersal rate wins in both 256 

random and autocorrelated landscapes (figure 4b, c). Coexistence occurs when the 257 

difference in dispersal rates of both species is relatively small. Spatial autocorrelation 258 

in patch quality produces a wider coexistence region than the random landscapes 259 

(figure 4c). Note that without IV, the coexistence region decreases rapidly due to 260 

competitively exclusion of species 2 (electronic supplementary material, figure S10 in 261 

appendix C). 262 

Finally, we determined the spatial distribution of the coexisting species in 263 

spatially heterogeneous landscapes (electronic supplementary material, figure S8). In 264 

both random and autocorrelated landscapes, individuals of species 2 are more likely to 265 
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inhabit high-quality patches due to their lower mean competitive sensitivity. In 266 

contrast, individuals of species 1 are more likely to be found in low-quality patches 267 

where their higher fecundity rate compensates for this poorer habitat. Although 268 

species have different habitat preferences, species can coexist locally and regionally 269 

when dispersal rates are low. 270 

4. Discussion 271 

Early non-spatial models of species competition found that, due to the negative, 272 

concave-up relationship between competitive sensitivity and population growth, IV in 273 

competitive sensitivity reinforced competitive hierarchies, thereby promoting 274 

exclusion of weaker competitors from the community [14]. However, we found that 275 

spatial heterogeneity in habitat quality reverses this outcome. Variation in patch 276 

quality altered the strength of the nonlinear competitive relationship and reduced 277 

species differences in competitive ability (figure 2b), allowing them to co-occur on 278 

both local and regional scales. In addition, with short-range dispersal, conspecifics 279 

aggregated while heterospecifics segregated in spatially autocorrelated landscapes 280 

according to the spatial distribution of the coexisting species (electronic 281 

supplementary material, figure S8 in appendix C). This further decreases the intensity 282 

of interspecific interaction and thus reduces the probability of competitive exclusion, 283 

as intraspecific, rather than inter-specific, interactions dominate the population 284 

dynamics. Consequently, the probability of regional coexistence of species was higher 285 

in auto-correlated landscapes compared to those with random structure (figures 3b & 286 
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4c). Therefore, habitat heterogeneity promotes species coexistence through two key 287 

mechanisms, the direct effect of variation in habitat quality and, additionally, the 288 

effect of spatial autocorrelation in local habitat quality. 289 

These effects of habitat heterogeneity depend on the rate at which the species 290 

disperse within the landscape. In particular, for species with similar dispersal rates, 291 

habitat heterogeneity promoted coexistence when these rates were low, but as rates 292 

increased, one species came to dominate and eventually excluded the other. This 293 

phenomenon follows naturally from the observation that the effect of increasing 294 

dispersal rate is approximately the same as that of increasing dispersal range or, 295 

equivalently, increasing the characteristic size of a habitat patch [48]. Thus, for a fast 296 

dispersing species, the landscape can be regarded as being composed of a smaller 297 

number of larger “patches” (each made up of several of lattice cells) with a habitat 298 

quality equal to the average quality in those constituent cells. As a result, the variation 299 

in habitat quality experienced by a fast dispersing species is lower than that 300 

experienced by a slow dispersing species, thus the effect of habitat heterogeneity 301 

declines with dispersal rate. This emergent property of the model can be interpreted 302 

ecologically as increasing dispersal rates causing waste of resources on poorer 303 

habitats [49] and the destruction of refuges for weaker competitors.   304 

Furthermore, large differences in dispersal rate between species promote 305 

competitive exclusion, with the slower dispersing species winning. This is initially a 306 

counter-intuitive result, in that greater dispersal rate is typically an advantage. 307 
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However, it can, again, be understood in terms of the connection between dispersal 308 

rate and effective patch size. In particular, whereas a fast dispersing species 309 

experiences a landscape of large patches of similar quality, a slow dispersing species 310 

can distinguish between patches of high quality and those of low quality. In ecological 311 

terms, a fast dispersing species wastes a significant proportion of the seeds it produces 312 

on poorer habitats, while the slow dispersing species does not and thus selectively 313 

colonizes high quality habitats [49]. Thus, the optimal dispersal strategy for a species 314 

may depend on the scale of heterogeneity within the landscape it inhabits. This can be 315 

expected to shape the dispersal strategies of resident species through natural selection 316 

[50]. 317 

Previous studies have classified the mechanisms by which species can coexist in 318 

spatially heterogeneous landscapes as: a spatial relative nonlinearity, a spatial storage 319 

effect, and growth-density covariance [7, 8]. In these terms, species coexistence 320 

emerges in our model as a result of the simultaneous operation of a spatial relative 321 

nonlinearity and a spatial storage effect (electronic supplementary material, appendix 322 

B). On the one hand, a spatial relative nonlinearity is created by the interplay between 323 

habitat heterogeneity and the nonlinear relationship between competitive sensitivity 324 

and population growth, which is not only patch-specific but also species-specific [3]. 325 

This landscape scale variation in the strength of the interaction between the species 326 

creates variation in the relative competitive strength of the two species, providing the 327 

equalising mechanism needed for coexistence [51]. On the other hand, a spatial 328 
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storage effect arises when a species response to local patch quality varies in space 329 

(positive relationship between fecundity and local quality in our model), thereby 330 

generating a covariance between habitat quality and competitive ability (i.e. the 331 

interaction between the effects of environment and competition in determining 332 

population growth rate [1, 8]; see derivation in electronic supplementary material, 333 

appendix B). For species with IV in competitive sensitivity (as the first niche axis), 334 

habitat heterogeneity acts as a second niche axis, creating a broader range of niches 335 

for the species to fill and thus promoting coexistence. In addition, relatively low 336 

dispersal rates among patches further facilitate species coexistence both locally and 337 

regionally by maximizing the species’ experience of habitat heterogeneity, a 338 

fundamental component of the mechanisms outlined above. 339 

The interactions between habitat heterogeneity and individual variation have clear 340 

implications for future empirical studies. In particular, while there is substantial 341 

experimental evidence for the existence of habitat heterogeneity and IV in ecological 342 

systems, there has been little work exploring their combined effects. Instead, 343 

experimental studies have focused on predicting competitive outcomes by measuring 344 

the variation of functional traits within and between species [28]. Additionally, the 345 

interplay of IV and habitat heterogeneity can reinforce the effects of spatial 346 

nonlinearity and spatial storage effects. Recent empirical studies have found that in 347 

spatially heterogeneous landscapes, species responses to local patch quality (with 348 

variation in soil nutrients) result in an increase in population density as variation in 349 
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patch quality increases, suggesting that more species and more individuals could 350 

co-occur [52, 53]. Thus, integrating individual-level variation in species traits with 351 

spatial habitat heterogeneity into statistical analysis of experimental data could offer 352 

new insights into the mechanism of spatial competitive coexistence. 353 

Our study demonstrates the critical role of habitat heterogeneity for species 354 

coexistence in a spatial competition model with IV. In particular, habitat heterogeneity 355 

promotes spatial coexistence in a two-competitor system if both species have: (1) 356 

similar degrees of IV and a negative, concave-up relationship between competitive 357 

sensitivity and per-capita growth, (2) a low dispersal rate relative to the scale of 358 

habitat variability, and (3) a life-history trade-off between competitive sensitivity and 359 

fecundity. Our model suggests that previous non-spatial models might underestimate 360 

species coexistence and thus biodiversity in spatially realistic landscapes. Note that, 361 

IV is constant in our model, but we might expect a strong selective pressure on IV if 362 

its degree is insufficient to maintain species coexistence from an evolutionary 363 

perspective. This type of selection occurs rapidly when there is only a small change in 364 

the relative abundance of existing genotypes in the population. As such, we strongly 365 

recommend that future models could further explore this process in the context of 366 

species range boundaries by tracking both demography and the evolution of a 367 

quantitative trait in a population that is continuously distributed in space [54-56]. 368 

Further studies could also extend this theoretical framework to multispecies systems, 369 

but care needs to be taken in inferring that our current outcomes can be applied to 370 
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diverse communities, as there may be some differences in the behaviours of two vs. 371 

multispecies models [57]. Overall, we demonstrate the importance of the combination 372 

of habitat heterogeneity and IV for outcomes of competition between species, offering 373 

new insights into the mechanisms of spatial coexistence at both local and regional 374 

scales.  375 
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Tables 545 

Table 1. Three cases of spatial competition simulation. Abbreviations: 𝑛1,𝑡 – seed density of species 1 at time t; 𝑔 – seed germination rate; 𝜆 546 

– low-density fecundity of the germinated seed; 𝛼𝑖𝑗 – per-capita effects of conspecifics (i=j) or heterospecifics (i≠j) on seed production; r – 547 

competitive sensitivity; e – species competitive effect; 𝑚1,𝑖→𝑗  - proportion of species 1’s seeds from patch i dispersing into patch j; 𝐿1,𝑡,𝑖 - seed 548 

production of species 1 in patch i at time t; 𝜎𝑟
2 - magnitude of IV in r; ℎ𝑖 - quality of patch i; and 𝜎ℎ

2 - variation in patch quality. 549 

Simulation 

case 

Landscape heterogeneity Individual variation (IV) in r 

 Dispersal rate (m) Figures Spatial autocorrelation 

(Moran’s I) 

Variation in patch quality 

(𝜎ℎ
2) 

 Mean (�̅�) Variance (𝜎𝑟
2) 

1 0,0.5,0.75 0,8.3  �̅�1= 0.012,�̅�2= 0.011 5e-5  0.01 1,2,S2 

2 0,0.5,0.75 0,0.2,0.4,…10  �̅�1= 0.012,�̅�2= 0.011 0.5e-5,1e-5, …10e-5 0.01 3,S3 

3 0,0.5,0.75 0,8.3  �̅�1= 0.012,�̅�2= 0.011 5e-5 0,0.01,…0.2 4,S4,S8 
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Figure captions 550 

Figure 1. Dynamics of two competitors in (a) random (Moran’s I = 0) vs. (b) 551 

autocorrelated (Moran’s I=0.75) landscapes, where each cell represents a patch with 552 

different quality (described using uniform distributions). The landscape is 553 

homogeneous when 𝜎ℎ
2 = 0, i.e. all patches have the same quality (not shown). 554 

Graphs (c & d): Population dynamics of species 1 (short dashed lines) and species 2 555 

(dashed lines) in both random and autocorrelated landscapes with/without IV and 556 

variation in patch quality. Parameter values: ℎ̅ = 5.5, 𝜎ℎ
2 = 8.3, m = 0.01, 𝜆𝑖1 = ℎ𝑖, 557 

𝜆𝑖2= 0.77ℎ𝑖, 𝑒1 = 𝑒2 = 1, 𝑔1 = 𝑔2 = 1, �̅�1 = 0.012, �̅�2 = 0.011, 𝑛1,1,𝑖= 𝑛2,1,𝑖 = 558 

175, max/min values for beta distribution: �̅�1 ± 0.0109, �̅�2 ± 0.0109. 559 

Figure 2. Effects of IV in r on species coexistence in homogeneous vs. heterogeneous 560 

landscapes, with IV being constant across species and patches. (a) The nonlinear 561 

relationship between r and L for two competitors is identical in the homogeneous 562 

landscape, with IV accelerating competition exclusion. (b) In the heterogeneous 563 

landscape with variation in patch quality, IV can facilitate coexistence or switch 564 

which species is dominant. For visualisation, results are illustrated using a Gaussian 565 

distribution for r. Note that, the straight lines perpendicular to the coordinate axes 566 

represent the case without IV. Parameter values: �̅�1 = 0.015, �̅�2 = 0.01, 𝜎𝑟
2 = 0.001, 567 

m = 0.01, 𝑒1 = 𝑒2 = 1, 𝑔1 = 𝑔2 = 1,  𝑛1 = 𝑛2 =165. In (a): ℎ = 3, �̅�1 = �̅�2 = ℎ̅; 568 

(b): ℎ𝑖 = 3 ℎ𝑗  = 5, �̅�1 = 1.25ℎ̅, �̅�2 = ℎ̅. 569 
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Figure 3. Interactive effects of IV and landscape heterogeneity (spatial 570 

autocorrelation and variation in patch quality) on species coexistence. IV varies across 571 

species in both (a) random and (b) autocorrelated landscapes. (c) Effect of variation in 572 

patch quality (𝜎ℎ
2) on species final populaion density with 95% confidence interval. 573 

Graphs (a & b): patch quality is uniformly distributed with 𝜎ℎ
2 = 8.3; and graph (c): 574 

patch quality follows the gamma distribution with 𝜎𝑟
2 = 5e-5. Graphs (a & c): 575 

Moran’s I = 0; and graph (b): Moran’s I = 0.75. Other parameters: ℎ̅ = 5.5, m = 0.01, 576 

𝜆𝑖1 = ℎ𝑖, 𝜆𝑖2= 0.77ℎ𝑖, 𝑒1 = 𝑒2 = 1, 𝑔1 = 𝑔2 = 1, �̅�1 = 0.012, �̅�2 = 0.011, 577 

max/min values for beta distribution: �̅�1 ± 0.0109, �̅�2 ± 0.0109. Standard 578 

derivations of 50 replicates of graphs (a & b) are shown in figure S7 (appendix C). 579 

Figure 4. Effect of dispersal rate on the competitive outcomes in both random vs. 580 

heterogeneous landscapes. Graph (a): the effect of dispersal rate on final population 581 

density with two competitors having the same dispersal rate. Dispersal rates vary 582 

across species in (b) random and (c) autocorrelated landscapes. Patch quality is 583 

uniformly distributed with 𝜎ℎ
2= 8.3. Graphs (a & b): Moran’s I = 0; and graph (c): 584 

Moran’s I=0.75. Other parameters: ℎ̅ = 5.5, m = 0.01, 𝜆𝑖1 = ℎ𝑖, 𝜆𝑖2= 0.77ℎ𝑖, 𝑒1 = 585 

𝑒2 = 1, 𝑔1 = 𝑔2 = 1, �̅�1 = 0.012, �̅�2 = 0.011, 𝜎𝑟
2 = 5e-5, max/min values for beta 586 

distribution: �̅�1 ± 0.0109, �̅�2 ± 0.0109. Standard derivations (SDs) of 50 replicates 587 

of (a) are omitted for clarity as they are very small (<7), while SDs for graphs (b & c) 588 

are shown in figure S7 (appendix C). 589 


