52 research outputs found

    Reduced Order Models for Prediction of Groundwater Quality Impacts from CO2 and Brine Leakage

    Get PDF
    AbstractA careful assessment of the risk associated with geologic CO2 storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO2 and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO2 leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highly efficient surrogates for the complex process-based numerical models.In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO2 and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO2 storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO2 storage projects

    Combining multiple lower-fidelity models for emulating complex model responses for CCS environmental risk assessment

    Get PDF
    Numerical modeling is essential to support natural resource management and environmental policy-making. In the context of CO2 geological sequestration, these models are indispensible parts of risk assessment tools. However, because of increasing complexity, modern numerical models require a great computational effort, which in some cases may be infeasible. An increasingly popular approach to overcome computational limitations is the use of surrogate models. This paper presents a new surrogate modeling approach to reduce the computational cost of running a complex, high-fidelity model. The approach is based on the simplification the high-fidelity model into computationally efficient, lower-fidelity models and on linking them with a mathematical function (linking function) that addresses the discrepancies between outputs from models with different levels of fidelity. The resulting linking function model, which can be developed with small computational effort, can be efficiently used in numerical applications where multiple runs of the original high-fidelity model are required, such as for uncertainty quantification or sensitivity analysis. The proposed approach was then applied to the development of a reduced order model for the prediction of groundwater quality impacts from CO2 and brine leakage for the National Risk Assessment Partnership (NRAP) project

    Impacts of elevated dissolved CO2 on a shallow groundwater system: reactive transport modeling of a controlled-release field test

    Get PDF
    One of the risks that CO2 geological sequestration imposes on the environment is the impact of potential CO2/brine leakage on shallow groundwater. The reliability of reactive transport models predicting the response of groundwater to CO2 leakage depends on a thorough understanding of the relevant chemical processes and key parameters affecting dissolved CO2 transport and reaction. Such understanding can be provided by targeted field tests integrated with reactive transport modeling. A controlled-release field experiment was conducted in Mississippi to study the CO2-induced geochemical changes in a shallow sandy aquifer at about 50 m depth. The field test involved a dipole system in which the groundwater was pumped from one well, saturated with CO2 at the pressure corresponding to the hydraulic pressure of the aquifer, and then re-injected into the same aquifer using a second well. Groundwater samples were collected for chemical analyses from four monitoring wells before, during and after the dissolved CO2 was injected. In this paper, we present reactive transport models used to interpret the observed changes in metal concentrations in these groundwater samples. A reasonable agreement between simulated and measured concentrations indicates that the chemical response in the aquifer can be interpreted using a conceptual model that encompasses two main features: (a) a fast-reacting but limited pool of reactive minerals that responds quickly to changes in pH and causes a pulse-like concentration change, and (b) a slow-reacting but essentially unlimited mineral pool that yields rising metal concentrations upon decreased groundwater velocities after pumping and injection stopped. During the injection, calcite dissolution and Ca-driven cation exchange reactions contribute to a sharp pulse in concentrations of Ca, Ba, Mg, Mn, K, Li, Na and Sr, whereas desorption reactions control a similar increase in Fe concentrations. After the injection and pumping stops and the groundwater flow rate decreases, the dissolution of relatively slow reacting minerals such as plagioclase drives the rising concentrations of alkali and alkaline earth metals observed at later stages of the test, whereas the dissolution of amorphous iron sulfide causes slowly increasing Fe concentrations

    Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage

    Get PDF
    AbstractAs an effort to evaluate risks associated with geologic sequestration of CO2, this work assesses the potential effects of CO2 leakage on groundwater quality. Reactive transport simulations are performed to study the chemical evolution of aqueous Pb and As after the intrusion of CO2 from a storage reservoir into a shallow confined groundwater resource. The simulations use mineralogies representative of shallow potable aquifers in the USA; both 2D (depth-averaged) and 3D simulations are conducted. Sensitivity studies are also conducted for variation in hydrological and geochemical conditions, as well as several other critical parameters. Model results suggest that a significant increase of aqueous lead (Pb) and arsenic (As) may occur in response to CO2 intrusion, but in most sensitivity cases their concentrations remain below the EPA specified maximum contaminant levels (MCLs). Adsorption/desorption from mineral surfaces significantly impacts the mobilization of Pb and As. Results from the 3D model agree fairly well with the 2D model in cases where the rate of CO2 intrusion is relatively small (so that the majority of CO2 readily dissolves in the groundwater), whereas discrepancies between 2D and 3D models are observed when the CO2 intrusion rate is comparably large

    Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Full text link
    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6

    Reactive transport model of sulfur cycling as impacted by perchlorate and nitrate treatments

    Get PDF
    Microbial souring in oil reservoirs produces toxic, corrosive hydrogen sulfide through microbial sulfate reduction, often accompanying (sea)­water flooding during secondary oil recovery. With data from column experiments as constraints, we developed the first reactive-transport model of a new candidate inhibitor, perchlorate, and compared it with the commonly used inhibitor, nitrate. Our model provided a good fit to the data, which suggest that perchlorate is more effective than nitrate on a per mole of inhibitor basis. Critically, we used our model to gain insight into the underlying competing mechanisms controlling the action of each inhibitor. This analysis suggested that competition by heterotrophic perchlorate reducers and direct inhibition by nitrite produced from heterotrophic nitrate reduction were the most important mechanisms for the perchlorate and nitrate treatments, respectively, in the modeled column experiments. This work demonstrates modeling to be a powerful tool for increasing and testing our understanding of reservoir-souring generation, prevention, and remediation processes, allowing us to incorporate insights derived from laboratory experiments into a framework that can potentially be used to assess risk and design optimal treatment schemes

    Developing a robust geochemical and reactive transport model to evaluate possible sources of arsenic at the CO2 sequestration natural analog site in Chimayo, New Mexico

    Full text link
    Migration of carbon dioxide (CO2) from deep storage formations into shallow drinking water aquifers is a possible system failure related to geologic CO2 sequestration. A CO2 leak may cause mineral precipitation/ dissolution reactions, changes in aqueous speciation, and alteration of pH and redox conditions leading to potential increases of trace metal concentrations above EPA National Primary Drinking Water Standards. In this study, the Chimayo site (NM) was examined for site-specific impacts of shallow groundwater interacting with CO2 from deep storage formations. Major ion and trace element chemistry for the site have been previously studied. This work focuses on arsenic (As), which is regulated by the EPA under the Safe Drinking Water Act and for which some wells in the Chimayo area have concentrations higher than the maximum contaminant level (MCL). Statistical analysis of the existing Chimayo groundwater data indicates that As is strongly correlated with trace metals U and Pb indicating that their source may be from the same deep subsurface water. Batch experiments and materials characterization, such as: X-ray diffraction (XRD), scanning electron microscopy (SEM), and synchrotron micro X-ray fluorescence (#2;-XRF), were used to identify As association with Fe-rich phases, such as clays or oxides, in the Chimayo sediments as the major factor controlling As fate in the subsurface. Batch laboratory experiments with Chimayo sediments and groundwater show that pH decreases as CO2 is introduced into the system and buffered by calcite. The introduction of CO2 causes an immediate increase in As solution concentration, which then decreases over time. A geochemical model was developed to simulate these batch experiments and successfully predicted the pH drop once CO2 was introduced into the experiment. In the model, sorption of As to illite, kaolinite and smectite through surface complexation proved to be the key reactions in simulating the drop in As concentration as a function of time in the batch experiments. Based on modeling, kaolinite precipitation is anticipated to occur during the experiment, which allows for additional sorption sites to form with time resulting in the slow decrease in As concentration. This mechanism can be viewed as trace metal “scavenging” due to sorption caused secondary mineral precipitation. Since deep geologic transport of these trace metals to the shallow subsurface by brine or CO2 intrusion is critical to assessing environmental impacts, the effective retardation of trace metal transport is an important parameter to estimate and it is dependent on multiple coupled reactions. At the field scale, As mobility is retarded due to the influence of sorption reactions, which can affect environmental performance assessment studies of a sequestration site
    • …
    corecore