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Abstract 

A careful assessment of the risk associated with geologic CO2 storage is critical to the deployment of large-scale storage projects. 
A potential risk is the deterioration of groundwater quality caused by the leakage of CO2 and brine leakage from deep subsurface 
reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the 
application of traditional numerical models to fully evaluate the impact of CO2 leakage on groundwater can be computationally 
complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order 
models (ROMs) can be used as highly efficient surrogates for the complex process-based numerical models.  
 
In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent 
risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous 
flow and transport conditions in the presence of complex leakage functions for CO2 and brine. The second ROM is obtained from 
models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all 
relevant geochemical reactions.  To quantify possible impacts to groundwater aquifers,  the basic risk metric is taken as the 
aquifer volume in which the water quality of the aquifer may be affected by an underlying CO2 storage project. The integration of 
the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and 
chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of 
the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO2 storage projects. 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of GHGT. 

Keywords: groundwater;CO2 leakage; brine leakage; reduced order models; 

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Organizing Committee of GHGT-12

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2014.11.518&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2014.11.518&domain=pdf


4876   Liange Zheng et al.  /  Energy Procedia   63  ( 2014 )  4875 – 4883 

1. Introduction 

Carbon dioxide (CO2) geologic storage is being considered as a possible measure to curb the anthropogenic 
emissions of greenhouse gases. A careful assessment of the risk associated with CO2 geologic storage is critical to 
deployment of large scale CO2 geological storage. One of the potential risks is the impact of potential CO2 leakage 
from deep subsurface reservoirs on overlying groundwater aquifers. The leakage of CO2 could affect such aquifers 
by increasing the concentration of carbonic acid and causing pH to drop, by mobilizing trace elements through 
mineral dissolution, desorption, and/or exchange, and by increasing dissolved solids, trace metals, and organics 
directly from the leaking brine [1-8]. Accurate prediction of groundwater impacts is complicated by the uncertainty 
and variability in model input data, including key parameters that are needed to describe leakage sources and the 
properties of aquifer systems. In principle, the full range of potential groundwater impacts could be assessed through 
rigorous numerical modeling, but a complete treatment of uncertainty and variability would be computationally 
prohibitive for most operators and regulators. 

The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of the 
potential risks associated with changes in groundwater chemistry from CO2 injection. This quantification approach is 
based on simulating coupled physical and chemical processes to predict how the natural system behaves over time, 
and it includes uncertainty quantification explicitly. In order to address uncertainty probabilistically, NRAP is 
developing efficient, reduced-order models (ROMs) as part of its approach. These ROMs are built from detailed, 
physics-based process models to provide confidence in the predictions over a range of conditions. However, the 
ROMs are designed to reproduce accurately the predictions from the computationally intensive process models at a 
fraction of the computational time, thereby allowing the utilization of Monte Carlo methods to probe variability in 
key parameters.  

The development of ROMs that describe impacts to protected groundwater should consider all relevant physical 
flow and chemical processes. Developing ROMs based on high-fidelity numerical models that incorporate all 
relevant chemical reactions and transport fields is very challenging and computationally demanding. We circumvent 
these difficulties by correcting output from a ROM (referred to as the hydrology ROM, including hydrological 
processes and only few chemical reactions) with chemical scaling functions derived from more complex process 
models that consider comprehensive chemical reactions.  

The natural system studied here is an alluvium aquifer consisting of layers of relatively high-permeable sands 
interbedded with low-permeable clays based on the hydrostratigraphic structure of the High Plains aquifer. Input 
parameters considered include: aquifer heterogeneity, permeability, porosity, regional groundwater flow, injection 
period, wellbore remediation, CO2, TDS, trace metal leakage rates over time, and geochemical parameters. The 
hydrology ROM and the chemistry scaling function are specific to thresholds described in Section 2 that represent no 
net degradation to the groundwater quality. The hydrology ROM is derived from physics-based simulations 
accounting for heterogeneous transport conditions, calcite dissolution/precipitation, and mitigation for leakage 
through a single wellbore and is described in Section 3. The chemistry scaling function corrects the hydrology ROM 
output for relevant geochemical reactions and is described in Section 4. We discuss the impacts to groundwater 
chemistry in Section 5. And in Section 6 we summarize the findings from this study. 

2.  Impact thresholds 

The basic risk metric used in this study to quantify possible impacts to groundwater aquifers is the aquifer 
volume in which the water quality of the aquifer may be affected by CO2 and brine leakage, which is defined as the 
aquifer volume with concentration of chemical components such as pH, TDS, trace metals and organic higher (or 
less) than their respective threshold values. The impact thresholds defined for pH, TDS, trace metals, and selected 
organics in Table 1 represent concentrations above the background water chemistry. Each threshold was calculated 
as the 95%-confidence, 95%-coverage tolerance from data collected in a 2010 U.S. Geological Survey (USGS) 
groundwater survey of 30 wells within the High Plains aquifer from an area outside the modeled domain. This data 
set was chosen because spatial and temporal data were not available within the modeled domain. We consider 
benzene, naphthalene, and phenol as representative, respectively, of benzene-toluene- ethylbenzene-xylene (BTEX) 
volatile aromatic compounds typically found in petroleum, poly-aromatic hydrocarbons (PAH), and phenol organic 
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compounds that could be present in the leaking brine [9]. Table 1 also includes regulatory standards which consist of 
primary or secondary maximum contaminant levels designated by the U.S. EPA (2009). Primary drinking water 
standards are for trace metals, such as As, Ba, Cd, Cr, Cu, Pb, BTEX and PAHs (as Benzo(a)pyrene) organics 
among others, and are legally enforced for the protection of public health by limiting the levels of contaminants in 
drinking water. Secondary drinking water standards, which include standards for Fe, Mn, and Zn, are non-
enforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking water. 
Currently, drinking water standards have not been established for phenols as a group.   

Table 1: Initial aquifer composition used in the simulations, with estimated mean concentration values and no-impact thresholds. 

Parameter Initial Value  Mean of Selected and Adjusted 2010 
Datab 

Impact Thresholdc U.S. EPA Regulatory Standard 

pH 7.6a 7.5c 7.0 6.5 

TDS 570 mg/La,d 440 mg/Ld 1,300 mg/Ld,e 500 mg/Le 

Arsenic 1.500 g/L 1.500 g/L 9.300 g/L 10.0 g/L 

Barium 43.000 μg/L b 43.000 μg/L b 140.000 g/L 2,000 g/L 

Cadmium 0.059 g/L 0.059 g/L 0.250 g/L 5 g/L 

Chromium 1.000 g/L 1.000 g/L 3.900 g/L 100 g/L 

Iron 5.400 μg/L b 5.400 μg/L b 43.000 μg/L b 300 μg/L 

Lead 0.086 g/L 0.086 g/L 0.630 g/L 15 g/L 

Manganese 0.350 μg/Ld 0.350 μg/L d 7.000 μg/L d 50 μg/L 

Benzene 0 <0.030 μg/L d 0.030 μg/L g 5 μg/L 

Naphthalene 0 <0.200 μg/L d 0.200 μg/L g 700 μg/L 

Phenol 0 <0.003 μg/L f 0.003 μg/L g 10,000 μg/L h 
(a) Based on Carroll et al. [10].  
(b) Geometric mean except for pH.  
(c) 95%-confidence, 95%-coverage tolerance limit based on log values except for pH. 
(d) Rounded to two significant digits.  
(e) Threshold value exceeds regulatory standard; using the regulatory standard may result in widespread false positives under field 

conditions. 
(f)  As 4-Chloro-2-methylphenol 
(g) Detection limit for the 2010 U.S. Geologic Survey National Water-Quality Assessment Program (NAWQA) sample data. 
(h)  Recommended Water Quality Criteria for Human Health, consumption of Water + Organism (74 FR 27535); 

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm#hhtable 

3. Development of the hydrology reduced–order model 

The hydrology ROM considered the variability of: wellbore leakage rates, mitigation times and arsenic, barium, 
cadmium, chromium, iron, lead, manganese, benzene, naphthalene, and phenol concentrations in the leaking brine.  
It also considered the uncertainty in the hydrologic properties of the aquifer. In this section, we describe the reactive 
transport models, parameter variability, and leakage profiles used to build this ROM, as well as the fidelity of the 
resulting threshold-specific ROMs. We used PSUADE, an uncertainty quantification code [11] to establish sampling 
points for the reactive transport simulations, to conduct parameter sensitivity analysis, and to develop ROMs from 
the simulated results. 

3.1. Reactive transport model 

The first step in developing the hydrology ROM was to build statistical models of the aquifer that account for the 
variability and uncertainty in the lithology (as expressed by permeability). The natural system studied here is an 
alluvium aquifer consisting of layers of permeable sand interbedded with layers of clay with low permeability. The 
distribution of these sediments in the modeled domain was based on published data for  the High Plains aquifer. We 
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used material-volume fraction and correlation lengths derived from well logs to build 1,000 geostatistical models 
that contain 3-D distributions of high and low permeability zones for use in the reactive-transport simulations. Each 
simulation uses a different geostatistical realization combined with other variable inputs to assess the impact of 
leakage on groundwater quality.  

The numerical model domain extends to 10,000 m × 5,000 m × 240 m (x, y, z) with one leakage source placed at 
a depth of 198 m. The regional groundwater flow is maintained by a 0.3% hydraulic gradient. This model employs a 
variably spaced mesh with the smallest elements located at the leakage source with a total of 190,350 nodes.  

CO2 carbonation and the dissolution of calcite are the only reactions included in the model, which account for the 
predominant reactions affecting pH. But dissolved sodium, chloride, trace metals and organic compounds are treated 
as conservative tracers in the model.  

Conceptually, CO2 fluxes increase to a plateau during the onset of CO2 injection into the storage reservoir, 
maintain a constant flux during injection, and then decrease overtime to some minimal level (Fig. 1). The variability 
in the CO2 leakage profile was generated using four parameters: qCO2, the peak flux; T1C, the time needed to reach 
peak flux; dT2C,  the duration of the peak flux; and dT3C , the duration of the transition to zero flux after injection has 
stopped. Brine leakage profiles are different from that of CO2. Brine leakage was characterized with a maximum and 
constant flux during injection, which falls off to a final flux after injection stops. Uncertainty in the brine leakage 
profile was generated using four parameters: qBRN, the initial and maximum flux; qBRN, the final flux;T1B , the 
injection time; dT2B, the duration of the transition between the maximum and final flux. An additional parameter, 
TM, was included to represent wellbore mitigation time. Proposed parameter ranges for generalized CO2 and brine 
leakage models are given in Carroll et al.[12] 

 

 

Fig. 1. Schematic of the CO2 and brine leakage model parameters and profiles in the generalized model. 

3.2. Hydrology reduced order model 

1000 simulations of the model described in Section 3.1 were conducted and the volumes of aquifer with 
concentration less than thresholds were computed. The emulations were carried out to reproduce the simulated 
results for specific thresholds for pH, TDS, As, Ba, Cd, Cr, Fe, Mn, Pb, benzene, naphthalene, and phenol using 
global and time-based correlation coefficients. The global correlations directly compare ROM and simulation output 
of all output times. Globally, the hydrology ROMs for pH, trace metals, and organics are robust and yield R2 
between 0.9 and 0.99. This is not the case for TDS with global R2  0.74. There is strong correlation between CO2 
mass and pH plume volume, with a secondary dependence on mitigation time, which also correlates with cumulative 
mass of the leak. Correlations for the TDS, trace metal, and organic plume volumes on brine mass are more variable 
than pH volume because they are also dependent on brine concentration. 

4. Development of the chemical scaling function 

The chemical scaling function is used together with the hydrology ROM to estimate impact of leakage for trace 
metals and organics in the protected groundwater. Scaling functions are derived by comparing the output of models 
of deferent level of fidelity and are used to better emulate the response of an original high-fidelity model. The 
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approach is known as “variable-fidelity” or “multi-fidelity” modeling. Scaling functions can be multiplicative or 
additive depending on if the ratio rather than the difference between the responses from the lower and high-fidelity 
models is considered. In this work we found that the multiplicative approach provided the best accuracy when the 
scaling function g(X) was defined as: 

*)(
)()(

XV
XVXg

LFM

HFM    (1) 

where VHFM is the output volume calculated with the high-fidelity model with X input parameters and VLFM is the 
corresponding volume obtained with a low fidelity model with X* input parameters. To ensure the correspondence 
between the two models outputs, VLFM and VHFM, X* must be a subset of X. The exact form of the scaling function 
g(X) is typically unknown, especially for complex responses that depend on several physical and chemical processes 
such as those considered in this work. However, if we can find an approximation of the scaling function based on a 
relatively limited number of runs of the high- and low-fidelity models, VHFM can then be approximated as: 

)(~*)()(~ XgXVXV LFM    (2) 

Where )(~ XV  is the emulated volume, and )(~ Xg is the approximated scaling function designed to correct the value 
VLFM. In this work, VLFM(X*) is the output from a simulation that does not consider geochemistry (i.e., the hydrology 
ROM) and )(~ XV is the corresponding output when all the relevant geochemical processes are taken into account. To 
estimate the latter, we performed reactive transport simulations that consider comprehensive chemical reactions as 
described below. The process of developing the approximate scaling function is analogous to the development of a 
traditional response surface ROM. However, scaling functions are generally less complex than typical response 
surface ROMs because their only purpose is to scale output derived from a similar model [13]. 

We developed scaling functions for As, Ba, Cd, Pb, benzene, naphthalene, and phenol using the thresholds listed 
in Table 1. Scaling functions for pH and TDS were not necessary because carbonate geochemistry, included in the 
hydrology ROM, accounts for the dominate changes in pH; and because mineral dissolution does not significantly 
alter the TDS estimated from brine leakage. To generate a scaling function for each of these outputs we followed a 
two-step procedure. In the first step we designed a numerical experiment to perform multiple runs of a model with 
no chemistry (so-called low-fidelity model, and is similar to the physics-based process models that are used to 
generate hydrology ROM) and a model with chemistry (so-called high-fidelity model) with the hydrology and 
geochemical input. In step two, we estimated an approximation of the true scaling function (Eq.1) for each of the 
considered outputs. These approximated scaling functions )(~ Xg  are polynomial. Its outputs are used to correct the 
output from the model without chemistry (Eq.2). In this step, we applied least-square fitting to calculate the 
coefficients of the polynomials representing the scaling functions. In general, a third-order polynomial provided the 
best match between the numerical and emulated ratios for metals, while second-order polynomial provided more 
accurate fitting for organic compounds. Note that scaling functions could take forms other than polynomial, but we 
use polynomial because it is simple and accurate enough.  

The model with chemistry (so-called high-fidelity model) needed in the first step has the following features. It 
uses a single geostatistical realization of the aquifer lithology originally derived for the hydrology simulations (see 
Section 3.1) and a single CO2 and brine leakage profile. Reactive-transport simulations were conducted with 
TOUGHREACT [14] and used the same domain size, boundary conditions, and hydrological gradient as described 
in Section 3.1 with a refined mesh near the leakage source and a courser mesh in the far field. Leakage occurred at a 
single point (x = 2,000 m, y = 2,500 m, z = 250 m). The geochemical model includes over 70 aqueous species, 
dissolution and precipitation kinetics for 14 minerals, 5 cation exchange reactions, 36 sorption reactions, and 
oxidation kinetics for 3 organics. Kinetic constants, mineral, cation exchange, and sorption mass balance reactions 
and constants are detailed in Carroll et al. [12]. Equilibrium constants for aqueous complexes and minerals are taken 
primarily from the THERMODDEM database [15] which can be downloaded from the website: 
http://THERMODDEM.brgm.fr/index.asp. Cation exchange reactions are included for Na, Ca, Mg, and Ba, as are 
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surface complexation reactions for As, Cd and Pb on goethite, illite, kaolinite and montmorillonite. Kinetic rate 
parameters for most rock-forming minerals were taken from Palandri and Kharaka [16], which are based mainly on 
experimental studies conducted under far-from-equilibrium conditions. 

500 runs of models with no chemistry and models with chemistry were conducted and the corresponding VTM-HFM 
(volume of aquifer with trace metal concentration higher than thresholds obtained in the high-fidelity model) to VpH-

LFM (volume of aquifer with pH less than threshold obtained in the low-fidelity model) for each pair of runs were 
obtained. Scaling functions for trace metals were developed from the ratios of VTM-HFM to VpH-LFM because of 
observed correlations between trace metal and pH plume volumes. Correlations were observed not only for As, Cd 
and Pb whose uptake reactions are known to be pH-dependent, but also for Ba, whose release is driven by Ca 
exchange at mineral surfaces [7]. The indirect correlation for Ba with pH is caused by the pH-dependence of calcite 
dissolution.  

Scaling functions for organic compounds were developed from the ratios of Vorg-HFM (volume of aquifer with 
organics concentration higher than thresholds obtained in the high-fidelity model) to Vorg-LFM (volume of aquifer 
with organics concentration less than threshold obtained in the low-fidelity model) because the brine is the only 
source of organic compounds, and adsorption and oxidation reactions occur within the area where brine moves. 

Goodness of fit was evaluated by comparing scaling factors estimated from the numerical simulations (Eq. 1) and 
the emulations (Eq. 2). Correlation coefficients range between R2 = 0.76 to 0.86 for trace metals and R2 = 0.52 to 
0.66 for the organics.  Improvements in the accuracy of the scaling functions may be achieved by using different 
mathematical forms for the scaling functions. 

5. Results from the integrated ROM for groundwater chemistry 

 

 

Fig. 2. Application of the scaling factors for arsenic and lead (left graphs) to the hydrology ROM (right graphs) where the solid green line 
represents the trace-metal plume volume computed with the hydrology ROM (as metals transported tracers without chemical reactions), the 

dashed red line represents the plume computed with the hydrology ROM corrected for geochemical reactions, and the solid red line represents the 
pH plume volume. 

Fig. 2 and Fig. 3 compare plume volumes estimated from the hydrology ROM, which considered the reservoir 
source term for trace metals and organics, with plume volumes estimated with the scaling function that accounts for 
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the full suite of geochemical reactions. As mentioned above, scaling functions were not applied to pH and TDS 
plume volumes. Recall that the hydrology ROM considers variability and uncertainty in the geostatistical model and 
in CO2 and brine leakage rates. Inclusion of trace metal chemistry using the scaling function tends to increase plume 
volumes by about 10 times for As and Ba and 100 times for Cd and Pb, as exemplified by the green and dashed-red 
cumulative distribution profiles for As and Pb in Fig. 2. The results suggest that a release of As, Ba, Cd, and Pb 
from the shallow aquifer sediments as the pH plume advances has a greater footprint when chemical reactions are 
taken into account than when trace metals are transported from leakage point as passive tracers. There are three 
possible outcomes from this analysis. One is that trace metal leakage sources need not be considered for risk 
assessments, because their input will be small relative to geochemical reactions within the protected aquifer. The 
second outcome is that the pH plume volumes derived from the hydrology ROM could be used as proxies for Ba, 
Cd, and Pb, because their plume volumes are about the same as the pH plume volume, as can be seen by comparing 
the solid and dashed red lines in Fig. 2. This is not the case for As, whose plume was about 10 times smaller than the 
pH plume. The third outcome is that direct assessment of trace metal release from the aquifer sediment could lower 
the uncertainty. This can easily be achieved through experiment [5]. It is important to conduct the experiment 
because of the complexity of the geochemical reactions and uncertainty associated with assessable surface area 
available for reaction. Direct knowledge of the bulk sediment response to CO2 saturated waters might allow the trace 
metal thresholds to be directly correlated to variable pH thresholds.  

In contrast to the trace metals, application of the scaling factor (see Eq. 2) yields large decreases in the organic 
plume volumes that are attributed to strong bio-degradation. Plume sizes are reduced by 10 times for benzene (Fig. 
3), 100 times for phenol, and 1,000 times for naphthalene. Strong degradation of organics suggests minimal long-
term impact of organic constituents. 
 

 

Fig. 3. Application of the scaling factors for benzene (left graph) to the hydrology ROM (right graph) where the solid and dashed lines represent 
the uncorrected and corrected plume volumes for benzene. 

4. Conclusion 

We developed ROMs that describe changes in dilute groundwater chemistry if CO2 and brine were to leak into an 
overlying an alluvium aquifer similar to the High Plains aquifer, Haskel County, Kansas, USA. The protocol allows 
uncertainty and variability in aquifer heterogeneity, fluid transport, and geochemical reactions to be collectively 
evaluated to assess potential changes in groundwater pH, TDS, As, Ba, Cd, Pb, benzene, naphthalene and phenol 
concentrations by developing a scaling function that can be applied to correct the output from hydrology ROM. The 
chemical scaling function is developed by comparing output from 500 reactive-transport simulations with and 
without chemistry for simplified 3-D models based on a single representation of aquifer heterogeneity and CO2 and 
brine leakage profiles. No correction is needed for pH because calcite dissolution, the most important pH buffering 
processes, is included in the hydrology ROM. No correction is applied to TDS because calcite dissolution does not 
change the impacted volume above those predicted by the hydrology ROM. Adsorption and cation exchange are 
important for trace metal, but have very limited effect on TDS. Inclusion of chemical correction increases trace 
metal plumes by 10 to 100 times, suggesting that CO2 leakage leaches trace metals from the aquifer sediments and 
should be considered in risk assessments. Although more study is needed, as are corrections for other trace metals, 
such as chromium, iron, manganese, and zinc, the strong correlation of trace metal and pH plume volumes suggests 
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that trace metal impact may be approximated by pH plumes, greatly simplifying the calculations. In contrast to the 
observed increases in trace metal plume volumes, inclusion of bio-degradation greatly reduces plume volumes for 
organics.  

Although we have established a general protocol for developing a ROM that can be used to assess groundwater 
impacts by including physical and chemical uncertainty and variability, there is room for improvement. The model 
accuracy is not very high when emulations are compared to simulated output. Correlation coefficients range between 
R2 = 0.75 to 0.85 for trace metals and about 0.60 for the organics. Improvements may be achieved by increasing the 
number of simulations to more fully sample the parameter space and by applying different mathematical forms for 
the chemical scaling function. 

In order to make ROMs applicable for other alluvium aquifers, we recommend that ROMs be developed for 
variable thresholds in light of the “no net degradation” requirement in the U.S. EPA guidelines (2010), because 
other aquifers are likely to have different background water chemistry. The full chemical and hydrology ROMs 
developed here are specific to the output thresholds that define no net degradation to the High Plains aquifer. 
Variable threshold ROMs could be extracted from the same data set. 
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