4,295 research outputs found

    Review of Anesthesia for Middle Ear Surgery

    Get PDF
    Special considerations for middle ear surgery include a bloodless surgical field, attention to patient head positioning, facial nerve monitoring, and management of postoperative nausea and vomiting. Middle ear surgery can be done under local or general anesthesia; each has advantages and disadvantages. © 2010 Elsevier Inc.postprin

    Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica.

    Get PDF
    Mathematical models of disease transmission processes can serve as platforms for integration of diverse data, including site-specific information, for the purpose of designing strategies for minimizing transmission. A model describing the transmission of schistosomiasis is adapted to incorporate field data typically developed in disease control efforts in the mountainous regions of Sichuan Province in China, with the object of exploring the feasibility of model-based control strategies. The model is studied using computer simulation methods. Mechanistically based models of this sort typically have a large number of parameters that pose challenges in reducing parametric uncertainty to levels that will produce predictions sufficiently precise to discriminate among competing control options. We describe here an approach to parameter estimation that uses a recently developed statistical procedure called Bayesian melding to sequentially reduce parametric uncertainty as field data are accumulated over several seasons. Preliminary results of applying the approach to a historical data set in southwestern Sichuan are promising. Moreover, technologic advances using the global positioning system, remote sensing, and geographic information systems promise cost-effective improvements in the nature and quality of field data. This, in turn, suggests that the utility of the modeling approach will increase over time

    3D simulation of morphological effect on reflectance of Si3N4 sub-wavelength structures for silicon solar cells

    Get PDF
    In this study, we investigate the reflectance property of the cylinder, right circular cone, and square pyramid shapes of silicon nitride (Si3N4) subwavelength structure (SWS) with respect to different designing parameters. In terms of three critical factors, the reflectance for physical characteristics of wavelength dependence, the reflected power density for real power reflection applied on solar cell, and the normalized reflectance (reflected power density/incident power density) for real reflectance applied on solar cell, a full three-dimensional finite element simulation is performed and discussed for the aforementioned three morphologies. The result of this study shows that the pyramid shape of SWS possesses the best reflectance property in the optical region from 400 to 1000 nm which is useful for silicon solar cell applications

    Electric Field Effects on Graphene Materials

    Full text link
    Understanding the effect of electric fields on the physical and chemical properties of two-dimensional (2D) nanostructures is instrumental in the design of novel electronic and optoelectronic devices. Several of those properties are characterized in terms of the dielectric constant which play an important role on capacitance, conductivity, screening, dielectric losses and refractive index. Here we review our recent theoretical studies using density functional calculations including van der Waals interactions on two types of layered materials of similar two-dimensional molecular geometry but remarkably different electronic structures, that is, graphene and molybdenum disulphide (MoS2_2). We focus on such two-dimensional crystals because of they complementary physical and chemical properties, and the appealing interest to incorporate them in the next generation of electronic and optoelectronic devices. We predict that the effective dielectric constant (ε\varepsilon) of few-layer graphene and MoS2_2 is tunable by external electric fields (EextE_{\rm ext}). We show that at low fields (Eext<0.01E_{\rm ext}^{}<0.01 V/\AA) ε\varepsilon assumes a nearly constant value \sim4 for both materials, but increases at higher fields to values that depend on the layer thickness. The thicker the structure the stronger is the modulation of ε\varepsilon with the electric field. Increasing of the external field perpendicular to the layer surface above a critical value can drive the systems to an unstable state where the layers are weakly coupled and can be easily separated. The observed dependence of ε\varepsilon on the external field is due to charge polarization driven by the bias, which show several similar characteristics despite of the layer considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter: Advances in Physics and Chemistry, Springer Series on Carbon Materials. Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references

    The interface between silicon and a high-k oxide

    Full text link
    The ability to follow Moore's Law has been the basis of the tremendous success of the semiconductor industry in the past decades. To date, the greatest challenge for device scaling is the required replacement of silicon dioxide-based gate oxides by high-k oxides in transistors. Around 2010 high-k oxides are required to have an atomically defined interface with silicon without any interfacial SiO2 layer. The first clean interface between silicon and a high-K oxide has been demonstrated by McKee et al. Nevertheless, the interfacial structure is still under debate. Here we report on first-principles calculations of the formation of the interface between silicon and SrTiO3 and its atomic structure. Based on insights into how the chemical environment affects the interface, a way to engineer seemingly intangible electrical properties to meet technological requirements is outlined. The interface structure and its chemistry provide guidance for the selection process of other high-k gate oxides and for controlling their growth. Our study also shows that atomic control of the interfacial structure can dramatically improve the electronic properties of the interface. The interface presented here serves as a model for a variety of other interfaces between high-k oxides and silicon.Comment: 10 pages, 2 figures (one color

    Molecular Cloning, Expression Profile and 5′ Regulatory Region Analysis of Two Chemosensory Protein Genes from the Diamondback Moth, Plutella xylostella

    Get PDF
    Chemosensory proteins play an important role in transporting chemical compounds to their receptors on dendrite membranes. In this study, two full-length cDNA codings for chemosensory proteins of Plutella xylostella (Lepidoptera: Plutellidae) were obtained by RACE-PCR. PxylCSP3 and Pxyl-CSP4, with GenBank accession numbers ABM92663 and ABM92664, respectively, were cloned and sequenced. The gene sequences both consisted of three exons and two introns. RT-PCR analysis showed that Pxyl-CSP3 and Pxyl-CSP4 had different expression patterns in the examined developmental stages, but were expressed in all larval stages. Phylogenetic analysis indicated that lepidopteran insects consist of three branches, and Pxyl-CSP3 and Pxyl-CSP4 belong to different branches. The 5′regulatory regions of Pxyl-CSP3 and Pxyl-CSP4 were isolated and analyzed, and the results consist of not only the core promoter sequences (TATA-box), but also several transcriptional elements (BR-C Z4, Hb, Dfd, CF2-II, etc.). This study provides clues to better understanding the various physiological functions of CSPs in P. xylostella and other insects

    Change in Cone Structure Over 24 Months in USH2A-Related Retinal Degeneration

    Get PDF
    Purpose: To describe cone structure changes using adaptive optics scanning laser ophthalmoscopy (AOSLO) in the Rate of Progression of USH2A-related Retinal Degeneration (RUSH2A) study. Design: Multicenter, longitudinal natural history study. Methods: AOSLO images were acquired at 4 centers, twice at baseline and annually for 24 months in this natural history study. For each eye, at least 10 regions of interest (ROIs) with ≥50 contiguous cones were analyzed by masked, independent graders. Cone spacing Z-scores, standard deviations from the normal mean at the measured location, were compared between graders and tests at baseline. The association of cone spacing with clinical characteristics was assessed using linear mixed effects regression models weighted by image quality score. Annual rates of change were calculated based on differences between visits. Results: Fourteen eyes of 14 participants were imaged, with 192 ROIs selected at baseline. There was variability among graders, which was greater in images with lower image quality score (P < .001). Cone spacing was significantly correlated with eccentricity, quality score, and disease duration (P < .02). On average, the cone spacing Z-score increased 0.14 annually (about 9%, P < .001). We observed no significant differences in rate of change between disease type (Usher syndrome or retinitis pigmentosa), imaging site, or grader. Conclusions: Using current methods, the analysis of quantitative measures of cone structure showed some challenges, yet showed promise that AOSLO images can be used to characterize progressive change over 24 months. Additional multicenter studies using AOSLO are needed to advance cone mosaic metrics as sensitive outcome measures for clinical trials

    Comparative study of single and multislice computed tomography for assessment of the mandibular canal

    Get PDF
    OBJECTIVE: The purpose of this study was to evaluate the accuracy of relative measurements from the roof of the mandibular canal to the alveolar crest in multislice (multidetector) computed tomography (MDCT) and single-slice computed tomography (SSCT). MATERIAL AND METHODS: The sample consisted of 26 printed CT films (7 SSCT and 19 MDCT) from the files of the LABI-3D (3D Imaging Laboratory) of the School of Dentistry of the University of São Paulo (FOUSP), which had been acquired using different protocols. Two observers analyzed in a randomized and independent order a series of 22 oblique CT reconstructions of each patient. Each observer analyzed the CT scans twice. The length of the mandibular canal and the distance between the mandibular canal roof and the crest of the alveolar ridge were obtained. Dahlberg test was used for statistical analysis. RESULTS: The mean error found for the mandibular canal length measurements obtained from SSCT was 0.53 mm in the interobserver analysis, and 0.38 mm for both observers. On MDCT images, the mean error was 0.0 mm in the interobserver analysis, and 0.0 and 0.23 mm in the intraobserver analysis. Regarding the distance between the mandibular canal roof and the alveolar bone crest, the SSCT images showed a mean error of 1.16 mm in the interobserver analysis and 0.66 and 0.59 mm in the intraobserver analysis. In the MDCT images, the mean error was 0.72 mm in the interobserver analysis and 0.50 and 0.54 mm in the intraobserver analysis. CONCLUSION: Multislice CT was demonstrated a more accurate method and demonstrated high reproducibility in the analysis of important anatomical landmarks for planning of mandibular dental implants, namely the mandibular canal pathway and alveolar crest height
    corecore