The ability to follow Moore's Law has been the basis of the tremendous
success of the semiconductor industry in the past decades. To date, the
greatest challenge for device scaling is the required replacement of silicon
dioxide-based gate oxides by high-k oxides in transistors. Around 2010 high-k
oxides are required to have an atomically defined interface with silicon
without any interfacial SiO2 layer. The first clean interface between silicon
and a high-K oxide has been demonstrated by McKee et al. Nevertheless, the
interfacial structure is still under debate. Here we report on first-principles
calculations of the formation of the interface between silicon and SrTiO3 and
its atomic structure. Based on insights into how the chemical environment
affects the interface, a way to engineer seemingly intangible electrical
properties to meet technological requirements is outlined. The interface
structure and its chemistry provide guidance for the selection process of other
high-k gate oxides and for controlling their growth. Our study also shows that
atomic control of the interfacial structure can dramatically improve the
electronic properties of the interface. The interface presented here serves as
a model for a variety of other interfaces between high-k oxides and silicon.Comment: 10 pages, 2 figures (one color