17 research outputs found
Dual PI3 K/mTOR inhibition reduces prostate cancer bone engraftment altering tumor-induced bone remodeling:
Morbidity in advanced prostate cancer patients is largely associated with bone metastatic events. The development of novel therapeutic strategies is imperative in order to effectively treat this incurable stage of the malignancy. In this context, Akt signaling pathway represents a promising therapeutic target able to counteract biochemical recurrence and metastatic progression in prostate cancer. We explored the therapeutic potential of a novel dual PI3 K/mTOR inhibitor, X480, to inhibit tumor growth and bone colonization using different in vivo prostate cancer models including the subcutaneous injection of aggressive and bone metastatic (PC3) and non-bone metastatic (22rv1) cell lines and preclinical models known to generate bone lesions. We observed that X480 both inhibited the primary growth of subcutaneous tumors generated by PC3 and 22rv1 cells and reduced bone spreading of PCb2, a high osteotropic PC3 cell derivative. In metastatic bone, X480 inhibited significantly the growth and osteolytic activit..
Brain age predicts disability accumulation in multiple sclerosis
OBJECTIVE: Neurodegenerative conditions often manifest radiologically with the appearance of premature aging. Multiple sclerosis (MS) biomarkers related to lesion burden are well developed, but measures of neurodegeneration are less well-developed. The appearance of premature aging quantified by machine learning applied to structural MRI assesses neurodegenerative pathology. We assess the explanatory and predictive power of brain age analysis on disability in MS using a large, real-world dataset.
METHODS: Brain age analysis is predicated on the over-estimation of predicted brain age in patients with more advanced pathology. We compared the performance of three brain age algorithms in a large, longitudinal dataset (\u3e13,000 imaging sessions from \u3e6,000 individual MS patients). Effects of MS, MS disease course, disability, lesion burden, and DMT efficacy were assessed using linear mixed effects models.
RESULTS: MS was associated with advanced predicted brain age cross-sectionally and accelerated brain aging longitudinally in all techniques. While MS disease course (relapsing vs. progressive) did contribute to advanced brain age, disability was the primary correlate of advanced brain age. We found that advanced brain age at study enrollment predicted more disability accumulation longitudinally. Lastly, a more youthful appearing brain (predicted brain age less than actual age) was associated with decreased disability.
INTERPRETATION: Brain age is a technically tractable and clinically relevant biomarker of disease pathology that correlates with and predicts increasing disability in MS. Advanced brain age predicts future disability accumulation
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Probiotic therapy during vaccination alters antibody response to SHIV infection but not to commensals
The induction of robust circulating antibody titers is a key goal of HIV-1 vaccination. Probiotic supplementation is an established strategy to enhance microbiota and boost antibody responses to vaccines. A recent study tested whether oral probiotics could enhance vaccine-specific mucosal immunity by testing vaccination with and without supplementation in a Rhesus macaque Simian-Human Immunodeficiency Virus challenge model. Although supplementation was not associated with protection, the effects of probiotics on immunity after infection were not examined. To address this question, we measured antibody titers to HIV Env and commensal bacteria in plasma from the vaccination/supplementation time points as well as after SHIV acquisition. We found that a trend toward lower HIV Env-specific titers in the animals given probiotics plus vaccine became greater after SHIV infection. Significantly lower IgA titers were observed in animals vaccinated and supplemented compared to vaccine alone due to a delay in antibody kinetics at week 2 post infection. We observed no difference, however, in titers to commensal bacteria during probiotic supplementation or after SHIV infection. These results suggest that probiotic supplementation may be a strategy for reducing IgA-specific HIV antibodies in the plasma, a correlate associated with increased HIV infection in the RV144 clinical trial
Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach
BackgroundAdvances in untargeted metabolomic technologies have great potential for insight into adverse metabolic effects underlying exposure to environmental chemicals. However, important challenges need to be addressed, including how biological response corresponds to the environmental chemical burden in different target tissues.AimWe performed a pilot study using state-of-the-art ultra-high-resolution mass spectrometry (UHRMS) to characterize the burden of lipophilic persistent organic pollutants (POPs) in metabolic tissues and associated alterations in the plasma metabolome.MethodsWe studied 11 adolescents with severe obesity at the time of bariatric surgery. We measured 18 POPs that can act as endocrine and metabolic disruptors (i.e. 2 dioxins, 11 organochlorine compounds [OCs] and 5 polybrominated diphenyl ethers [PBDEs]) in visceral and subcutaneous abdominal adipose tissue (vAT and sAT), and liver samples using gas chromatography with UHRMS. Biological pathways were evaluated by measuring the plasma metabolome using high-resolution metabolomics. Network and pathway enrichment analysis assessed correlations between the tissue-specific burden of three frequently detected POPs (i.e. p,p'-dichlorodiphenyldichloroethene [DDE], hexachlorobenzene [HCB] and PBDE-47) and plasma metabolic pathways.ResultsConcentrations of 4 OCs and 3 PBDEs were quantifiable in at least one metabolic tissue for > 80% of participants. All POPs had the highest median concentrations in adipose tissue, especially sAT, except for PBDE-154, which had comparable average concentrations across all tissues. Pathway analysis showed high correlations between tissue-specific POPs and metabolic alterations in pathways of amino acid metabolism, lipid and fatty acid metabolism, and carbohydrate metabolism.ConclusionsMost of the measured POPs appear to accumulate preferentially in adipose tissue compared to liver. Findings of plasma metabolic pathways potentially associated with tissue-specific POPs concentrations merit further investigation in larger populations
Structure—function analysis of the α5 and the α13 helices of human glucokinase: Description of two novel activating mutations
It was recently described that the α5 and the α13 helices of human pancreatic glucokinase play a major role in the allosteric regulation of the enzyme. In order to understand the structural importance of these helices, we have performed site-directed mutagenesis to generate glucokinase derivatives with altered residues. We have analyzed the kinetic parameters of these mutated forms and compared them with wild-type and previously defined activating mutations in these helices (A456V and Y214C). We found two new activating mutations, A460R and Y215A, which increase the affinity of the enzyme for glucose. Our results suggest that substitutions in the α5 or the α13 helices that favor the closed, active conformation of the enzyme, either by improving the interaction with surrounding residues or by improving the flexibility of the region defined by these two helices, enhance the affinity of the enzyme for glucose, and therefore its performance as a glucose phosphorylating enzyme
VISIONET: intuitive visualisation of overlapping transcription factor networks, with applications in cardiogenic gene discovery
BACKGROUND: Existing de novo software platforms have largely overlooked a valuable resource, the expertise of the intended biologist users. Typical data representations such as long gene lists, or highly dense and overlapping transcription factor networks often hinder biologists from relating these results to their expertise. RESULTS: VISIONET, a streamlined visualisation tool built from experimental needs, enables biologists to transform large and dense overlapping transcription factor networks into sparse human-readable graphs via numerically filtering. The VISIONET interface allows users without a computing background to interactively explore and filter their data, and empowers them to apply their specialist knowledge on far more complex and substantial data sets than is currently possible. Applying VISIONET to the Tbx20-Gata4 transcription factor network led to the discovery and validation of Aldh1a2, an essential developmental gene associated with various important cardiac disorders, as a healthy adult cardiac fibroblast gene co-regulated by cardiogenic transcription factors Gata4 and Tbx20. CONCLUSIONS: We demonstrate with experimental validations the utility of VISIONET for expertise-driven gene discovery that opens new experimental directions that would not otherwise have been identified. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0578-0) contains supplementary material, which is available to authorized users
Association of Thyroid Peroxidase Antibodies and Thyroglobulin Antibodies with Thyroid Function in Pregnancy: An Individual Participant Data Meta-Analysis
Objectives: Thyroid autoimmunity is common in pregnant women and associated with thyroid dysfunction and adverse obstetric outcomes. Most studies focus on thyroid peroxidase antibodies (TPOAbs) assessed by a negative-positive dichotomy and rarely take into account thyroglobulin antibodies (TgAbs). This study aimed at determining the association of TPOAbs and TgAbs, respectively, and interdependently, with maternal thyroid function. Methods: This was a meta-Analysis of individual participant cross-sectional data from 20 cohorts in the Consortium on Thyroid and Pregnancy. Women with multiple pregnancy, pregnancy by assisted reproductive technology, history of thyroid disease, or use of thyroid interfering medication were excluded. Associations of (log2) TPOAbs and TgAbs (with/without mutual adjustment) with cohort-specific z-scores of (log2) thyrotropin (TSH), free triiodothyronine (fT3), total triiodothyronine (TT3), free thyroxine (fT4), total thyroxine (TT4), or triiodothyronine:thyroxine (T3:T4) ratio were evaluated in a linear mixed model. Results: In total, 51,138 women participated (51,094 had TPOAb-data and 27,874 had TgAb-data). Isolated TPOAb positivity was present in 4.1% [95% confidence interval, CI: 3.0 to 5.2], isolated TgAb positivity in 4.8% [CI: 2.9 to 6.6], and positivity for both antibodies in 4.7% [CI: 3.1 to 6.3]. Compared with antibody-negative women, TSH was higher in women with isolated TPOAb positivity (z-score increment 0.40, CI: 0.16 to 0.64) and TgAb positivity (0.21, CI: 0.10 to 0.32), but highest in those positive for both antibodies (0.54, CI: 0.36 to 0.71). There was a dose-response effect of higher TPOAb and TgAb concentrations with higher TSH (TSH z-score increment for TPOAbs 0.12, CI: 0.09 to 0.15, TgAbs 0.08, CI: 0.02 to 0.15). When adjusting analyses for the other antibody, only the association of TPOAbs remained statistically significant. A higher TPOAb concentration was associated with lower fT4 (p < 0.001) and higher T3:T4 ratio (0.09, CI: 0.03 to 0.14), however, the association with fT4 was not significant when adjusting for TgAbs (p = 0.16). Conclusions: This individual participant data meta-Analysis demonstrated an increase in TSH with isolated TPOAb positivity and TgAb positivity, respectively, which was amplified for individuals positive for both antibodies. There was a dose-dependent association of TPOAbs, but not TgAbs, with TSH when adjusting for the other antibody. This supports current practice of using TPOAbs in initial laboratory testing of pregnant women suspected of autoimmune thyroid disease. However, studies on the differences between TPOAb-And TgAb-positive women are needed to fully understand the spectrum of phenotypes