902 research outputs found

    Diastolic blood pressure J-curve phenomenon in a tertiary-care hypertension clinic

    Get PDF
    Concerns exist regarding the potential increased cardiovascular risk from lowering diastolic blood pressure (DBP) in hypertensive patients. We analyzed 30-year follow-up data of 10 355 hypertensive patients attending the Glasgow Blood Pressure Clinic. The association between blood pressure during the first 5 years of treatment and cause-specific hospital admissions or mortality was analyzed using multivariable adjusted Cox proportional hazard models. The primary outcome was a composite of cardiovascular admissions and deaths. DBP showed a U-shaped association (nadir, 92 mm Hg) for the primary cardiovascular outcome hazard and a reverse J-shaped association with all-cause mortality (nadir, 86 mm Hg) and noncardiovascular mortality (nadir, 92 mm Hg). The hazard ratio for the primary cardiovascular outcome after adjustment for systolic blood pressure was 1.38 (95% CI, 1.18–1.62) for DBP <80 compared with DBP of 80 to 89.9 mm Hg (referrant), and the subdistribution hazard ratio after accounting for competing risk was 1.33 (1.17–1.51) compared with DBP ≥80 mm Hg. Cause-specific nonfatal outcome analyses showed a reverse J-shaped relationship for myocardial infarction, ischemic heart disease, and heart failure admissions but a U-shaped relationship for stroke admissions. Age-stratified analyses showed DBP had no independent effect on stroke admissions among the older patient subgroup (≥60 years of age), but the younger subgroup showed a clear U-shaped relationship. Intensive blood pressure reduction may lead to unintended consequences of higher healthcare utilization because of increased cardiovascular morbidity, and this merits future prospective studies. Low on-treatment DBP is associated with increased risk of noncardiovascular mortality, the reasons for which are unclear

    Classification of diabetic retinopathy: Past, present and future

    Get PDF
    Diabetic retinopathy (DR) is a leading cause of visual impairment and blindness worldwide. Since DR was first recognized as an important complication of diabetes, there have been many attempts to accurately classify the severity and stages of disease. These historical classification systems evolved as understanding of disease pathophysiology improved, methods of imaging and assessing DR changed, and effective treatments were developed. Current DR classification systems are effective, and have been the basis of major research trials and clinical management guidelines for decades. However, with further new developments such as recognition of diabetic retinal neurodegeneration, new imaging platforms such as optical coherence tomography and ultra wide-field retinal imaging, artificial intelligence and new treatments, our current classification systems have significant limitations that need to be addressed. In this paper, we provide a historical review of different classification systems for DR, and discuss the limitations of our current classification systems in the context of new developments. We also review the implications of new developments in the field, to see how they might feature in a future, updated classification

    CONVERT:Contrastive Graph Clustering with Reliable Augmentation

    Full text link
    Contrastive graph node clustering via learnable data augmentation is a hot research spot in the field of unsupervised graph learning. The existing methods learn the sampling distribution of a pre-defined augmentation to generate data-driven augmentations automatically. Although promising clustering performance has been achieved, we observe that these strategies still rely on pre-defined augmentations, the semantics of the augmented graph can easily drift. The reliability of the augmented view semantics for contrastive learning can not be guaranteed, thus limiting the model performance. To address these problems, we propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (COVERT). Specifically, in our method, the data augmentations are processed by the proposed reversible perturb-recover network. It distills reliable semantic information by recovering the perturbed latent embeddings. Moreover, to further guarantee the reliability of semantics, a novel semantic loss is presented to constrain the network via quantifying the perturbation and recovery. Lastly, a label-matching mechanism is designed to guide the model by clustering information through aligning the semantic labels and the selected high-confidence clustering pseudo labels. Extensive experimental results on seven datasets demonstrate the effectiveness of the proposed method. We release the code and appendix of CONVERT at https://github.com/xihongyang1999/CONVERT on GitHub

    Establishment of a sensitive UPLC-MS/MS method to quantify safinamide in rat plasma

    Get PDF
    A fast, simple, and sensitive ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established for the quantification of safinamide in rat plasma. Plasma samples were treated with acetonitrile for protein precipitation, and diazepam was used as an internal standard (IS). The analytes were separated on an Acquity UPLC C18 (2.1 mm × 50 mm, 1.7 μm) chromatographic column with gradient elution using a mobile phase (0.1% formic acid-acetonitrile). Then, the eluates were detected by electrospray ionization (ESI) in positive ion mode. The analytes were quantified by multiple reaction monitoring (MRM) using the transition m/z 303.3→215.0 of safinamide and m/z 285.0→154.0 of IS. Safinamide had good linearity in the concentration range of 1.0–2000 ng/mL, and the lower limit of quantitation (LLOQ) was 1.0 ng/mL. The intra- and inter-day precision and accuracy of safinamide were less than 7.63%, while the average recovery rate was 92.98%–100.29%. The method was validated to be stable and had low noise, short chromatographic run time, wide linear range, small sample volumes, low sample injection volumes, and high sensitivity. Therefore, it can be used in pharmacokinetics and preclinical and clinical studies

    Mesorhizobium septentrionale sp nov and Mesorhizobium temperatum sp nov., isolated from Astragalus adsurgens growing in the northern regions of China

    Get PDF
    Ninety-five rhizobial strains isolated from Astragalus adsurgens growing in the northern regions of China were classified into three main groups, candidate species 1, 11 and 111, based on a polyphasic approach. Comparative analysis of full-length 16S rRNA gene sequences of representative strains showed that candidate species I and 11 were Mesorhizobium, while candidate species 111, which consisted of non-nodulating strains, was closely related to Agrobacterium tumefaciens. The phylogenetic relationships of the three candidate species and some related strains were also confirmed by the sequencing of glnA genes, which were used as an alternative chromosomal marker. The DNA-DNA relatedness was between 11.3 and 47-1 % among representative strains of candidate species I and 11 and the type strains of defined Mesorhizobium species. Candidate III had DNA relatedness of between 4(.)3 and 25(.)2 % with type strains of Agrobacterium tumefaciens and Agrobacterium rubi. Two novel species are proposed to accommodate candidate species I and 11, Mesorhizobium septentrionale sp. nov. (type strain, SIDW014(T) =CCBAU 11014(T) = HAMBI 2582(T)) and Mesorhizobium temperatum sp. nov. (type strain, SIDW018(T) = CCBAU 11018(T) =HAMBI 2583(T)), respectively. At least two distinct nodA sequences were identified among the strains. The numerically dominant nodA sequence type was most similar to that from the Mesorhizobium tianshanense type strain and was identified in strains belonging to the two novel species as well as other, as yet, undefined genome types. Host range studies indicate that the different nodA sequences correlate with different host ranges. Further comparative studies with the defined Agrobacterium species are needed to clarify the taxonomic identity of candidate species 111

    Characterization of Novel and Uncharacterized p53 SNPs in the Chinese Population – Intron 2 SNP Co-Segregates with the Common Codon 72 Polymorphism

    Get PDF
    Multiple single nucleotide polymorphisms (SNPs) have been identified in the tumor suppressor gene p53, though the relevance of many of them is unclear. Some of them are also differentially distributed in various ethnic populations, suggesting selective functionality. We have therefore sequenced all exons and flanking regions of p53 from the Singaporean Chinese population and report here the characterization of some novel and uncharacterized SNPs - four in intron 1 (nucleotide positions 8759/10361/10506/11130), three in intron 3 (11968/11969/11974) and two in the 3′UTR (19168/19514). Allelic frequencies were determined for all these and some known SNPs, and were compared in a limited scale to leukemia and lung cancer patient samples. Intron 2 (11827) and 7 (14181/14201) SNPs were found to have a high minor allele frequency of between 26–47%, in contrast to the lower frequencies found in the US population, but similar in trend to the codon 72 polymorphism (SNP12139) that shows a distribution pattern correlative with latitude. Several of the SNPs were linked, such as those in introns 1, 3 and 7. Most interestingly, we noticed the co-segregation of the intron 2 and the codon 72 SNPs, the latter which has been shown to be expressed in an allele-specific manner, suggesting possible regulatory cross-talk. Association analysis indicated that the T/G alleles in both the co-segregating intron 7 SNPs and a 4tagSNP haplotype was strongly associated increased susceptibility to lung cancer in non-smoker females [OR: 1.97 (1.32, 3.394)]. These data together demonstrate high SNP diversity in p53 gene between different populations, highlighting ethnicity-based differences, and their association with cancer risk

    Interactions between HIV-1 Reverse Transcriptase and the Downstream Template Strand in Stable Complexes with Primer-Template

    Get PDF
    Background: Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) forms stable ternary complexes in which RT is bound tightly at fixed positions on the primer-template (P/T). We have probed downstream interactions between RT and the template strand in the complex containing the incoming dNTP (+1 dNTPNRTNP/T complex) and in the complex containing the pyrophosphate analog, foscarnet (foscarnetNRTNP/T complex). Methods and Results: UV-induced cross-linking between RT and the DNA template strand was most efficient when a bromodeoxyuridine residue was placed in the +2 position (the first template position downstream from the incoming dNTP). Furthermore, formation of the +1 dNTPNRTNP/T complex on a biotin-containing template inhibited binding of streptavidin when biotin was in the +2 position on the template but not when the biotin was in the +3 position. Streptavidin pre-bound to a biotin residue in the template caused RT to stall two to three nucleotides upstream from the biotin residue. The downstream border of the complex formed by the stalled RT was mapped by digestion with exonuclease RecJF. UV-induced cross-linking of the complex formed by the pyrophosphate analog, foscarnet, with RT and P/T occurred preferentially with bromodeoxyuridine in the +1 position on the template in keeping with the location of RT one base upstream in the foscarnetNRTNP/T complex (i.e., in the pre-translocation position). Conclusions: For +1 dNTPNRTNP/T and foscarnetNRTNP/T stable complexes, tight interactions were observed between RT an
    corecore