276 research outputs found

    Efficacy of different protein descriptors in predicting protein functional families

    Get PDF
    10.1186/1471-2105-8-300BMC Bioinformatics8-BBMI

    A simulation of weak-light phase-locking for space laser interferometer

    Get PDF
    A simulation was investigated to better understand the impacts and effects of the additional technical noises on weak-light phase-locking for space laser interferometer. The result showed that the locking precision was limited by the phase readout noise when the laser frequency noise and clock jitter noise were removed, and this result was then confirmed by a benchtop experimental test. The required space laser interferometer noise floor was recovered from the simulation which proved the validity of the simulation program. © Published under licence by IOP Publishing Ltd.National Natural Science Foundation of China/61575209Chinese Academy of Sciences/XDB2303020

    HPM-14: A New Germanosilicate Zeolite with Interconnected Extra-Large Pores Plus Odd-Membered and Small Pores

    Get PDF
    HPM-14 is a new extra-large pore zeolite synthesized using imidazolium-based organic structure-directing agents (SDAs), fluoride anions, and germanium and silicon as tetrahedral components of the framework. Owing to the presence of stacking disorder, the structure elucidation of HPM-14 was challenging, and different techniques were necessary to clarify the details of the structure and to understand the nature of the disorder. The structure has been solved by three-dimensional electron-diffraction technique (3D ED) and consists of an intergrowth of two polymorphs possessing a three-dimensional channel system, including an extra-large pore opened through windows made up of sixteen tetrahedral atoms (16-membered ring, 16MR) as well as two additional sets of odd-membered (9MR) and small (8MR) pores. The intergrowth has been studied by scanning transmission electron microscopy (C-s-STEM) and powder X-ray diffraction simulations (DIFFaX), which show a large predominance of the monoclinic polymorph A

    Superconductivity and single crystal growth of Ni0:05TaS2

    Full text link
    Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2 single crystal was successfully grown via the NaCl/KCl flux method. The obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and magnetization measurements reveal that the superconductivity transition temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux demonstrates that NaCl/KCl flux method will be a feasible method for single crystal growth of the layered transition metal dichalcogenides.Comment: 13pages, 6 figures, Published in SS

    Single crystal growth and characterizations of Cu0.03TaS2 superconductors

    Full text link
    Single crystal of Cu0.03TaS2 with low copper intercalated content was successfully grown via chemical iodine-vapor transport. The structural characterization results show that the copper intercalated 2H-Cu0.03TaS2 single crystal has the same structure of the CdI2-type structure as the parent 2H-TaS2 crystal. Electrical resistivity and magnetization measurements reveal that 2H-Cu0.03TaS2 becomes a superconductor below 4.2 K. Besides, electrical resistivity and Hall effects results show that a charge density wave transition occurs at TCDW = 50 K.Comment: 14 pages, 6 figures,revised versio

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device: effect of cytostatic drugs

    Get PDF
    Breast cancer is the leading cause of cancer deaths among non-smoking women worldwide. At the moment the treatment regime is such that patients receive different chemotherapeutic and/or hormonal treatments dependent on the hormone receptor status, the menopausal status and age. However, in vitro sensitivity testing of tumor biopsies could rationalize and improve the choice of chemo- and hormone therapy. Lab-on-a-Chip devices, using microfluidic techniques, make detailed cellular analysis possible using fewer cells, enabling working with a patients’ own cells and performing chemo- and hormone sensitivity testing in an ex vivo setting. This article describes the development of two microfluidic devices made in poly(dimethylsiloxane) (PDMS) to validate the cell culture properties and analyze the chemosensitivity of MCF-7 cells (estrogen receptor positive human breast cancer cells) in response to the drug staurosporine (SSP). In both cases, cell viability was assessed using the life-stain Calcein-AM (CAAM) and the death dye propidium iodide (PI). MCF-7 cells could be statically cultured for up to 7 days in the microfluidic chip. A 30 min flow with SSP and a subsequent 24 h static incubation in the incubator induced apoptosis in MCF-7 cells, as shown by a disappearance of the aggregate-like morphology, a decrease in CAAM staining and an increase in PI staining. This work provides valuable leads to develop a microfluidic chip to test the chemosensitivity of tumor cells in response to therapeutics and in this way improve cancer treatment towards personalized medicine

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 &times; 10-11 to 5.0 &times; 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 &times; 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
    corecore