29 research outputs found

    Predicting Atlantic seasonal hurricane activity using outgoing longwave radiation over Africa

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 7152–7159, doi:10.1002/2016GL069792.Seasonal hurricane activity is a function of the amount of initial disturbances (e.g., easterly waves) and the background environment in which they develop into tropical storms (i.e., the main development region). Focusing on the former, a set of indices based solely upon the meridional structure of satellite-derived outgoing longwave radiation (OLR) over the African continent are shown to be capable of predicting Atlantic seasonal hurricane activity with very high rates of success. Predictions of named storms based on the July OLR field and trained only on the time period prior to the year being predicted yield a success rate of 87%, compared to the success rate of NOAA's August outlooks of 53% over the same period and with the same average uncertainty range (±2). The resulting OLR indices are statistically robust, highly detectable, physically linked to the predictand, and may account for longer-term observed trends.Alfred P. Sloan Foundation; Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution; Ocean and Climate Change Institute2017-01-0

    Global search for autumn‐lead sea surface salinity predictors of winter precipitation in southwestern United States

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 8445-8454, doi:10.1029/2018GL079293.Sea surface salinity (SSS) is sensitive to changes in ocean evaporation and precipitation, that is, to changes in the oceanic water cycle. Through the close connection between the oceanic and terrestrial water cycle, SSS can be used as an indicator of rainfall on land. Here we search globally for teleconnections between autumn‐lead September‐October‐November SSS signals and winter December‐January‐February precipitation over southwestern United States. The SSS‐based model (R2 = 0.61) outperforms the sea surface temperature‐based model (R2 = 0.54). Further, a fresh tropical Pacific in autumn, indicated by low SSS, corresponds with wet winters. Recent studies suggest that anomalously high rainfall in the tropics may excite Rossby waves that can export water to the extratropics. Thus, incorporating SSS, a sensitive indicator of regional oceanic rainfall, can enhance the accuracy of existing precipitation prediction frameworks that rely on sea surface temperature‐based climate indices and, by extension, improve watershed management.NSF Grant Numbers: ICER‐1663704, ICER‐1663138, DGE1144152, DGE1745303; Woods Hole Oceanographic Institution2019-02-2

    Influence of the North Atlantic Subtropical High on Summer Precipitation over the Southeastern United States

    Get PDF
    <p>The Southeastern United States (SE US) is one of the fastest developing regions of the nation, where summer precipitation becomes increasingly important to sustain population and economic growth. In recent decades, the variability of SE US summer precipitation has significantly intensified, leading to more frequent and severe climate extremes. However, the processes that have caused such enhanced climate variability have been poorly understood. By analyzing atmospheric hydrological cycle, diagnosing atmospheric circulation dynamics, and performing regional climate simulations, this dissertation investigates the mechanisms responsible for SE US summer precipitation variability. </p><p>Analysis of regional moisture budget indicates that the variability of SE US summer precipitation is primarily controlled by moisture transport processes associated with the variation of the North Atlantic Subtropical High (NASH) western ridge, while local water recycling is secondary. As the ridge moves northwestward (NW) into the US continent, moisture transport pathway is away from the SE US and the upward motion is depressed. Thus, rainfall decreases over the SE US, leading to dry summers. In contrast, when the ridge moves southwestward (SW), moisture convergence tends to be enhanced over the SE US, facilitating heavier rainfall and causing wetter summers. However, as the ridge is located relatively eastward, its influence on the summer precipitation is weakened. The intensified precipitation variability in recent decades is attributed to the more frequent occurrence of NW- and SW-type ridges, according to the "NASH western ridge - SE US summer precipitation" relationship. </p><p>In addition, the "NASH western ridge - SE US summer precipitation" relationship acts as a primary mechanism to determine general circulation model (GCM) and regional climate model (RCM) skill in simulating SE US summer precipitation. Generally, the state-of-the-art GCMs that are capable of representing the abovementioned relationship perform better in simulating the variability of SE US summer precipitation. Similarly, the RCM simulated summer precipitation bias over the SE US is largely caused by the errors in the NASH western ridge circulation, with the physical parameterization playing a secondary role. </p><p>Furthermore, the relationship between the NASH western ridge and SE US summer precipitation well explains the projected future precipitation changes. According to the projection by the ensemble of phase-5 of Coupled Model Intercomparison Project (CMIP5) models, summer precipitation over the SE US will become more variable in a warming climate. The enhancement of precipitation variability is due mainly to the atmospheric circulation dynamics, resulting from the pattern shift of the NASH western ridge circulation. In a warming climate, the NASH circulation tends to intensify, which forces its western ridge to extend further westward, exerting stronger impact on the SE US summertime climate. As the ridge extends westward, the NW- and SW-type ridges occur more frequently, resulting in an increased occurrence of extreme summers over the SE US. </p><p>In summary, the studies presented in this dissertation identify the NASH western ridge as a primary regulator of SE US summer precipitation at seasonal scale. The "NASH western ridge - SE US summer precipitation" relationship established in this study serves as a first order mechanism for understanding and simulating processes that influence the statistics of extreme events over the SE in the current and future climate.</p>Dissertatio

    The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Climate Dynamics 50 (2018): 1291–1305, doi:10.1007/s00382-017-3685-y.The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.LL is supported by the Postdoctoral Scholar Program at WHOI, with funding provided by the Oceans and Climate Change Institute. RWS is supported by NASA Grants NNX12AF59G and NNX14AH38G, and NSF Grant OCE-1129646. CCU is supported by NSF Grant AGS-1355339

    Implications of North Atlantic sea surface salinity for summer precipitation over the U.S. Midwest : mechanisms and predictive value

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 3143-3159, doi:10.1175/JCLI-D-15-0520.1.Moisture originating from the subtropical North Atlantic feeds precipitation throughout the Western Hemisphere. This ocean-to-land moisture transport leaves its imprint on sea surface salinity (SSS), enabling SSS over the subtropical oceans to be used as an indicator of terrestrial precipitation. This study demonstrates that springtime SSS over the northwestern portion of the subtropical North Atlantic significantly correlates with summertime precipitation over the U.S. Midwest. The linkage between springtime SSS and the Midwest summer precipitation is established through ocean-to-land moisture transport followed by a soil moisture feedback over the southern United States. In the spring, high SSS over the northwestern subtropical Atlantic coincides with a local increase in moisture flux divergence. The moisture flux is then directed toward and converges over the southern United States, which experiences increased precipitation and soil moisture. The increased soil moisture influences the regional water cycle both thermodynamically and dynamically, leading to excessive summer precipitation in the Midwest. Thermodynamically, the increased soil moisture tends to moisten the lower troposphere and enhances the meridional humidity gradient north of 36°N. Thus, more moisture will be transported and converged into the Midwest by the climatological low-level wind. Dynamically, the increases in soil moisture over the southern United States enhance the west–east soil moisture gradient eastward of the Rocky Mountains, which can help to intensify the Great Plains low-level jet in the summer, converging more moisture into the Midwest. Owing to these robust physical linkages, the springtime SSS outweighs the leading SST modes in predicting the Midwest summer precipitation and significantly improves rainfall prediction in this region.L. L. is supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Ocean and Climate Change Institute (OCCI). R. W. S. is supported by NASA Grant NNX12AF59G S03 and NSF Grant OCE-1129646. C. C. U. is supported by NSF Grant AGS-1355339. K. B. K. is supported by the Alfred P. Sloan Foundation and the James E. and Barbara V. Moltz Fellowship administered by the WHOI OCCI.2016-10-1

    North Atlantic salinity as a predictor of Sahel rainfall

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 2 (2016): e1501588, doi:10.1126/sciadv.1501588.Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel.L.L. is supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Ocean and Climate Change Institute (OCCI). R.W.S. is supported by NASA grants NNX12AF59G and NNX14AH38G and NSF grant OCE-1129646. C.C.U. is supported by NSF grant AGS-1355339. K.B.K. is supported by the Alfred P. Sloan Foundation and the James E. and Barbara V. Moltz Fellowship administered by the WHOI OCCI

    Longwave emission trends over Africa and implications for Atlantic hurricanes

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 9075–9083, doi:10.1002/2017GL073869.The latitudinal gradient of outgoing longwave radiation (OLR) over Africa is a skillful and physically based predictor of seasonal Atlantic hurricane activity. The African OLR gradient is observed to have strengthened during the satellite era, as predicted by state-of-the-art global climate models (GCMs) in response to greenhouse gas forcing. Prior to the satellite era and the U.S. and European clean air acts, the African OLR gradient weakened due to aerosol forcing of the opposite sign. GCMs predict a continuation of the increasing OLR gradient in response to greenhouse gas forcing. Assuming a steady linear relationship between African easterly waves and tropical cyclogenesis, this result suggests a future increase in Atlantic tropical cyclone frequency by 10% (20%) at the end of the 21st century under the RCP 4.5 (8.5) forcing scenario.J.P.D., K.B.K., and L.Z. Acknowledge support from the Strategic Environmental Research and Development Program (SERDP) (RC-2336).2018-03-0

    Satellite Salinity Observing System: Recent Discoveries and the Way Forward

    Get PDF
    Advances in L-band microwave satellite radiometry in the past decade, pioneered by ESA’s SMOS and NASA’s Aquarius and SMAP missions, have demonstrated an unprecedented capability to observe global sea surface salinity (SSS) from space. Measurements from these missions are the only means to probe the very-near surface salinity (top cm), providing a unique monitoring capability for the interfacial exchanges of water between the atmosphere and the upper-ocean, and delivering a wealth of information on various salinity processes in the ocean, linkages with the climate and water cycle, including land-sea connections, and providing constraints for ocean prediction models. The satellite SSS data are complimentary to the existing in situ systems such as Argo that provide accurate depiction of large-scale salinity variability in the open ocean but under-sample mesoscale variability, coastal oceans and marginal seas, and energetic regions such as boundary currents and fronts. In particular, salinity remote sensing has proven valuable to systematically monitor the open oceans as well as coastal regions up to approximately 40 km from the coasts. This is critical to addressing societally relevant topics, such as land-sea linkages, coastal-open ocean exchanges, research in the carbon cycle, near-surface mixing, and air-sea exchange of gas and mass. In this paper, we provide a community perspective on the major achievements of satellite SSS for the aforementioned topics, the unique capability of satellite salinity observing system and its complementarity with other platforms, uncertainty characteristics of satellite SSS, and measurement versus sampling errors in relation to in situ salinity measurements. We also discuss the need for technological innovations to improve the accuracy, resolution, and coverage of satellite SSS, and the way forward to both continue and enhance salinity remote sensing as part of the integrated Earth Observing System in order to address societal needs

    Intensification of Northern Hemisphere subtropical highs in a warming climate

    Get PDF
    Semi-permanent high-pressure systems over the subtropical oceans, known as subtropical highs, influence atmospheric circulation, as well as global climate. For instance, subtropical highs largely determine the location of the world’s subtropical deserts, the zones of Mediterranean climate and the tracks of tropical cyclones. The intensity of two such high-pressure systems, present over the Northern Hemisphere oceans during the summer, has changed in recent years. However, whether such changes are related to climate warming remains unclear. Here, we use climate model simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report, reanalysis data from the 40-year European Centre for Medium-Range Weather Forecasts, and an idealized general circulation model, to assess future changes in the intensity of summertime subtropical highs over the Northern Hemisphere oceans. The simulations suggest that these summertime highs will intensify in the twenty-first century as a result of an increase in atmospheric greenhouse-gas concentrations. We further show that the intensification of subtropical highs is predominantly caused by an increase in thermal contrast between the land and ocean. We suggest that summertime near-surface subtropical highs could play an increasingly important role in regional climate and hydrological extremes in the future
    corecore