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Abstract Sea surface salinity (SSS) is sensitive to changes in ocean evaporation and precipitation, that is,
to changes in the oceanic water cycle. Through the close connection between the oceanic and terrestrial
water cycle, SSS can be used as an indicator of rainfall on land. Here we search globally for teleconnections
between autumn-lead September-October-November SSS signals and winter December-January-February
precipitation over southwestern United States. The SSS-based model (R2 = 0.61) outperforms the sea surface
temperature-based model (R2 = 0.54). Further, a fresh tropical Pacific in autumn, indicated by low SSS,
corresponds with wet winters. Recent studies suggest that anomalously high rainfall in the tropics may excite
Rossby waves that can export water to the extratropics. Thus, incorporating SSS, a sensitive indicator of
regional oceanic rainfall, can enhance the accuracy of existing precipitation prediction frameworks that rely
on sea surface temperature-based climate indices and, by extension, improve watershed management.

Plain Language Summary The global ocean makes up the bulk of the global water cycle and is the
ultimate source of all rainfall, implying that changes in the ocean affect rainfall patterns on land. Traditionally,
seasonal to decadal sea surface temperature-based patterns have been linked to variations in rainfall over
land. However, the salinity of the surface ocean is directly responsive to changes in evaporation and
precipitation. We find that abnormally salty (more evaporation) or fresh (more precipitation) patches of the
ocean can be used to predict rainfall on land one season ahead. Specifically, we looked globally for changes
in autumn sea surface salinity (SSS) that correspond well with variations in winter precipitation in the
southwestern United States to build an SSS-based model. We find that the SSS-based model outperforms the
sea surface temperature-based model. Thus, incorporating SSS into existing frameworks for predicting
seasonal rainfall on land can improve forecasts needed for allocating water resources ahead of abnormally
dry or wet seasons.

1. Introduction

The ocean holds 96.5% of total global water and thus plays a key role in the water cycle (Gleick, 1996). The
ocean component of the global water cycle, involving 85% of evaporation and 77% of precipitation, domi-
nates the terrestrial component, which only comprises 15% of evaporation and 23% of precipitation
(Durack, 2015; Schanze et al., 2010; Schmitt, 1995). It thus follows that the global ocean’s evaporation-to-
precipitation excess drives ocean-to-land moisture transport and is an indispensable water source for terres-
trial precipitation. In this study, we focus on sea surface salinity (SSS) as a tracer of changes in evaporation and
precipitation. This relationship can be observed in long-term trends of global SSS and intensification of the
water cycle (Durack et al., 2012; Durack & Wijffels, 2010). As global temperatures rise, more evaporation
makes salty regions (e.g., subtropical gyres) saltier, and conversely, more precipitation makes fresh regions
(e.g., high latitudes and tropics) fresher (Lagerloef et al., 2010). These changes in SSS, and thus the global
water cycle, will likely be reflected in the severity and frequency of terrestrial precipitation events (e.g., Cai
et al., 2012; Gimeno et al., 2013; Seager et al., 2010). Since evaporation is the primary means by which the
ocean supplies water and energy to the atmosphere, we should expect SSS anomalies (SSSAs) to be good
indicators of variability in the water cycle. That is, if some part of the ocean becomes saltier than normal, sim-
ple mass conservation guarantees that there will be more rainfall somewhere else in the climate system.
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Teleconnections have been observed between regional rainfall variability and traditional sea surface tem-
perature (SST)-based climate indices, such as Niño 3.4 (e.g., Gissela et al., 2004; Sharma et al., 2000), Pacific
Decadal Oscillation (PDO; e.g., Chan & Zhou, 2005; Krishnamurthy & Krishnamurthy, 2014), and Atlantic
Meridional Oscillation (AMO; e.g., Zhang & Delworth, 2006). However, Li et al. (2016a, 2016b) showed that
SSS can be a more skillful seasonal terrestrial rainfall predictor than SST-based climate indices. They found
that spring Northwest Atlantic SSS leads summer U.S. Midwest rainfall and Northeast Atlantic SSS leads mon-
soon African Sahel rainfall. Li et al. (2016a, 2016b) explained the teleconnections physically with ocean-to-
land moisture transport and local soil moisture feedback mechanisms. Li et al. (2016b) showed that including
SSSA into a prediction model almost triples its ability to predict monsoonal precipitation over the African
Sahel. Notably, SSSA can be used as a predictor in addition to SSTA, because it is a unique imprint of upstream
exchanges between ocean and terrestrial water reservoirs and independent of SSTA’s influence on precipita-
tion (Li et al., 2016b).

This study focuses on the predictive skill of global autumn SSS and SST patterns for winter precipitation for
the southwestern United States (SWUS). In this region, winter precipitation, especially that stored as snow-
pack, is necessary for sustaining the water supply through relatively dry summers (Mote et al., 2005).
California, in particular, endured a severe multiyear drought that began in 2012 and ended in 2017. In mod-
erate and high carbon emission scenarios, the SWUS will need to adapt to unprecedented risk of decadal to
multidecadal droughts in the 21st century (Cook et al., 2015). In the coastal SWUS, two primary factors con-
tribute to increased risk of drought: (1) enhanced interannual precipitation variability due to concomitant
declines in daily precipitation and increases in extreme precipitation frequency (Polade et al., 2014; Polade
et al., 2017) and (2) enhanced evaporative demand associated with the long-term warming trend (Cayan
et al., 2010). The unpredictability of western U.S. droughts in duration and severity on top of the dry SWUS
hydroclimate poses policy-making challenges, especially as climate change will likely generate additional
strain on agriculture (Lobell et al., 2014), wildfire-prone forests (Westerling et al., 2006), ecosystems (Palmer
et al., 2009), hydropower generation (Gleick, 2016), and nonrenewable groundwater reservoirs (Scanlon
et al., 2012a; Swain, 2015). Given the disproportionate socioeconomic effect of enhanced drought risk, better
drought predictability is important to help policymakers more adequately manage water resources to main-
tain ecosystem health and support the growing human population (Swain, 2015).

Li et al. (2016a, 2016b) looked globally for terrestrial rainfall teleconnections for North Atlantic SSSAs on a sea-
sonal scale with a 3-month lead time. Here we do the opposite. We search globally for autumn SSS, as well as
SST, signals for winter SWUS precipitation, the season when it gets most of its moisture. Our approach is simi-
lar to the flexible framework in Gershunov and Cayan (2003), who assessed the predictive skill of SST patterns
on seasonal precipitation and identified predictors without a priori assumptions about specific climate
modes. We use SWUS as a paradigm to present a framework to quantitatively define and select predictors
for building SSS and SST-based models of seasonal terrestrial precipitation.

2. Data and Methods
2.1. Study Region

The study region is the U.S. southwest, which we take to encompass Southern California, Arizona, and wes-
tern New Mexico (Figure 1a). We define SWUS with a bounding box (southwest corner: 122.75°W, 31.25°N;
northeast corner: 105.75°W, 37°N). In the winter months (December through February), this region is rela-
tively dry compared to the rest of the contiguous United States. We assume uniform spatial variability within
the study region due to strong correlation (R = 0.77 ± 0.12) of gridded winter precipitation within the defined
boundaries of SWUS (Figure S1 in the supporting information).

2.2. Data Sets

The U.S. precipitation data set used in this study is the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC) unified gridded gauge-based data set (0.25° × 0.25° spatial resolu-
tion, daily, 1948–2018; Higgins et al., 2000; https://esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.
html). The temporal range of this study is limited by the availability of the CPC Unified data set; we study
70 years of data that spans 1948–2018.
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The ocean salinity and temperature data sets used in this study are from the United Kingdom Met Office
Hadley Centre EN4.2.1 (1° × 1° spatial resolution, monthly, 1900–2017) quality-controlled objective analyses
data set with Gouretski and Reseghetti (2010) bias corrections applied (Good et al., 2013; https://www.metof-
fice.gov.uk/hadobs/en4/). EN4.2.1 mainly uses observational data from the World Ocean Database 2013,
Global Temperature and Salinity Profile Project (from 1990), and Argo float data (from 2000). We use the
monthly salinity and temperature observations at 0–10 m depth as SSS and SST, respectively, averaged from
September to November.

The traditional SST-based climate indices considered in this study are Niño 1 + 2, Niño 3, Niño 3.4, Niño 4,
AMO, and PDO (Table S1 in the supporting information; Rayner et al., 2003; Mantua et al., 1997; Zhang et al.,
1997; Enfield et al., 2001). Data are from the NOAA Earth System Research Laboratory Physical Sciences
Division (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/).

2.3. Statistical Methods

We construct a detrended time series for winter (December-January-February, DJF) precipitation, averaged
over SWUS (Figure 1b). The variability of regional winter SWUS precipitation most closely reflects that of local
winter precipitation in Southern California and western-central Arizona. We further categorize precipitation
as follows: near normal (25th to 75th percentile: 0.67–1.36 mm d�1), below normal (<25th percentile), and
above normal (>75th percentile; Figure 1b).

We detrend precipitation, SSS, and SST time series to prevent autocorrelation and isolate teleconnection
patterns between predictors and predictand that are more likely to be physically meaningful. That is, we
focus on the variance of signals rather than trends in global oceanic predictors and regional precipitation.

Figure 1. Winter precipitation in southwestern United States (SWUS). (a) Winter (December-January-February) precipita-
tion in the contiguous United States. The study region, SWUS, is defined by the red box. (b) SWUS winter precipitation,
averaged temporally across days from December to February and spatially within grid cells in the study region, over 1948–
1949 to 2016–2018. The 7 wettest years (top decile) and 7 driest years (bottom decile), after detrending, are denoted as
circled green and brown dots, respectively.
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First, we broadly characterize the strongest signals in autumn (September-October-November) SSSA and
SSTA for the wettest and driest years: The top and bottom deciles of the 70-year winter SWUS precipita-
tion record (7 years) represent high (wet) and low (dry) precipitation cases, respectively. We run 1,000
iterations of the Monte Carlo simulation (Livezey & Chen, 1983) to test the significance level of the
SSSA and SSTA composites. We define statistical significance as p < 0.05.

We then use statistical modeling to explore the 70-year precipitation record in-depth. First, we estimate the
correlation coefficient (R) for the detrended SSS (SST) and winter precipitation time series on a pixel-by-pixel
basis. Co-location of highly correlative areas with SSS and SST signals from the wet and dry case composites
supports linearity and relative stationarity of such signals. To isolate the strongest linear signals, we exclude
high latitudes (above 60°N and below 60°S) due to highly variable ocean temperature and salinity in the polar
regions and the relative lack of observations in the Southern Ocean. We then filter grid boxes with two
thresholds: a correlation threshold, T1, and an area threshold, T2. Adjoining pixels with |R| > T1 threshold
are aggregated to form polygons. We filter out weak correlation areas that have little potential to be skillful
predictors and consider 0.2 ≤ T1 ≤ 0.25 at intervals of 0.01. We further assume low confidence in smaller poly-
gons, which may be products of statistical noise. Thus, we filter out polygons with areas smaller than 50 pixels
(~6 × 105 km2 at equator): T2 = 50. Physically, anomalous signals larger than a spatial scale of 103 km2 are
more likely to generate persistent climate impact (Sawyer, 1965). The remaining polygons are used to extract
and average autumn SSS (SST) in order to form independent time series that serve as predictors in the multi-
variate linear regression models. We assess the temporal stability in the strength of the isolated signals with
30-year running correlations.

We use the regsubsets function in the R leaps package to perform best subset regression (Lumley, T. based on
Fortran code by Alan Miller, 2017). Prior to regression analysis, we remove the linear trend from the data and
check for extreme multiple collinearity, removing variables with a variance inflation factor greater than 4. We
use multivariate linear regression with regulation to select the best combination of autumn SSS (SST) predic-
tors of winter SWUS precipitation among 8 “best”models spanning 1–8 total predictors. To objectively select
the final model and prevent overfitting, we use the Bayesian information criterion (BIC), a metric with a higher
penalty term compared to the Akaike information criterion; BIC prefers simpler models, or inclusion of fewer
predictors (Schwarz, 1978). The model with the lowest BIC is selected.

To further test model performance, we use the repeated hold-out method. We split the 70-year SSS (SST) and
precipitation data into training and test data sets. That is, we train the models on two thirds (47 years) of the
SSS (SST) and precipitation data sets to predict the other one third (23 years) of data. We repeat this process
for holding out half the years for the test data set. For 1,000 iterations, we randomly subsample the years of
data used for the training and test data sets and obtain the variance explained (adjusted R2) in the test data
set. To further test model predictive skill, we simulate “seasonal outlooks” for the following winter’s precipita-
tion by retraining the SSS and SST-based models on “historical” data from all years prior. More specifically, we
generate 67-, 68-, and 69-year SSS and SST models to predict the near-normal, above-normal, and below-
normal precipitation in winter 2015–2016, 2016–2017, and 2017–2018 respectively.

3. Beyond Climate Indices: Global Search for SSS Teleconnections

The autumn-lead SST-based traditional climate indices are not skillful (adjusted R2 = 0.03–0.06) in the predic-
tion of winter SWUS precipitation (Table S1). For example, themost skillful SST-based index, Niño 3.4, can only
explain 6% of variance in winter SWUS precipitation. This low skill may be explained by the inherent instabil-
ity and nonstationary nature of climate teleconnections (e.g., Gershunov et al., 2001), as manifested in the
lack of ENSO-driven variability in winter precipitation over SWUS in the 21st century. For 30-year increments,
the skill of ENSO-related climate indices peaked around 1970–2010 and has since continued to decrease.
Another possibility is the increasing frequency of other flavors of El Niño, namely, central Pacific El Niño (El
Niño Modoki; Paek et al., 2017). In this secondary mode of El Niño, the eastern Pacific is cool, while the central
Pacific is warm (Ashok et al., 2007).

As expected, the SSTA signal is dominated by the El-Niño–Southern Oscillation (ENSO; Figures 2c and 2d).
When SWUS experiences anomalously wet winters, a strong dipole of cool water in the western Pacific
Ocean and a warm tongue extending from the central to eastern equatorial Pacific is present in the
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preceding autumn. The warm tongue is coupled with the Pacific Warm Blob, which is characteristic of warm
waters along the western coast of North America and linked to the strong 2015–2016 El Niño event (Tseng
et al., 2017). The SSS signal is likely linked to ENSO. The warm-cool dipole center is co-located with a fresh
central-western equatorial Pacific (Figure 2a). During El Niño, freshwaters are advected westward and preci-
pitation excess further contributes to this western fresh pool (Delcroix & McPhaden, 2002; Picaut et al., 1996).
Conversely, the La Niña mode cool-warm dipole center is co-located with a salty central-western equatorial
Pacific (Figure 2b).

Similar spatial patterns in the wet and dry case composites as in the highly correlative patches confirm the
linearity of strong SSS and SST signals in the tropics with SWUS precipitation (Figures 2, 3a, and 3c). The
SSS correlation map shows that a fresh tropical Pacific precedes wet winters in SWUS (Figure 3a). The SST cor-
relation map shows that a dipole pattern of a warm central-east tropical Pacific and cool central-west tropical
Pacific precedes wet winters in SWUS (Figure 3c). We identify and isolate 19 potential SSS predictors and 12
potential SST predictors, respectively (Tables S2 and S3). All predictors are correlated with winter SWUS pre-
cipitation at p< 0.05. Small standard deviations in the 30-year running correlations between SSS and SST pre-
dictors and winter SWUS precipitation suggest that many SSS and SST teleconnections are relatively stable
(Tables S2 and S3). However, linear trends in these correlations show some instability in strong teleconnec-
tion patterns whose skill is increasing (many SSS predictors, e.g., SSS8 and SSS12) or decreasing (many SST
predictors, e.g., SST9 and SST10) with time.

Many of the identified SSS and SST predictors are linked to the SST-based climate indices, particularly to ENSO
(Tables S6 and S7). We emphasize that almost all the identified SSS and SST predictors are individually more
skillful than the traditional climate indices: for example, central tropical Pacific SSS (SSS18, R =�0.38), western
tropical Pacific SST (SST1, R =�0.51), central tropical Pacific SST (SST9, R = 0.37), and northeastern Pacific SST
(SST12, R = 0.46; Tables S2 and S3). This suggests that more flexible, region-specific definitions of SST indices
can greatly improve precipitation forecasts. For example, using SST1 (adjusted R2 = 0.25) rather than Niño 3.4
(adjusted R2 = 0.06) more than quadruples the variance explained in winter SWUS precipitation (Figure 3c
and Tables S1 and S3).

Figure 2. Sea surface salinity anomaly (SSSA) and sea surface temperature anomaly (SSTA) composites for dry and wet
winters. Detrended autumn (a and b) SSSA and (c and d) SSTA composites for the wet and dry deciles of winter
southwestern United States precipitation. The stippled grid boxes represent statistical significance (p < 0.05) based on
1,000 Monte Carlo simulations.
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The SSS model (adjusted R2 = 0.61, BIC = �39) is more skillful than the SST model (adjusted R2 = 0.54,
BIC = �31; Figure 3 and Table S4). The mean variances of the test data sets explained by SSS and SST train-
ing models is 51–53% and 46–47%, respectively, using the repeated hold-out method (Table S5). That is,
using two thirds to half the years of EN4 data, we are able to more skillfully predict the other one third
to half of precipitation data using SSS rather than SST. Unlike the SSS model, the SST model is unable to
resolve the dry 2013–2014 and wet 2016–2017 winters. Moreover, in terms of predictive skill for the
2015–2016 and 2016–2017 winters, the SSS model outperforms the SST model (Table S8). The
September–November issues of the CPC Seasonal Outlook for DJF 2015–2016 and 2016–2017 are mostly
consistent with the SST model (CPC, 2015, 2016). For winter 2015–2016, the SST model (1.65 mm d�1, rela-
tive error: +107%) overpredicts while the SSS model (0.96 mm d�1, relative error: +21%) accurately esti-
mates the near-normal winter mean daily precipitation (0.79 mm d�1). Similarly, the SSS model
(1.38 mm d�1, relative error: �33%) outperforms the SST model (0.67 mm d�1, relative error: �68%) in pre-
dicting the above-average daily precipitation (2.07 mm d�1) in winter 2016–2017. However, both models
overpredict the abnormally dry 2017–2018 winter (0.48 mm d�1) by 179–204%, in contrast to the more
accurate CPC Seasonal Outlook for DJF 2017–2018 (CPC, 2017).

4. Potential Mechanisms for Long-Range Moisture Transport

Rossby waves are large, high-altitude, meandering atmospheric wind patterns that can transport moist-
ure from the tropics to the extratropics (Rossby, 1940; Hoskins & Karoly, 1981). The heat applied to the
atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to
high latitudes. In particular, the tropical Pacific is a major “hot spot” for exciting seasonal Rossby waves
that propagate to the subtropics (Scaife et al., 2017). Molteni et al. (2015) suggest that tropical rainfall
is a more direct driver of teleconnections than SST. Since rainfall contributes much more of the var-
iance in SSS than evaporation (Zeng et al., 2018), this may well explain our finding that remote SSS
variations have greater utility in predicting extratropical rainfall than SST. Covariance patterns found
in Molteni et al. (2015) reveal teleconnections between tropical Pacific and terrestrial rainfall

Figure 3. Global sea surface salinity (SSS) and sea surface temperature (SST)-based “best” models of winter southwestern
United States (SWUS) precipitation. (a) Pixel-by-pixel correlation of detrended autumn (a) SSS and (c) SST with winter SWUS
precipitation, with identified predictors bounded in black. (b) The SSS multivariate linear regression model, using seven
predictors (SSS4, 7, 8, 10, 11, 12, and 19), explains 61% of variance in winter precipitation. (d) The SST multivariate linear
regression model, using six predictors (SST1, 2, 5, 6, 7, and 11), explains 54% of variance in winter precipitation.
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anomalies that propagate across the SWUS. Indeed, the teleconnection hot spots in eastern and central
tropical Pacific are consistent with the spatial distribution of highly correlative areas between autumn
SSS and winter SWUS precipitation (Figures 2 and 3). Thus, the anomalous fresh region that we
observe in the tropical Pacific preceding wet winters in SWUS may indicate an active winter, wherein
excited standing Rossby waves transport higher-than-usual moisture from the tropics to SWUS
(Figures 2a and 3a).

Scaife et al. (2017) find that seasonal Rossby waves do not vary in position but do vary in activity across
winters depending on tropical rainfall anomalies. Additionally, Branstator and Teng (2017) find that jets,
which act as waveguides for Rossby wave propagation, are circumglobal in the winter but confined to cer-
tain regions during the summer. Indeed, Jiménez-Esteve and Domeisen (2018) conclude that the strato-
sphere can modulate transient Rossby wave propagation across North America during the winter,
therefore bridging Pacific and North Atlantic through the troposphere. Hu et al. (2017) found a connection
between large-scale Rossby wave breaking and atmospheric rivers (ARs) making landfall on U.S. West
Coast. Even though the 2016–2017 winter is not associated with a strong El Niño like the previous winter,
“Pineapple Express” ARs lifted California out of its multiyear drought (Gershunov et al., 2017). ARs are long,
narrow, and filamentary corridors that can export large amounts of water from the tropics to the extratro-
pics (e.g., Zhu & Newell, 1998). The Pineapple Express, a particular type of AR, transports moisture from the
Hawaii region to California (e.g., Dettinger, 2004; Dettinger, 2015; Dettinger et al., 2011). However, the ARs
that affect the coastal regions differ from those that propagate to Arizona (Gershunov et al., 2017; Rutz
et al., 2014), underscoring the inconsistency of AR impact across the SWUS domain. Taken together, recent
studies (e.g., Branstator & Teng, 2017; Hu et al., 2017; Molteni et al., 2015; Rutz & Steenburgh, 2012; Scaife
et al., 2017) suggest that more accurate prediction of Rossby waves, as well as AR events, may increase the
predictability of winter precipitation in SWUS.

Increasing SSSA variability over the central tropical North Pacific over the past few decades suggests
amplification of the SSS signal (Figure S2). Critically, the recent see-saw from extreme drought to flooding
in California and its unpredictability is a challenge for making decisions on allocation of water manage-
ment resources and likely a precedent for similar drought-to-flood events in the future (Diffenbaugh
et al., 2015; Shields & Kiehl, 2016; Wang et al., 2017). In particular, the abnormally saline phase of the tro-
pical Pacific, which may have subdued the export of water to the subtropics during the recent drought
years, is followed by a rapid turnover to an abnormally fresh phase during the 2015–2016 El Niño, persist-
ing to the wet 2016–2017 winter. However, atmospheric patterns can complicate the SSS teleconnections.
Presence of an atmospheric ridge along the U.S. West Coast, even if commensurate with low tropical
Pacific SSS, may divert storm tracks northward such as during the dry 2012–2015 winters (Swain et al.,
2016; Teng & Branstator, 2016; Figure S4). For example, in contrast to the strong atmospheric trough over
the U.S. West Coast in late 2016, its absence in 2015 may be responsible for the drier-than-usual SWUS
winter despite expansive fresh pools in the tropical Pacific (Figures S5a and S5b). Rather, the atmospheric
trough located offshore in the Northeast Pacific in autumn 2015 may have displaced potential ENSO-
enhanced rainfall offshore as seen in the extreme oceanic and coastal forcing in winter 2015–2016
(Figure S5a; Barnard et al., 2017).

Additionally, SSS variability in the central equatorial Pacific is not as strongly linked to ENSO as SST varia-
bility (Chen et al., 2012; Di Lorenzo et al., 2005; Tables S6 and S7), such as seen in autumn 2016 relative to
2015 (Figures S3a–S3d). Despite the retreat of the 2015–2016 strong El Niño, fresh pools in the central-
eastern and western tropical Pacific were still present in autumn 2016 (Figure S3c). Aside from the appar-
ent recent amplification in SSS signals in the tropical Pacific, we observe approximately 12-year SSSA
cycles in the central tropical-subtropical North Pacific from 1991–2003 and 2003–2015, with the latter
cycle more pronounced in terms of amplitude (Figure S2). In each case, SSS in the North Pacific slowly
increased before decreasing to a local minimum. Chen et al. (2014) linked decadal SSS variability to the
North Pacific Gyre Oscillation (NPGO), a low-frequency decadal SSS mode attributed to global climate
variability (Di Lorenzo et al., 2009, 2010). However, we find only moderate agreement between SSS18
and NPGO (R = 0.54, p < 0.05; Figure S2), on par with PDO (R = �0.52, p < 0.05) and ENSO (R = �0.5
to �0.57, p < 0.05; Table S6). Unlike SSS18, we find that autumn NPGO is a poor predictor of winter
SWUS precipitation (adjusted R2 = 0.02, p = 0.14), again signaling a need to search for skillful predictors
beyond traditional climate indices.

10.1029/2018GL079293Geophysical Research Letters

LIU ET AL. 8451



5. Future Directions

Notably, the regional setting for predictive models of terrestrial rainfall is not confined to SWUS and can be
extended to any geographic or administrative boundaries, such as climate divisions and watershed delinea-
tions. For example, by scaling up the analysis, we can investigate how SSSA and SSTA teleconnection patterns
and predictability of rainfall spatially vary by subregional watersheds, as defined by the United States
Geological Survey, within the SWUS. Further, global and local precipitation data sets can be substituted for
the Palmer Drought Severity Index to focus on agriculture, historical terrestrial rainfall and temperature,
and soil moisture content, for example (Dai et al., 2004). SSS and SST predictors can also be individually opti-
mized with different lead times; for example, Mamalakis et al. (2018) show that observations of long-lead late
summer SST in the southwestern Pacific, a teleconnection modulated through a western Pacific atmospheric
bridge pathway, can enhance predictability of winter SWUS precipitation. Further, SSS and SST uncertainty
estimates and adjustments in correlation thresholds can be used to fine-tune the predictive models and gen-
erate ensemble predictions. Lastly, more extensive analysis on SSS with regard to moisture flux divergence,
latent heat flux, ocean circulation, and geopotential height may help to pinpoint dynamic and thermody-
namic mechanisms for isolated SSS-precipitation teleconnections and decouple myriad oceanic-atmospheric
contributors to variability in regional precipitation.

6. Conclusions

In our preliminary analysis, we present a simple method to globally search for and isolate teleconnections
between autumn-lead SSS and SST and winter SWUS precipitation. First, we use pixel-by-pixel correlations
between the detrended autumn SSS and SST andwinter SWUS precipitation time series to identify and define
potential predictors. We then use multivariate linear regression with regulation (best subset regression and
BIC) to objectively select the best models using SSS and SST predictors. In the case of the SWUS, the SSS
model (R2 = 0.61) outperforms the SST model (R2 = 0.54). SSS and SST models can more skillfully explain
the variance in winter SWUS precipitation than traditional SST-based climate indices (Niño 1 + 2, Niño 3,
Niño 3.4, Niño 4, PDO, and AMO), which only explain 3–6% of variance. As a complement to SST, SSS is an
indicator of the export of water and latent heat from ocean to atmosphere and responds to wind-driven
advection andmixing (Lagerloef et al., 2010; Schmitt, 1995). Thus, it is sensitive to air-sea exchanges that have
surprising long-range predictive utility for terrestrial rainfall. We hypothesize that low SSS in the tropical
Pacific indicates anomalous rainfall that can excite Rossby waves, thereby providing a channel to export
water from the tropics to the extratropics. Thus, we find that SSS, as measured by the ARGO float array
and salinity satellites SMOS and SMAP, is a useful climate variable that can significantly improve predictions
of seasonal precipitation variability on land.
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