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Abstract Seasonal hurricane activity is a function of the amount of initial disturbances (e.g., easterly waves)
and the background environment in which they develop into tropical storms (i.e., the main development
region). Focusing on the former, a set of indices based solely upon themeridional structure of satellite-derived
outgoing longwave radiation (OLR) over the African continent are shown to be capable of predicting Atlantic
seasonal hurricane activity with very high rates of success. Predictions of named storms based on the July OLR
field and trainedonlyon the timeperiodprior to the year beingpredicted yield a success rate of 87%, compared
to the success rate of NOAA’s August outlooks of 53% over the same period and with the same average
uncertainty range (±2). The resulting OLR indices are statistically robust, highly detectable, physically linked to
the predictand, and may account for longer-term observed trends.

1. Introduction

Despite the obvious human and economic impact of tropical cyclones, predicting how active an upcoming
(or ongoing) Atlantic hurricane season will be remains a formidable challenge. Since the U.S. National
Oceanic and Atmospheric Administration (NOAA) National Hurricane Center (NHC) and Climate
Prediction Center (CPC) began issuing bounded predictions in 2001 (i.e., “6–10 Named Storms”), the
success rate of such predictions issued in early August has been 53% (Table 1). In other words, the actual
number of named storms fell within the predicted range in 8 of the 15 years from 2001 through
2015—with a priori knowledge of the number of named storms in the first 2months of the official
Atlantic hurricane season.

Despite how 53% may sound, such a success rate is in fact evidence of real forecast skill. Given 15± 5
named Atlantic storms (mean± standard deviation) per year from 2001 through 2015, and a lag-1
autocorrelation coefficient of �0.10, persistence-based methods would naturally have yielded inferior
success rates (Table 1). Straight persistence (i.e., the prior year’s outcome±2) would have yielded a
33% success rate, and the prior 7 year mean (±2) would have yielded a success rate of 47%—in terms
of named storms. In addition to named storms, NOAA’s seasonal outlooks include predictions of sub-
groups and derivatives thereof such as hurricanes, major hurricanes, and accumulated cyclone energy
(ACE), which have yielded success rates of 53%, 67%, and 53%, respectively. Predictions of ACE based
on straight persistence and the prior 7 year mean would have yielded success rate of 33%. Moreover,
impressive progress appears to have been made; seven of the eight successful early-August predictions
of named storms by NOAA occurred in the last 9 years (2007–2015). Nonetheless, there is clearly room
for improvement in the science and art of seasonal hurricane prediction, from which many sectors of
society may benefit.

Probabilistic predictions of Atlantic seasonal hurricane activity (such as those issued by NOAA in late May
and early August) are typically based on a blend of observations and model forecasts of several
atmospheric and oceanic parameters over the tropical Atlantic including sea surface temperature (SST),
humidity, vorticity, and vertical wind shear, as well as characteristics of remote climatic phenomena such
as the El Niño–Southern Oscillation (ENSO) and west African monsoon [see Bell and Chelliah, 2006, and
references therein]. However, seasonal hurricane predictions at NOAA are not derived strictly from numerical
inputs; the former parameters are considered guidance. and the human element takes the form of
expert judgment. Karnauskas [2006] explored the potential association between Atlantic seasonal hurricane
activity and the meridional gradient of outgoing longwave radiation (OLR) across Africa using satellite
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observations between 1982 and
2004 (23 years). The OLR gradient
was argued to be an integrative
quantity reflecting the intensity of
the Intertropical Convergence
Zone (ITCZ) over Sahel Africa
related to the production of east-
erly waves, as well as the meridio-
nal temperature gradient related
to the African easterly jet (AEJ)
via the thermal wind relation. A
similar concept has also been
applied recently to storm-by-storm
and monthly correlations, yielding
promising results [Price et al.,
2015]. Here we further exploit such
mechanistic relationships between
the meridional structure of the
OLR field over Africa and Atlantic
seasonal hurricane activity using
observations between 1979 and
2015 (37 years), build robust statis-
tical models based on observed
relationships, and explicitly evalu-
ate the performance of those
models in hindcast mode relative
to seasonal predictions issued by
NOAA as well as the Colorado
State University (CSU) Tropical
Meteorology Project since 2001.

2. Data

In this study, we utilize several monthly, gridded observational data sets, focusing on the period of January
1979 through December 2015, including the following:

1. NOAA Interpolated OLR, 2.5° resolution [Liebmann and Smith, 1996].
2. Global Precipitation Climatology Project version 2.2 precipitation, 2.5° resolution [Adler et al., 2003].
3. NASA Goddard Institute for Space Studies (GISS) surface temperature (GISSTemp), 2° resolution with

250 km smoothing [Hansen et al., 2010].
4. NASA GISS surface temperature merged with NOAA Extended Reconstructed Sea Surface Temperature

version 4, 2° resolution with 1200 km smoothing (GISSTemp+ERSSTv4) [Hansen et al., 2010].
5. National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis

[Kalnay et al., 1996] relative humidity, horizontal wind, and tropopause temperature for calculating the
hurricane genesis potential index (GPI; see Appendix A for details).

In addition, we utilize monthly climate indices defining the El Niño–Southern Oscillation (ENSO) and the
Atlantic Multidecadal Oscillation (AMO) provided by the NOAA Earth System Research Laboratory (ESRL),
Physical Sciences Division (PSD), historical Atlantic tropical storm statistics from the NOAA NHC and
Hurricane Research Division (HRD), and historical Atlantic tropical storm predictions archived by the
NOAA Climate Prediction Center (CPC) and the Colorado State University (CSU) Tropical Meteorology
Project. Tropical cyclone tracks from 1979 to 2014 were gathered from the HURricane DATa second
generation (HURDAT2) [Landsea and Franklin, 2013) data set. A statement on data availability including
Web addresses for all of the above data sets is provided below in the Acknowledgments section and
section 2.

Table 1. Predicted and Actual Named Storms and Accumulated Cyclone
Energy (ACE) Over Timea

Year

Named Storms ACE Index

NHC Actual NHC Actual

1994 7 32
1995 19 228
1996 13 166
1997 8 41
1998 14 182
1999 12 177
2000 15 119
2001 9–12 15 86–120 110
2002 7–10 12 52–86 67
2003 12–15 16 103–146 176
2004 12–15 15 79–131 227
2005 18–21 28 158–236 250
2006 12–15 10 96–149 79
2007 13–16 15 123–175 74
2008 14–18 16 123–201 146
2009 7–11 9 53–96 53
2010 14–20 19 149–228 165
2011 14–19 19 125–199 126
2012 12–17 19 69–125 129
2013 13–19 14 111–176 36
2014 7–12 8 37–83 67
2015 6–10 11 23–65 63

aPredicted ranges of and actual named atlantic storms and Accumulated
Cyclone Energy (ACE) since 2001, when NOAA began issuing bounded pre-
dictions of both. Actuals since 1994 are also shown to include the data per-
taining to comparisons to predictions based on persistence and the prior
7 year mean as discussed in the main text. The NOAA predictions shown
here were issued in early August of the year indicated (the official Atlantic
hurricane season spans June through November). Bold type indicates
successful predictions; the success rate of NOAA predictions issued in early
August for named storms and ACE is 53%.
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3. Optimal OLR Index

The climatological distribution of OLR over Africa (Figure 1a) reveals strongmeridional gradients between the
very high OLR (~310Wm�2) over northern Africa due to the hot and cloud-free Sahara Desert, very low OLR
(~210Wm�2) over central Africa due to the Intertropical Convergence Zone (ITCZ), and moderately high OLR
(~270Wm�2) over southern Africa—also due to a region of strong descent within the global Hadley circula-
tion. We seek to develop a skillful OLR-based predictor for Atlantic seasonal hurricane activity that can be
made available in early August (synchronized with the updated NOAA and CSU predictions); thus, we focus
on the July mean OLR fields. The correlation between July OLR at every location and the number of named
Atlantic storms between 1979 and 2015 (Figure 1b) reveals a coherent tripole structure involving all three of
the aforementioned features of the climatological OLR distribution over Africa. Active Atlantic hurricane
seasons are associated with a strengthened and poleward-shifted climatological OLR pattern including
higher OLR along the northern edge of Africa and southern Europe, lower OLR across the Sahel or northern
edge of the ITCZ, and higher OLR over southern Africa. The swath of negative correlation across the Sahel is
closely aligned with a pronounced region of tropical cyclogenesis just offshore of West Africa, as indicated by
HUDAT2 tracks. Qualitatively, similar results are obtained by correlating the July OLR with ACE (Figure S3a in
the supporting information).

The time evolution of “optimal” July OLR indices over the Sahara, ITCZ, and southern Africa (i.e., box-
averages encompassing the regions of highly significant correlations shown in Figure 1b) is shown in
Figure 2a, along with a single OLR index combining the three boxes in Figure 2b. The combined OLR index
is computed as simply the average of the normalized OLR indices over the Sahel and southern
Africa minus the normalized OLR index over the ITCZ. The correlation between the July OLR index and
the number of named Atlantic storms from 1979 to 2015 is 0.75, which is clearly statistically significant
(99%). For comparison, correlations between named Atlantic storms and the AMO index in July and the
NINO3.4 index in the following December–February season (which presumes the availability of an accurate
ENSO forecast) are significant but lower than that with the OLR index (Figure 2c). Some of the correlation
between the above-mentioned variables and named Atlantic storms may be due to linear trends present
over 1979–2015; detrending reduces the correlation coefficient by 29% for AMO, but only by 9% for the
combined OLR index.

The correlation between the July OLR index and the number of named Atlantic storms reported here
(0.75) is higher than that of Karnauskas [2006]—partly due to the continued strong association between
African OLR and named Atlantic storms over the subsequent decade and partly due to updated data
and methods. In terms of developing the OLR predictors, there are three main differences in the data
and methodology between the present study and Karnauskas [2006]. (1) The period of analysis has been
expanded from 23 years (1982–2004) to 37 years (1979–2015). (2) The two original boxes (Sahara and ITCZ)
have been moved slightly based on the observed covariability between the seasonal OLR fields and the

Figure 1. (a) Climatological OLR (Wm�2) during July 1979–2015. (b) Significant correlations (99%) between July OLR and
the number of named Atlantic storms, 1979–2015. The dashed boxes in both panels indicate the OLR indices referred to in
the main text and used in subsequent figures. Tracks from all 556 tropical cyclones, 1979–2014, from the HURDAT2 data set
are shown in both panels.
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time series of named storms; the
boxes in Karnauskas [2006] were
simply based on the annual mean
climatology. (3) A third box over
southern Africa has been added to
exploit the remote covariability
provided by the Hadley circulation.
The statistical robustness of the
spatial pattern in Figure 1b, its
temporal evolution (Figure 2b), and
the three-box index that quantifies
it is further confirmed by empirical
orthogonal function (EOF) analysis
(Figure S1); the correlation between
the July combined OLR index and
the second principal component of
July OLR is 0.97.

The meridional structure of the
OLR field over Africa is a reflection
of the intensity of both the ascen-
ding motion within the Sahelian
ITCZ and the subtropical descending
motion over the Sahara and southern
Africa, which is itself an important
regional center of action embedded
within the global Hadley circulation
[Karnauskas and Ummenhofer, 2014]
and related to the Indian monsoon
through a Rossby wave response
[Rodwell and Hoskins, 1996]. Indeed,
composite and regression analyses
highlighting the large-scale spatial
patterns of OLR variability associated
with variability in Atlantic seasonal
hurricane activity (Figures 3a and 3b),
along with the objective EOF ana-
lysis (Figure S1), robustly show that
these three centers of action vary in
concert and project strongly onto
the regional Hadley cell paradigm.
In contrast, precipitation alone
only captures variability of the ITCZ

(Figures 3c and 3d), as climatological rainfall within the subtropical descent regions is near zero and thus
contains no useful signal despite the important circulation changes detectable in OLR. Given that the
subtropics are relatively dry, the OLR signal over the Sahara and southern Africa that is statistically related
to Atlantic seasonal hurricane activity is being driven by surface temperature (Figures 3e and 3f), which is
clearly an important element in setting up meridional temperature gradients that are dynamically linked to
the AEJ and contribute to instabilities giving rise to easterly waves [Hsieh and Cook, 2008]. The meridional
structure of OLR over Africa, it seems, is an ideal candidate predictor for Atlantic seasonal hurricane activity
due to its robust, highly detectable signal and strong mechanistic connections to multiple factors known
to influence tropical cyclone formation including the ITCZ, AEJ, easterly waves, andmore generally the overall
vigor of the atmosphere’s overturning (Hadley) circulation just upstream of the main development region
(MDR) [Zhang and Wang, 2013].

Figure 2. (a) Time series of individual box-averaged July OLR indices
(Wm�2) noted in Figure 1. (b) July OLR index (thin line) and the number
of named Atlantic storms (heavy line) (both time series normalized to facil-
itate comparison). (c) Number of named Atlantic storms (black), NINO3.4
index (red), and AMO index (blue) (all time series normalized). The dashed
lines in Figure 2b denote the period of analysis in Karnauskas [2006].
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4. Seasonal Predictability

The present section demonstrates the predictive skill of the OLR indices (July) developed in the previous sec-
tion and compares their performance in predicting the number of named Atlantic storms with corresponding
predictions issued in early August of each year since 2001 by NOAA and CSU. We employ two algorithms: sim-
ple multiple linear regression (MLR) and random forest prediction (RF; a machine learning technique). In both
cases, the models are only trained on data prior to the year for which the prediction is being made. In other
words, the prediction for 2001 is made with knowledge of OLR, storm counts, etc. only from 1979 to 2000.
Prior to calculating the prediction for 2002, the models are retrained on data through 2001, and so on.
Outputs of the numerical predictions are rounded to the nearest whole number (of storms). Identification
of the optimal OLR indices used as predictors is not highly sensitive to the time period chosen; the correlation
field shown in Figure 1b for the full period is very similar to the resulting field calculated using only the period
of 1979–2000 (Figure S2). Finally, a prediction is considered successful if the actual number of named Atlantic
storms (or ACE) falls within the predicted range.

The OLR-based predictions of named Atlantic storms made by the MLR technique were successful in 12 of the
15 years from 2001 through 2015, or a success rate of 80% (Figure 4a). Binary performance metrics such as suc-
cess rate, as defined here, are clearly sensitive to the size of the range (i.e., the difference between themaximum
and minimum predicted values). We therefore test the sensitivity of this result using three different uncertainty
schemes for defining the size of the ranges. In one scheme (red), we permit the MLR calculation to determine the
range in each year, but ensure that the 15 year average range is 4 (i.e., predicted value ±2) by fixing the confi-
dence interval to the necessary value throughout the exercise (which happens to be 90%). In a second scheme
(orange), we set the size of the range in each year equal to that of the NOAA prediction in the same year. Since
2001, the NOAA prediction ranges issued in early August have varied between 3 (e.g., “9–12 Named Storms” in
2001) and 6 (e.g., “14–20 Named Storms” in 2010), with a 15 year average range of 4, and typically with a stated
confidence of around 70%. The third scheme (brown) simply assigns a constant range of 4 in each year (i.e., pre-
dicted value ±2). Under all three uncertainty schemes, the OLR-based predictions yielded a success rate of 80%,

Figure 3. (a) Zonal mean (20°W–40°E) profiles of July OLR (Wm�2) composited onto the July OLR index (solid lines) and onto the number of named Atlantic storms
(dashed lines). Positive (negative) composites are represented by red (blue) lines and represent the average of cases where the index is at least 1 standard deviation
above (below) average. (b) Map of July OLR (Wm�2) regressed onto the July OLR index. (c and d) As in Figures 3a and 3b but for July precipitation (mmday�1).
(e) Map of July surface temperature (°C) from GISS regressed onto the July OLR index. (f) As in Figure 3e but for the smoother GISS product merged with ERSSTv4. The
period of analysis for all six panels is 1979–2015.
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as compared to the 53% success rate of the NOAA predictions, and the 47% success rate of CSU predictions since
2001 (Figure 4b; CSU predictions are issued without ranges; here we assign to them a constant range of 4, or
predicted value ±2, to enable comparison). Predictions of ACE based solely on July OLR are on par with NOAA
predictions thereof (53%), with a correlation between the July OLR index and ACE of 0.71 (Figures S3b and S3c).

We can further generalize the success rates achievable with the OLR indices and their dependence on the
chosen range size by repeating predictions under the first of the aforementioned uncertainty schemes,
but varying the confidence interval that remains fixed throughout the 15 predictions from 0.1% to
99.9% (or α from 0.999 to 0.001), resulting in 15 year average ranges from 0 (i.e., absolute precision
but low confidence) to 8 (i.e., predicted value ±4 with very high confidence—arguably not a useful
prediction). This sensitivity analysis (Figure 4c) indicates that the success rate of OLR-based predictions
(MLR technique) varies from 27% for a forecast range of zero (i.e., pinpoint accuracy) to 53% for a
forecast range of 2 (i.e., ±1 storm) to 87% for a forecast range of 6 (i.e., ±3 storms).

The RF predictions [Breiman, 2001] confirm the improved predictive skill using OLR-based predictors. In the RF
prediction, we included eight predictors (combined OLR index; OLR in three individual boxes, July GPI in the
MDR, July AMO, and DJF ENSO; and the number of pre-August named storms). Among them, the combined
OLR index is ranked as themost important predictor according to the RF algorithm (Figure 5a). The importance
factor of the combined OLR index is on average 1.2, but dropped to 1.0 for July GPI in the MDR (Figure 5a).
Consistentwith the importance factor, theRFpredictionsusing theOLR-based indicesachieve87%success rate
(13 out of 15; Figures 4c and 5c). The success rate decreases to 53% for the predictionswithout OLR (Figure 5d),
exactly the same as the predictions by NOAA, in which the OLR-based predictors have not yet been formally
implemented. It is noteworthy that the RF predictions using all eight predictors lead to lower success rate
(73%) than the predictions using only OLR-based predictors (Figure 5b). The lower skill likely reflects an
overfitting problem. The limited number of training samples (25–40) but large number of predictors can result
in an artificially goodfit for training samplesbut badperformance for validation samples. As a result, OLR-based
predictors outperform the other predictors for Atlantic seasonal hurricane activity.

Figure 4. (a) Predicted number of named Atlantic storms based on July OLR (colored ranges) and the actual number of
named Atlantic storms (black line with white circles). The red lines denote predictions with a variable range as determined
by the regressionprocedure, but endingwith an average rangeof 4over theperiodof 2001–2015 (the sameaverage rangeas
the NOAA predictions). The orange lines denote predictions with a variable range equal to those of the NOAA predictions in
each year. The brown lines denote predictions with a constant range of ±2 storms. (b) As in Figure 4a but for the August
seasonal predictions by NOAA (blue) and CSU (green). (c) Success rate (% of years, 2001 through 2015, in which the actual
number of named Atlantic storms fell within the predicted range) as a function of average range (±N storms) for predictions
based on the annual number of named Atlantic storms averaged over the previous decade (filled black circle), persistence
(the number of named Atlantic storms in the previous year; open black circle), CSU (green), NOAA (blue), and OLR (red).
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5. Summary and Discussion

A set of indices based solely upon satellite-derived OLR were developed and shown to be capable of pre-
dicting Atlantic seasonal hurricane activity with very high rates of success. The resulting OLR indices are
statistically robust, highly detectable, and mechanistically linked to Atlantic seasonal hurricane activity.
The physical connection between the OLR field over Africa and Atlantic seasonal hurricane activity is
due to the meridional OLR gradient reflecting both the temperature gradient between the Sahara Desert
and central Africa including the Gulf of Guinea, which drives the AEJ and the intensity of the ITCZ.
Through the impact on AEJ intensity and ITCZ convection, the OLR index can be related to instabilities
associated with easterly wave production [Hsieh and Cook, 2008]—some of which propagate across the
West African coast into the tropical Atlantic region and further develop into tropical cyclones [Thorncroft
and Hodges, 2001; Hopsch et al., 2010].

In terms of predicting the number of named storms, the large difference in success rates between the
OLR-based predictions (80–87%) and NOAA and CSU predictions (47-53%) is surprising, considering the
simplicity of linear regression and the essentially univariate nature of the predictors compared to the diversity
of data, models, and experience considered by the NOAA and CSU groups as illustrated in the discussion
accompanying each outlook issued. Depending on the application or real-world context, if the tolerance
for uncertainty was relatively small (e.g., within ±1 storm), the OLR-based predictors developed here would
seem to offer such precision without sacrificing accuracy.

The primary benefit of OLR appears to be improved seasonal predictions of named storms made in early
August, as the skill of OLR-based predictions of hurricanes, major hurricanes, and ACE is on par with the
NOAA predictions, as is that of predictions of named storms based on the May OLR field. As May is prior to
the start of the official Atlantic hurricane season, the skill of the May OLR field in predicting the upcoming
hurricane season is likely due to the autocorrelation exhibited by OLR anomalies across the months leading
up to—and into—the hurricane season. For example, the correlation coefficient between the May and June

Figure 5. Random forest analysis of OLR and several other commonly utilized predictors including the genesis potential
index (GPI), ENSO, AMO, and the number of named Atlantic storms prior to August. (a) Box and whisker plot showing
the importance factor of each predictors according to 1000 iterations of RF algorithm. From the bottom to the top, the box-
whisker plot shows the minimum, 25%; median, 75%; andmaximum values of the importance factor. The red plus signs are
the outlier samples. (b) RF prediction using all eight predictors shown in Figure 5a, (c) RF prediction using only OLR-based
predictors, and (d) RF prediction without OLR. The shaded envelopes are ±2 ranges.
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OLR indices is 0.56, the correlation between the June and July OLR indices is 0.63, and the correlation
between the July and June–November OLR indices is 0.84.

Finally, it is intriguing to consider whether the close association between the meridional structure of OLR
across Africa and Atlantic seasonal hurricane activity extends beyond the interannual time scale. The linear
trend in OLR over the analysis period (Figure S4a) projects strongly onto the spatial pattern of detrended
OLR variability that is correlated with named storms and ACE (or OLR EOF2). Is the linear (or multidecadal)
trend in the number of named Atlantic storms since 1979 associated with that of meridional OLR gradients
over Africa? While some of the OLR trend appears to be driven by increasing surface temperatures (especially
over northern Africa and southern Europe; Figure S4b), the ITCZ-related component of the OLR trend is not
straightforward and deserves further attention [Dong and Sutton, 2015]. Nonetheless, the ongoing discussion
surrounding the impact of multidecadal and anthropogenic climate change on tropical cyclones—typically
centered on the environmental conditions within the MDR—should also consider the dynamical configura-
tion upstream of the MDR (i.e., Africa), and OLR provides a diagnostic framework in which to do so.

Appendix A: Genesis Potential Index
The hurricane genesis potential index (GPI), which represents environmental conditions for hurricane genesis
[Emanuel and Nolan, 2004], is also calculated as

GPI ¼ 105η
�� ��32 RH

50

� �3 Vpot

70

� �3

1þ 0:1Vsð Þ�2: (A1)

In equation (A1), η is 850 hPa absolute vorticity (s�1), RH is relative humidity (%) at 700 hPa, and Vs is the
magnitude of vertical wind shear between 850 hPa and 200 hPa. Vpot is the maximum potential intensity
as defined in Emanuel [1995]:

V2
pot ¼ Cp Ts � T0ð Þ Ts

T0

Ck

DD
lnθ�s � lnθs
� �

; (A2)

where Ts is the SST and T0 is the air temperature at tropopause.θ�s and θs are the surface saturation equivalent
potential temperature and equivalent potential temperature, respectively.
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