76 research outputs found

    A Label-Free Electrochemical Immunosensor for Carbofuran Detection Based on a Sol-Gel Entrapped Antibody

    Get PDF
    In this study, an anti-carbofuran monoclonal antibody (Ab) was immobilized on the surface of a glassy carbon electrode (GCE) using silica sol-gel (SiSG) technology. Thus, a sensitive, label-free electrochemical immunosensor for the direct determination of carbofuran was developed. The electrochemical performance of immunoreaction of antigen with the anti-carbofuran monoclonal antibody was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), in which phosphate buffer solution containing [Fe(CN)6]3−/4− was used as the base solution for test. Because the complex formed by the immunoreaction hindered the diffusion of [Fe(CN)6]3−/4− on the electrode surface, the redox peak current of the immunosensor in the CV obviously decreased with the increase of the carbofuran concentration. The pH of working solution, the concentration of Ab and the incubation time of carbofuran were studied to ensure the sensitivity and conductivity of the immunosensor. Under the optimal conditions, the linear range of the proposed immunosensor for the determination of carbofuran was from 1 ng/mL to 100 ÎŒg/mL and from 50 ÎŒg/mL to 200 ÎŒg/mL with a detection limit of 0.33 ng/mL (S/N = 3). The proposed immunosensor exhibited good high sensitivity and stability, and it was thus suitable for trace detection of carbofuran pesticide residues

    A Real-Time Location-Based Services System Using WiFi Fingerprinting Algorithm for Safety Risk Assessment of Workers in Tunnels

    Get PDF
    This paper investigates the feasibility of a real-time tunnel location-based services (LBS) system to provide workers’ safety protection and various services in concrete dam site. In this study, received signal strength- (RSS-) based location using fingerprinting algorithm and artificial neural network (ANN) risk assessment is employed for position analysis. This tunnel LBS system achieves an online, real-time, intelligent tracking identification feature, and the on-site running system has many functions such as worker emergency call, track history, and location query. Based on ANN with a strong nonlinear mapping, and large-scale parallel processing capabilities, proposed LBS system is effective to evaluate the risk management on worker safety. The field implementation shows that the proposed location algorithm is reliable and accurate (3 to 5 meters) enough for providing real-time positioning service. The proposed LBS system is demonstrated and firstly applied to the second largest hydropower project in the world, to track workers on tunnel site and assure their safety. The results show that the system is simple and easily deployed

    Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement

    Get PDF
    In this study, the element dependence of spatial confinement effects in LIBS has been studied. Hemispheric cavities were used to confine laser-induced plasmas from aluminum samples with other trace elements. The enhancement factors were found to be dependent on the elements. Equations describing the element dependent enhancement factors were successfully deduced from the local thermodynamic equilibrium conditions, which have also been verified by the experimental results. Research results show that enhancement factors in LIBS with spatial confinement depend on the temperature, electron density, and compression ratio of plasmas, and vary with elements and atomic/ionic emission lines selected. Generally, emission lines with higher upper level energies have higher enhancement factors. Furthermore, with enhancement factor of a spectral line, temperatures and electron densities of plasmas known, enhancement factors of all the other elements in the plasmas could be estimated by the equations developed in this study

    Highly Active Platinum Catalysts for Nitrile and Cyanohydrin Hydration: Catalyst Design and Ligand Screening via High-Throughput Techniques

    Get PDF
    Nitrile hydration provides access to amides that are indispensable to researchers in chemical and pharmaceutical industries. Prohibiting the use of this venerable reaction, however, are (1) the dearth of biphasic catalysts that can effectively hydrate nitriles at ambient temperatures with high turnover numbers and (2) the unsolved challenge of hydrating cyanohydrins. Herein, we report the design of new “donor–acceptor”-type platinum catalysts by precisely arranging electron-rich and electron-deficient ligands trans to one other, thereby enhancing both the nucleophilicity of the hydroxyl group and the electrophilicity of the nitrile group. Leveraging a high-throughput, automated workflow and evaluating a library of bidentate ligands, we have discovered that commercially available, inexpensive DPPF [1,1â€Č-ferrocenendiyl-bis(diphenylphosphine)] provides superior reactivity. The corresponding “donor–acceptor”-type catalyst 2a is readily prepared from (DPPF)PtCl_2, PMe_2OH, and AgOTf. The enhanced activity of 2a permits the hydration of a wide range of nitriles and cyanohydrins to proceed at 40 °C with excellent turnover numbers. Rational reevaluation of the ligand structure has led to the discovery of modified catalyst 2c, harboring the more electron-rich 1,1â€Č-bis[bis(5-methyl-2-furanyl)phosphino] ferrocene ligand, which demonstrates the highest activity toward hydration of nitriles and cyanohydrins at room temperature. Finally, the correlation between the electron-donating ability of the phosphine ligands with catalyst efficiencies of 2a, 2c, 2d, and 2e in the hydration of nitrile 7 are examined, and the results support the “donor–acceptor” hypothesis

    Luteolin attenuates high glucose-induced cytotoxicity by suppressing TXNIP expression in neuronal cells

    Get PDF
    Purpose: To determine the potential effect of luteolin in neuroprotection using an in vitro model of diabetic neuropathy (DN) in PC12 cells by high glucose (HG)-induced neurotoxicity. Methods: PC12 cells were pretreated with HG media for 3, 6, 12, and 24 h, followed by treatment with increasing concentrations of luteolin (10, 25, and 50 ug/ml) for 24 hours. Following luteolin treatment, the cells were transfected with a plasmid expressing thioredoxin-interacting protein (TXNIP). To evaluate HG-induced cytotoxicity, the expression levels of the inflammatory markers interleukin (IL)-8, IL-6, and tumor necrosis factor-α (TNF-α) were evaluated by quantitative reverse transcription PCR (qRT-PCR) and ELISA. In addition, the apoptotic cells were assessed by flow cytometry. The expression levels of TXNIP protein and mRNA were determined by western blotting and qRT-PCR, respectively. Results: Luteolin decreased the expression levels of TNF-α, IL-1ÎČ, and IL-6 in a dose-dependent manner at both the protein and mRNA level. Luteolin also decreased HG-induced apoptosis in PC12 cells (p < 0.05). The expression of B-cell lymphoma 2 (BCL-2) was suppressed, whereas those of cleaved PARP and cleaved caspase-3 were increased following HG treatment. Luteolin treatment had the opposite effect in a dose-dependent manner (p < 0.05). Luteolin reduced HG-induced inflammation and apoptosis in PC12 cells by inhibiting TXNIP expression (p < 0.05). Conclusion: These data indicate that the neuroprotective effects of luteolin is probably exerted its antiapoptotic and anti-inflammatory activities via the TXNIP pathway

    Highly Active Platinum Catalysts for Nitrile and Cyanohydrin Hydration: Catalyst Design and Ligand Screening via High-Throughput Techniques

    Get PDF
    Nitrile hydration provides access to amides that are indispensable to researchers in chemical and pharmaceutical industries. Prohibiting the use of this venerable reaction, however, are (1) the dearth of biphasic catalysts that can effectively hydrate nitriles at ambient temperatures with high turnover numbers and (2) the unsolved challenge of hydrating cyanohydrins. Herein, we report the design of new “donor–acceptor”-type platinum catalysts by precisely arranging electron-rich and electron-deficient ligands trans to one other, thereby enhancing both the nucleophilicity of the hydroxyl group and the electrophilicity of the nitrile group. Leveraging a high-throughput, automated workflow and evaluating a library of bidentate ligands, we have discovered that commercially available, inexpensive DPPF [1,1â€Č-ferrocenendiyl-bis(diphenylphosphine)] provides superior reactivity. The corresponding “donor–acceptor”-type catalyst 2a is readily prepared from (DPPF)PtCl_2, PMe_2OH, and AgOTf. The enhanced activity of 2a permits the hydration of a wide range of nitriles and cyanohydrins to proceed at 40 °C with excellent turnover numbers. Rational reevaluation of the ligand structure has led to the discovery of modified catalyst 2c, harboring the more electron-rich 1,1â€Č-bis[bis(5-methyl-2-furanyl)phosphino] ferrocene ligand, which demonstrates the highest activity toward hydration of nitriles and cyanohydrins at room temperature. Finally, the correlation between the electron-donating ability of the phosphine ligands with catalyst efficiencies of 2a, 2c, 2d, and 2e in the hydration of nitrile 7 are examined, and the results support the “donor–acceptor” hypothesis

    A Review of Spatter in Laser Powder Bed Fusion Additive Manufacturing: In Situ Detection, Generation, Effects, and Countermeasures

    Get PDF
    Spatter is an inherent, unpreventable, and undesired phenomenon in laser powder bed fusion (L-PBF) additive manufacturing. Spatter behavior has an intrinsic correlation with the forming quality in L-PBF because it leads to metallurgical defects and the degradation of mechanical properties. This impact becomes more severe in the fabrication of large-sized parts during the multi-laser L-PBF process. Therefore, investigations of spatter generation and countermeasures have become more urgent. Although much research has provided insights into the melt pool, microstructure, and mechanical property, reviews of spatter in L-PBF are still limited. This work reviews the literature on the in situ detection, generation, effects, and countermeasures of spatter in L-PBF. It is expected to pave the way towards a novel generation of highly efficient and intelligent L-PBF systems

    Investigation of Heat and Moisture Transfer during the Drying of Packed-Bed Porous Media in Soybeans

    No full text
    The research aims to examine the distribution of porosity and the combined heat and moisture movement while grains are being dried. This research concerns the porosity and flow of soybeans with different particle size ratios and the drying of soybeans with varying particle temperatures. Due to the similarity in shape between soybeans and balls, this article adopts a ball shape to study the heat and moisture transfer of soybean particles, which can also be used for the study of grains with similar shapes, such as mung beans and red beans. Random models of soybeans with varying proportions were created using modeling software Edem and UG. UDF programming was added to the preprocessing software Fluent to analyze the porosity, airstream allocation, and the interaction of temperature and moisture transfer in packed beds with various cylinder-to-particle size ratios and particle temperatures. A packed bed of soybeans was created, and the study examined the impact of cylinder-to-particle size ratios of 4.44, 5.6, and 6.25 on porosity. The results show that the radial porosity in the packed bed displays a fluctuating profile, with partial porosity increasing as the cylinder-to-particle size ratio increases. Increasing the ratio of cylinder size to particle size exacerbated the tortuosity of the flow paths within the packed bed. Simultaneously, the particle temperature increases, leading to a rise in the instantaneous heat transfer during the drying process, strengthening the ratio of moisture transfer within the packed bed. The method effectively models during convective heat and mass transfer in the liquid facies, as well as thermal and mass spread in the solid facies. The results of this study have been validated on physical models. The air temperature of 273 K is considered during the simulation proces

    Enhancement of Biogas Production in Two-Phase Anaerobic Fermentation System for Lower-Temperature Applications

    Get PDF
    For the purpose of enhancing the biogas production and operation stability of system at low temperature, a two-phase anaerobic fermentation facility for rural household energy generation was proposed. In this facility, the quantity of the fermented materials could be balanced by controlling the hydraulic retention time, which based on pH of the acidification tank and the fermentation tank. In addition, a portion of the biogas generated could be used to heat the acidification tank and the fermentation tank. Results shows that the optimal daily production rate of biogas for 1 m3 fermentation liquid was about 1.47 L/L d-1 at a mixing ratio of cow: swine: chicken manure was 3: 1: 0.5. The production rate obtained in this study was more than four times higher than that from traditional single-phase processes (0.35 L/L d-1). About 5.43 m3 biogas can be produced daily per household with an average CH4 content of 76.8%. The two-phase process developed in this work will also reduce environmental pollution and increase energy production efficiencies

    Research on energy metabolism, lignification and veil opening in postharvest white mushroom (<i>Agaricus bisporus</i>) under high O<sub>2</sub>/CO<sub>2</sub> controlled atmospheres (HOC-CA)

    Get PDF
    White mushroom is an abundant nutritional but perishable product; veil opening and stipe lignification are two of the obvious characte-ristics of senescence. In order to study the relationship between the energy charge, veil opening and lignification of the white mushroom, high O2/CO2 controlled atmospheres (HOC-CA) were utilized at 2±1 °C. The treatments comprised the following 100% O2, 80% O2 + 20% CO2, 60% O2 + 40% CO2, 40% O2 + 60% CO2 respectively, with air as the control. In this study, sensorial and physiological qualities, adenosine triphosphate (ATP) content, energy charge level, lignin content, phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) activity were studied. The optimal condition 80% O2 + 20% CO2 treatment inhibited both respiration rate and veil opening of the mushroom; suppressed PAL, POD and CAD activity. It also retarded the reduction of ATP level, energy charge level, and growth of lignin content. Exogenous ATP had an effect on inhibiting veil opening and lignification. These results indicated that there was a negative correlation between the ATP content, cap opening and stipe lignification. Appropriate HOC-CA maintained high energy, preserved the white mushroom well and extended the storage time to 24 days
    • 

    corecore