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Element dependence of enhancement in optics
emission from laser-induced plasma under spatial
confinement

Changmao Li,ab Lianbo Guo,ab Xiangnan He,b Zhongqi Hao,a Xiangyou Li,a

Meng Shen,a Xiaoyan Zenga and Yongfeng Lu*ab

In this study, the element dependence of spatial confinement effects in LIBS has been studied. Hemispheric

cavities were used to confine laser-induced plasmas from aluminum samples with other trace elements. The

enhancement factors were found to be dependent on the elements. Equations describing the element-

dependent enhancement factors were successfully deduced from the local thermodynamic equilibrium

conditions, which have also been verified by the experimental results. Research results show that

enhancement factors in LIBS with spatial confinement depend on the temperature, electron density, and

compression ratio of plasmas, and vary with elements and atomic/ionic emission lines selected. Generally,

emission lines with higher upper level energies have higher enhancement factors. Furthermore, with

enhancement factor of a spectral line, temperatures and electron densities of plasmas known, enhancement

factors of all the other elements in the plasmas could be estimated by the equations developed in this study.

1 Introduction

Laser-induced breakdown spectroscopy (LIBS) has been proven
to be a versatile analytical technique during the past decades.
LIBS has many advantages,1–5 such as the ability of detecting
nearly all elements in any physical form (liquid, solid, gas, etc.),
rapid and simultaneous multi-element detection, no or simple
sample preparation, nearly nondestructive, capability of in situ
and real-time analysis,6–8 eld deployment, and remote analysis
for military9–11 and space applications.12 However, two draw-
backs, including low sensitivity and poor reproducibility
compared to other analytical techniques, such as inductively
coupled plasma-optical emission spectroscopy (ICP-OES), have
limited broad applications of LIBS.13,14 Much effort has been
made to improve its sensitivity and reproducibility, such as
introduction of ambient gases,15 multiple-pulse excitations,16,17

resonant excitations,18–20 magnetic connements, spectra
normalizations,21 and spatial connements.22–28

Among these methods described above, the spatial conne-
ment is a cost-effective approach to improve the detection sensi-
tivity of LIBS. Along with the generation and expansion of laser-
induced plasma in an ambient gas, a shock wave is produced. If
the shock wave encounters walls during its expansion, it would be
reected back by the walls to compress the expanding plasma,

leading to an increase in electron density and plasma temperature,
resulting in an enhancement of optical emission intensity. In
recent years, the spatial connement in LIBS has been studied by
several groups. X. K. Shen et al.22 used a series of round pipes to
conne aluminium plasmas. The maximal enhancement factor of
9 was obtained at a pipe diameter of 10.8mm. A.M. Popov et al.23,24

reported the connement effects of iron plasmas created in a
small capped cylindrical chamber about 4 mm in diameter, with
the limit of detections (LODs) 2–5 times better than those of free-
expanding plasmas. Z. Wang et al.25,29 used a cylindrical cavity of
1.5 mm in thickness and 3 mm in diameter to conne coal
plasmas and reported an emission intensity enhancement with
shot-to-shot uctuation reduction. To conne laser-induced
plasmas more uniformly, L. B. Guo et al.26 used a hemispheric
cavity to conne laser-induced steel plasmas. Strong enhancement
of about 12 times was obtained on atomic manganese (1.05 wt%)
lines around 403 nm. However, the previous research on the
spatial connement in LIBS reported so far mainly focused on
improving enhancement effects using different kinds of cavities.
The dependence of enhancement factors on plasma parameters,
elements, and their emission lines has not been studied.

Therefore, the goal of this study was to investigate the
element dependence of enhancement of optical emission in
spatially conned LIBS. Intensity enhancement effects of multi-
elements in aluminium plasmas spatially conned by hemi-
spheric cavities were studied, to learn the dependence of
enhancement factors on the plasma compression ratio, plasma
temperature, plasma electron density, and different elements
and their emission lines. Equations describing the element
dependence have been successfully derived from the local
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thermodynamic equilibrium (LTE) conditions, which have also
been validated by the experimental data.

2 Experimental methods

The experimental setup used in this study is shown in Fig. 1,
which was depicted in detail in our previous work.26 Five polished
Al hemispheric cavities with a top hole of 2 mm were used in the
experiments, with diameters of 7.9, 9.5, 11.1, 12.7, and 15.9 mm,
respectively. The cavity was placed tightly on the surface of an Al
sample (SRM 1255b, NIST), which was mounted on a translation
stage driven by a step-motor,moving in a direction perpendicular
to the axis of the laser beam from a KrF excimer laser (Lambda
Physik, Compex 205, wavelength: 248 nm, pulse duration: 23 ns).
The focal spot of laser beam, located at the center of the cavity,
was about 1.5� 0.8mm2 in size, with a laser uence of 10 J cm�2.
The spectrometer (Andor Shamrock 303i) equipped with a 2400
lines per mm grating and a 512 � 512 pixels intensied charge
coupled device (ICCD) (Andor Tech., iStar, DH712), with a spec-
tral resolution of about 0.05 nm, was used in the experiment.
Prior to each acquisition, a number of pulses were applied to
eliminate contamination on the sample surface.

The spectrum acquisition was carried on the delay times of
maximum enhancement, which were 6, 9, 12, 16 and 23 ms,
respectively, for the hemispheric cavities of 7.9, 9.5, 11.1, 12.7
and 15.9 mm. The gate width was 1 ms. Each acquisition was
accumulated for 30 shots, repeated for 5 times at different
places. Generally, the emission intensity of lines used in this
study was dened as the maximum height of the peak (unit in
counts) with background removed, except for Al I 394.4 nm
which was dened as the area integral under the peak, to reduce
the impact of self-absorption. The enhancement factor of a line
was dened as the ratio of the emission intensity with
connement to that without connement.

3 Results and discussion
3.1 Intensity enhancement effects of different elements in
plasmas conned by a hemispheric cavity

Spectra of multi-elements from the spatially conned plasmas by
the hemispheric cavity of 9.5 mm are shown in Fig. 2 and 3 (the

black line), compared with that from the free-expanding plasma
under the same conditions (the red line). As we can see, all of the
lines have been enhanced greatly. The enhancement factors of
some elements are summarized in Table 1, in which results from
different spectra are separated by dashed lines. The error of
enhancement factors is below 10%. As we can see in Table 1,
enhancement factors of Cr I 359.35 nm and Ti I 363.55 nm are
different evidently from that of other lines in Table 1. Further-
more, the difference between enhancement factors of Mg I 285.21
nm and Si I 288.16 nm or between that of Cu I 324.75 nm and Sn I

326.23 nm is not probably due to shot-to-shot variation as they
were acquired simultaneously. Therefore, the intensity enhance-
ment effects of spatial connement are element dependent.

To further understand the intensity enhancement effects
due to spatial connement, the dependence of enhancement
factors on plasma parameters, elements and lines selected has
been studied.

3.2 Theoretical analyses of enhancement factors in spatial
connement

To investigate the dependence of enhancement factors on
elements and lines selected, and plasma parameters, the
enhancement factor due to spatial connement has been
derived from the LTE conditions.

Assume a condition that the laser ablation is stoichiometric
and the compression of plasmas by the shockwave is uniform
which means that the content of each element in plasmas with/
without compression keeps the same with that in the target.
Therefore, based on the LTE conditions, for an atomic emission
induced by an electron transition of a species, the emitted line
intensity (I) can be expressed as:2,25

I ¼ FCN

�
1

1þ R

�
gA

UðTÞ e
� E
KT (1)

R ¼ nII

nI
¼ 2

n

U IIðTÞ
U IðTÞ

ð2pmeKTÞ1:5
h3

e�
Eion�DEion

KT : (2)

Fig. 1 Schematic diagram of the experimental setup.

Fig. 2 Atomic emission spectra of aluminium plasma with confine-
ment of hemispheric cavity (d ¼ 9.5 mm) (black), and without
confinement (red), at a delay time of 9 ms.
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In the equations, the parameters are: F – gain factor of the
instrument, C – content of the element, N – total species
number density of the plasma, R – ionization rate of this
species at a plasma temperature T and an electron density n, g
– degeneracy of the upper level of the transition, A – transition
probability, U(T) – partition function, E – the upper level

energy of the excitation, K – Boltzmann constant, nI and nII –
number densities of the neutral atoms and the ions at the rst
ionization state, respectively, Eion – rst ionization energy of
the element, DEion – the ionization potential lowering factor
with a typical value on the order of 0.1 eV, and h – Planck's
constant.

In free-expanding plasmas, the plasma temperature is T1, the
electron density is n1. Now, due to the spatial connement
imposed by a hemispheric cavity, the plasma temperature and
electron density are both enhanced to T2 and n2, respectively.
Therefore, the enhancement factor (M) of the line intensity can
be derived from eqn (1):

M ¼ N2

N1

1þ RðT1; n1Þ
1þ RðT2; n2Þ

UðT1Þ
UðT2Þ e

E
K

�
1
T1
� 1

T2

�
: (3)

The factor N2/N1 dened as the ratio of total number
densities of the plasma with the connement (N2) to that
without the connement (N1) corresponds to the compression
ratio of the plasma by the shockwave, which is independent of
elements in the plasma.

With the spatial connement, the enhancement factor of
line lA from element A isMA and the enhancement factor of line
lB from element B is MB. Therefore, the ratio of the enhance-
ment factors (MA/MB) could be derived from eqn (3):

MA

MB

¼ XAB

UBðT2Þ=UBðT1Þ
UAðT2Þ=UAðT1Þ e

EA�EB

K

�
1
T1
� 1

T2

�
; (4)

XAB ¼ ð1þ RBðT2; n2ÞÞ=ð1þ RBðT1; n1ÞÞ
ð1þ RAðT2; n2ÞÞ=ð1þ RAðT1; n1ÞÞ : (5)

If lA and lB are emitted by the species of the same element
and in the same ionization state, eqn (4) could be simplied as:

MA

MB

¼ e
EA�EB

K

�
1
T1
� 1

T2

�
: (6)

Now, the theoretically predicted enhancement factors due
to spatial connement have been fully described by eqn (3),
(4) and (6). Eqn (3) reveals the factors determining the
enhancement factor due to spatial connement. Eqn (4)
describes the dependence of enhancement factors on
elements. Eqn (6) describes the dependence of enhancement
factors on different emission lines of the same element and in
the same ionization state. The three equations will be dis-
cussed and compared with the experimental results to prove
their validity.

3.3 Experimental verication of enhancement factors in
spatial connement

3.3.1. Dependence of enhancement factors on plasma
parameters. Based on eqn (3), the enhancement factors due to
spatial connement are dependent on the compression ratio of
plasmas (N2/N1), the temperatures and electron densities of
plasmas with/without connement. In order to understand the
dependence more clearly, eqn (3) can be rewritten as:

Fig. 3 Atomic emission spectra of aluminium plasma in (a) 354–366
nm and (b) 423–435 nm, with confinement of hemispheric cavity (d ¼
9.5 mm) (black), and without confinement (red). The gate delays were
9 ms.

Table 1 Enhancement factors of elements under confinement of a
hemispheric cavity (d ¼ 9.5 mm). Lines from different spectra are
separated by dashed lines

Element Line (nm) Enhancement factor

Mg Mg I 285.21 9.3
Si Si I 288.16 10.4
Cu Cu I 324.75 9
Sn Sn I 326.23 10
Fe Fe I 357.01 9
Cr Cr I 359.35 6.2
Ti Ti I 363.55 5.3
Sr Sr II 407.77 8.7
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M ¼ N2

N1

1þ 2

n1
WðT1Þ

1þ 2

n2
WðT2Þ

UðT1Þ
UðT2Þ e

E
K

�
1
T1
� 1

T2

�

WðTÞ ¼ U IIðTÞ
U IðTÞ

ð2pmeKTÞ1:5
h3

e�
Eion�DEion

KT

:

8>>>>>>><
>>>>>>>:

(7)

Generally, the inuences of plasma temperature (T2, T1) and
electron density (n2, n1) are convoluted together. Electron
density has a weaker impact on the enhancement factor
compared to that of the plasma temperature. In contrast, the
compression ratio of plasma (N2/N1), a constant for all the
species in the plasma, has a linear relationship with the
enhancement factor (M).

3.3.2. Validation of LTE conditions. In order to validate
eqn (4) and (6), the temperatures and electron densities of
plasmas with/without connement are needed. The tempera-
tures of plasmas with/without spatial connement used in
calculation were deduced from the emission intensity ratio of Ti
I 426.313 nm and Ti I 430.591 nm following the formula below.2

I1

I2
¼ g1A1l2

g2A2l1
e�

E1�E2

KT : (8)

The parameters of both the Ti lines are summarized in
Table 2. The calculated temperatures of the plasmas with/
without connement using hemispheric cavities of 7.9, 9.5,
11.1, 12.7, and 15.9 mm are shown in Table 3.

The electron densities of plasmas with/without spatial
connement were calculated from the Stark broadening of Si I

390.55 nm, based on the formula below:2

DlFWHM z 2 � 10�16wNe. (9)

The errors of plasma temperatures and electron densities in
Table 3 are 5% and 10%. As shown in Table 3, the plasma
temperatures were in the range of 4000–7000 K. For a

conservative estimation, the lowest electron density required
for LTE by the McWhirter criterion2 which is just necessary is
about 3 � 1016 cm�3. The electron densities of plasmas were in
the range of 2.2 � 1017 to 6.7 � 1017 cm�3, satisfying the
criterion.

The LTE conditions can be considered to be fully satised
when the diffusion length during the relaxation time is much
shorter than the plasma diameter.30 For this study, the diffusion
lengths were smaller than 9.4 mm. In contrast, the diameters of
plasmas were larger than 2 mm, which are 2–3 orders larger
than the diffusion length. Therefore the LTE conditions have
been fully satised.

3.3.3. Dependence of enhancement factors on different
emission lines of the same element. The dependence of
enhancement factors on emission lines from the species of the
same element and in the same ionization state is described by
eqn (6).

For lines emitted from the same excited state (EA ¼ EB), the
enhancement factors should be equal to each other. To verify
this conclusion, intensity enhancement of Cr, Fe, and Ti lines
from the aluminium plasmas conned by the hemispheric
cavity of 9.5 mm was examined in two regions of 354–366 nm
and 423–435 nm, as shown in Fig. 3(a) and (b). The selected
lines, the corresponding upper level energies, and enhance-
ment factors are summarized in Table 4. As we can see,
enhancement factors of the three lines of Cr (the same for Fe
and Ti) are similar due to similar upper level energies. It is also
necessary to mention that the enhancement factor of Ti I

363.55 nm (in Table 1) was about 5.3 which is apparently lower
than that of Ti I 430.06 nm (6.5) as the former line has a lower
upper level energy (about 3.4 eV). Therefore, the lines with the
same upper level energy (Eupper) have the same enhancement
factor.

For lines emitted from different excited states of an element,
the enhancement factors are different from each other. For
lines having higher upper level energies, the enhancement
factors are higher. To verify this conclusion, intensity
enhancement effects of Cr I 359.35 nm (Eupper ¼ 3.4495 eV) and
Cr I 425.44 nm (Eupper ¼ 2.9137 eV) by hemispheric cavities of
7.9, 9.5, 11.1, 12.7, and 15.9 mm have been studied. The
enhancement factors for both emission lines of Cr I 359.35 nm
(lA) and 425.44 nm (lB) and the ratio of the two enhancement
factors (MA/MB) are summarized in Table 5. The theoretical

Table 2 Parameters of two neutral titanium lines for plasma
temperature determination

Wavelength (nm) E (eV) gA (108/s)

Ti I 426.313 4.795 6.674
Ti I 430.591 3.727 8.050

Table 3 Plasma temperatures and electron densities with/without
confinement using hemispheric cavities

Diameter of
cavity (mm)

Plasma temperature
(� 103 K)

Electron density
(� 1017 cm�3)

With cavity Without cavity With cavity Without cavity

7.9 6.8 5.5 6.7 3.6
9.5 6.4 5.2 6.5 2.9
11.1 6.0 4.9 6.2 2.6
12.7 5.8 4.4 5.6 2.5
15.9 5.4 4.1 5.7 2.2

Table 4 Enhancement factors of elements Ti, Fe & Cr in plasma with
the hemispheric cavity of 9.5 mm

Line (nm) Eupper (eV) Enhancement factor

Cr I 357.87 3.4638 6.3
Cr I 359.35 3.4495 6.2
Cr I 360.53 3.4382 6.1
Fe I 357.01 4.3865 9.0
Fe I 363.15 4.3714 8.9
Fe I 432.58 4.4736 9.4
Ti I 430.06 3.7083 6.5
Ti I 430.59 3.7273 6.2
Ti I 431.48 3.7089 6.6
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values of MA/MB have also been calculated by eqn (6), summa-
rized in Table 5 for comparison.

From Table 5, it is obvious that both the experimental and
the theoretical values of MA/MB agree with each other well.
Therefore, eqn (6) has been veried using the experimental
results. Enhancement factors of other lines of an element can
be estimated using eqn (6) when the enhancement factor of a
line of the element and plasma temperatures are known.

3.3.4. Dependence of enhancement factors on lines of
different elements. The dependence of enhancement factors
on different elements is described by eqn (4). Ti I 430.06 nm
(Eupper ¼ 3.7083 eV) and Cr I 425.44 nm (Eupper ¼ 2.9137 eV) in
Fig. 3(b) have been chosen to study this complex dependence
numerically. The enhancement factors of Ti I 430.59 nm and Cr
I 425.44 nm in the aluminium plasmas conned by hemi-
spheric cavities, and the ratios of the two enhancement factors
(MA/MB) are summarized in Table 6.

To compare with the experimental values, the theoretical
values of MA/MB are also calculated by eqn (4), in which the
temperatures and electron densities of plasma with/without
connement were taken from those in Table 3. The partition
function U(T) can be attained from NIST.31

The results of theoretical values ofMA/MB are summarized in
Table 6. From Table 6, the experimental and theoretical values
ofMA/MB agree with each other well. Therefore, eqn (4) has been
veried using the experimental results. Based on a known
enhancement factor of a spectral line, eqn (4) and (6) can be
used to estimate enhancement factors of other elements/lines
in the spatially conned plasmas without additional
experiments.

4 Conclusions

In summary, intensity enhancement effects of Al, Mg, Si, V, Ti,
Cu, Sn, Mn and Sr in spatially conned aluminium plasmas
were studied by spatially conned LIBS, showing that the
enhancement factors are dependent on elements. Equations
describing the dependence of enhancement factors in spatial
connement on plasma parameters and elements/lines selected
have been successfully derived from the LTE conditions and
validated by the experimental results. The results show that
enhancement factors due to spatial connement are dependent
on the plasma temperature, plasma electron density, and
compression ratios of the plasma. They vary with the elements/
lines selected. Generally, lines emitted from the same excited
state of an element have the same enhancement factors. Lines
with higher upper level energies have higher enhancement
factors. With the equations developed in this study, enhance-
ment factors of other elements/lines in the plasma can be
estimated when the enhancement factors of a line, plasma
temperatures, and plasma electron densities with/without
connement are known.
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