468 research outputs found

    Service-oriented disassembly sequence planning for electrical and electronic equipment waste

    Get PDF
    Disassembly sequence planning plays an important role in the end-of-life treatment of electrical and electronic equipment waste (e-waste). Effective planning methods can improve recovery rates and reduce environmental impacts of e-waste. In previous work, neither mathematical models nor optimization algorithms offered a satisfactory solution for this multi-objective disassembly problem. We present a multi-objective model for the problem and a modified teaching-learning-based optimization (MTLBO) algorithm to find the Pareto-optimal frontier. We use numerical simulations to demonstrate and verify the effectiveness and robustness of the algorithm. To do effective disassembly planning, all the participants in the lifecycle of e-waste should work together. Disassembly and recovery of e-waste involve complex processes across the lifecycle. Information support services, disassembly modeling and optimization services must be integrated using computer networks. We also propose a service-oriented framework to support business integration for the participants in the e-waste lifecycle. Effective and optimized disassembly planning can be achieved by invoking the related distributed services. The proposed framework is a novel e-business application for the end-of-life treatment of e-waste

    Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning.

    Get PDF
    The NR2B subunit of the NMDA receptor interacts with several prominent proteins in the postsynaptic density, including calcium/calmodulin-dependent protein kinase II (CaMKII). To determine the function of these interactions, we derived transgenic mice expressing a ligand-activated carboxy-terminal NR2B fragment (cNR2B) by fusing this fragment to a tamoxifen (TAM)-dependent mutant of the estrogen receptor ligand-binding domain LBD(G521R). Here, we show that induction by TAM allows the transgenic cNR2B fragment to bind to endogenous CaMKII in neurons. Activation of the LBD(G521R)-cNR2B transgenic protein in mice leads to the disruption of CaMKII/NR2B interactions at synapses. The disruption decreases Thr286 phosphorylation of alphaCaMKII, lowers phosphorylation of a key CaMKII substrate in the postsynaptic membrane (AMPA receptor subunit glutamate receptor 1), and produces deficits in hippocampal long-term potentiation and spatial learning. Together our results demonstrate the importance of interactions between CaMKII and NR2B for CaMKII activity, synaptic plasticity, and learning

    Identification of the Red Supergiant Progenitor of Supernova 2005cs: Do the Progenitors of Type II-P Supernovae Have Low Mass?

    Full text link
    The stars that end their lives as supernovae (SNe) have been directly observed in only a handful of cases, due mainly to the extreme difficulty in identifying them in images obtained prior to the SN explosions. Here we report the identification of the progenitor for the recent Type II-plateau (core-collapse) SN 2005cs in pre-explosion archival images of the Whirlpool Galaxy (M51) obtained with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). From high-quality ground-based images of the SN from the Canada-France-Hawaii Telescope, we precisely determine the position of the SN and are able to isolate the SN progenitor to within 0".04 in the HST/ACS optical images. We further pinpoint the SN location to within 0".005 from HST/ACS ultraviolet images of the SN, confirming our progenitor identification. From photometry of the SN progenitor obtained with the pre-SN ACS images, and also limits to its brightness in pre-SN HST/NICMOS images, we infer that the progenitor is a red supergiant star of spectral type K0--M3, with initial mass 7--9 Msun. We also discuss the implications of the SN 2005cs progenitor identification and its mass estimate. There is an emerging trend that the most common Type II-plateau SNe originate from low-mass supergiants 8--15 Msun.Comment: Submitted to ApJ. A high resolution version can be found at http://astron.berkeley.edu/~weidong/sn05cs.p

    SDSS J124602.54+011318.8: A Highly Variable AGN, Not an Orphan GRB Afterglow

    Get PDF
    The optically variable source SDSS J124602.54+011318.8 first appears in Sloan Digital Sky Survey (SDSS) data as a bright point source with nonstellar colors. Subsequent SDSS imaging and spectroscopy showed that the point source declined or disappeared, revealing an underlying host galaxy at redshift 0.385. Based on these properties, the source was suggested to be a candidate ``orphan afterglow'': a moderately beamed optical transient, associated with a gamma-ray burst (GRB) whose highly beamed radiation cone does not include our line of sight. We present new imaging and spectroscopic observations of this source. When combined with a careful re-analysis of archival optical and radio data, the observations prove that SDSS J124602.54+011318.8 is in fact an unusual radio-loud AGN, probably in the BL Lac class. The object displays strong photometric variability on time scales of weeks to years, including several bright flares, similar to the one initially reported. The SDSS observations are therefore almost certainly not related to a GRB. The optical spectrum of this object dramatically changes in correlation with its optical brightness. At the bright phase, weak, narrow oxygen emission lines and probably a broader Hα\alpha line are superposed on a blue continuum. As the flux decreases, the spectrum becomes dominated by the host galaxy light, with emerging stellar absorption lines, while both the narrow and broad emission lines have larger equivalent widths. We briefly discuss the implications of this discovery on the study of AGNs and other optically variable or transient phenomena.Comment: 14 pages, 5 figures, AASTEX 5.0.2, slight modifications following referee's report, PASP, in pres

    Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity

    Full text link
    We have obtained optical spectra of 29 early-type (E/S0) galaxies that hosted type Ia supernovae (SNe Ia). We have measured absorption-line strengths and compared them to a grid of models to extract the relations between the supernova properties and the luminosity-weighted age/composition of the host galaxies. The same analysis was applied to a large number of early-type field galaxies selected from the SDSS spectroscopic survey. We find no difference in the age and abundance distributions between the field galaxies and the SN Ia host galaxies. We do find a strong correlation suggesting that SNe Ia in galaxies whose populations have a characteristic age greater than 5 Gyr are ~ 1 mag fainter at V(max) than those found in galaxies with younger populations. However, the data cannot discriminate between a smooth relation connecting age and supernova luminosity or two populations of SN Ia progenitors. We find that SN Ia distance residuals in the Hubble diagram are correlated with host-galaxy metal abundance, consistent with the predictions of Timmes, Brown & Truran (2003). The data show that high iron abundance galaxies host less-luminous supernovae. We thus conclude that the time since progenitor formation primarily determines the radioactive Ni production while progenitor metal abundance has a weaker influence on peak luminosity, but one not fully corrected by light-curve shape and color fitters. Assuming no selection effects in discovering SNe Ia in local early-type galaxies, we find a higher specific SN Ia rate in E/S0 galaxies with ages below 3 Gyr than in older hosts. The higher rate and brighter luminosities seen in the youngest E/S0 hosts may be a result of recent star formation and represents a tail of the "prompt" SN Ia progenitors.Comment: 44 pages, 11 figures, 4 tables; ApJ Accepted (Sept. 20, 2008 issue

    The Massive Progenitor of the Type II-Linear Supernova 2009kr

    Get PDF
    We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (similar to 26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M(V)(0) = -7.8 mag) yellow supergiant with initial mass similar to 18-24 M(circle dot). This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN.Hungarian OTKA K76816NSF AST-0707769, AST-0908886Sylvia & Jim Katzman FoundationTABASGO FoundationNASA through STScI AR-11248, GO-10877Harvard UniversityUC BerkeleyUniversity of VirginiaNASA/Swift NNX09AQ66GDOEAstronom

    Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova 2006X in M100

    Get PDF
    We present extensive optical (UBVRI), near-infrared (JK) light curves and optical spectroscopy of the Type Ia supernova (SN) 2006X in the nearby galaxy NGC 4321 (M100). Our observations suggest that either SN 2006X has an intrinsically peculiar color evolution, or it is highly reddened [E(B - V)_{host} = 1.42+/-0.04 mag] with R_V = 1.48+/-0.06, much lower than the canonical value of 3.1 for the average Galactic dust. SN 2006X also has one of the highest expansion velocities ever published for a SN Ia. Compared with the other SNe Ia we analyzed, SN 2006X has a broader light curve in the U band, a more prominent bump/shoulder feature in the V and R bands, a more pronounced secondary maximum in the I and near-infrared bands, and a remarkably smaller late-time decline rate in the B band. The B - V color evolution shows an obvious deviation from the Lira-Phillips relation at 1 to 3 months after maximum brightness. At early times, optical spectra of SN 2006X displayed strong, high-velocity features of both intermediate-mass elements (Si, Ca, and S) and iron-peak elements, while at late times they showed a relatively blue continuum, consistent with the blue U-B and B-V colors at similar epochs. A light echo and/or the interaction of the SN ejecta and its circumstellar material may provide a plausible explanation for its late-time photometric and spectroscopic behavior. Using the Cepheid distance of M100, we derive a Hubble constant of 72.7+/-8.2 km s^{-1} Mpc^{-1}(statistical) from the normalized dereddened luminosity of SN 2006X. We briefly discuss whether abnormal dust is a universal signature for all SNe Ia, and whether the most rapidly expanding objects form a subclass with distinct photometric and spectroscopic properties.Comment: 48 pages, 20 figures and 11 tables. Accepted Version (ApJ, 2008, March issue

    Discovery of Precursor LBV Outbursts in Two Recent Optical Transients: The Fitfully Variable Missing Links UGC 2773-OT and SN 2009ip

    Full text link
    We present progenitor-star detections, light curves, and optical spectra of SN2009ip and the 2009 optical transient in UGC2773 (U2773-OT), which were not genuine SNe. Precursor variability in the decade before outburst indicates that both of the progenitor stars were LBVs. Their pre-outburst light curves resemble the S Doradus phases that preceded giant eruptions of eta Carinae and SN1954J (V12 in NGC2403), with intermediate progenitor luminosities. HST detections a decade before discovery indicate that the SN2009ip and U2773-OT progenitors were supergiants with likely initial masses of 50-80 Msun and \ga20 Msun, respectively. Both outbursts had spectra befitting known LBVs, although in different physical states. SN 2009ip exhibited a hot LBV spectrum with characteristic speeds of 550 km/s, plus faster material up to 5000 km/s, resembling the slow Homunculus and fast blast wave of eta Carinae. U2773-OT shows a forest of narrow absorption and emission lines comparable to that of S Dor in its cool state, plus [CaII] emission and an IR excess indicative of dust, similar to SN2008S and N300-OT. [CaII] emission is probably tied to a dusty pre-outburst environment, and not the outburst mechanism. SN2009ip and U2773-OT may provide a critical link between historical LBV eruptions, while U2773-OT may provide a link between LBVs and SN2008S and N300-OT. Future searches will uncover more examples of precursor LBV variability of this kind, providing key clues that may help unravel the instability driving LBVs.Comment: 18 pages, 13 Figures, accepted AJ. added significant material while revising after referee repor
    corecore