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Abstract

Disassembly sequence planning plays an important role in the end-of-life treatment of elec-

trical and electronic equipment waste (e-waste). Effective planning methods can improve

recovery rates and reduce environmental impacts of e-waste. In previous work, neither

mathematical models nor optimization algorithms offered a satisfactory solution for this

multi-objective disassembly problem. We present a multi-objective model for the problem

and a modified teaching-learning-based optimization (MTLBO) algorithm to find the Pareto-

optimal frontier. We use numerical simulations to demonstrate and verify the effectiveness

and robustness of the algorithm. To do effective disassembly planning, all the participants

in the lifecycle of e-waste should work together. Disassembly and recovery of e-waste involve

complex processes across the lifecycle. Information support services, disassembly modeling

and optimization services must be integrated using computer networks. We also propose

a service-oriented framework to support business integration for the participants in the e-

waste lifecycle. Effective and optimized disassembly planning can be achieved by invoking

the related distributed services. The proposed framework is a novel e-business application

for the end-of-life treatment of e-waste.

Keywords: Disassembly sequence planning, e-business, environmental issues, math

programming, multi-objective optimization, services, sustainability
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1. INTRODUCTION

E-waste has become one of the major and challenging waste streams in terms of quantity

and toxicity. Informal treatments result in environmental pollution and secondary resource

waste. The Waste Electrical and Electronic Equipment Directive (2002/96/EC) was enacted

in 2003 in Europe 1. It aims to prevent the generation of e-waste and promote its recovery

to reduce disposal. Many other equivalent directives have been developed and implemented

in the world. With legislative pressure for environmental protection, electronics companies

have come to recognize that they must take on more responsibility. It is crucial for them

to balance economic and environmental objectives, for example, to maximize recovery value

and minimize environmental impact.

Disassembly sequence planning plays an important role in end-of-life treatment of e-

waste. Effective disassembly planning methods can improve recovery rates and reduce envi-

ronmental impacts of e-waste. The disassembly sequence planning problem has been proven

to be NP-hard, and it has been widely studied in previous research. Different meta-heuristic

optimization methods have been proposed and implemented to solve the problem (Kongar

and Gupta, 2006; Adenso-Diaz et al., 2007; Xia et al., 2014; Yeh, 2012; Li et al., 2013).

Different stakeholders related to e-waste (e.g., remanufacturers, recyclers, and regulators)

have different legislative and economic considerations when making disassembly planning

arrangements. They have to balance multiple objectives. In order to formulate the multi-

objective disassembly sequence planning problem, this paper introduces three disassembly

indices to evaluate a disassembly sequence, namely index of diminished toxicity, index of

potential recovery value and index of potential recovery weight. Accordingly, we formulated

a model with the objective of maximizing these disassembly indices.

The traditional method to solve a multi-objective optimization problem is to weight the

∗Corresponding author. Tel.: +86 2787559419; Fax: +86 2787543074.
Email address: gaoliang@mail.hust.edu.cn (Liang Gao)

1For additional background on this European Commission policy on waste electrical and electronic equip-
ment (WEEE), the interest reader should see ec.europa.eu/environment/waste/weee/index_en.htm, to
learn about the prior European policy-related legislation in the 2000s. For the current policy, refer to
Directive 2012/19/EU at eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012L0019.
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relative degree of importance of each objective and then transform them into a single-

objective optimization problem. However, this method has a drawback for the multi-

objective disassembly sequence planning problem. Since disassembly involves different stake-

holders with different legislative and economic considerations, one single-objective solution

cannot meet the needs of different stakeholders. Furthermore, it makes sense to determine

as many non-dominated solutions as possible for a stakeholder to select in order to support

better decisions.

Multi-objective evolutionary algorithms have been widely studied and applied to solve

multi-objective optimization problems, such as the non-dominated sorting genetic algorithm

II (NSGA II) (Deb et al., 2002), the multi-objective evolutionary algorithm based on decom-

position (Zhang and Li, 2007), and the multi-objective differential evolution algorithm (Ali

et al., 2012). This article proposes a modified teaching-learning-based optimization (MTL-

BO) algorithm to solve the multi-objective disassembly sequence planning problem. Five

major components have been designed and incorporated into the algorithm in order to make

it applicable for specifying complex disassembly precedence constraints.

Disassembly sequence planning for e-waste always involves globally-distributed partici-

pants in the lifecycle of this kind of equipment, such as manufacturers, distributers, retailers,

disassemblers, recyclers, remanufacturers, management authorities and so on. To make an

effective disassembly plan, all the participants should work together. However, information

flows about e-waste in the lifecycle have not yet been effectively established. It is usually not

effective to get information and decision support for disassembly planning from the partici-

pants (Xia et al., 2015). In this research, we propose a service-oriented framework to support

business integration for disassembly planning. Effective and optimized disassembly planning

can be done via the Internet by integrating the related distributed services provided by the

participants.

E-business is the term used to describe the administration of conducting business via the

Internet. Service-oriented technologies are the main supporting technologies for e-business

engineering, and there is high interest in their further development (Chao, 2016). Huang

and Chung (2003) proposed a service-based framework that adopted a web services-based

3



approach to developing business integration solutions for e-business application. Rehman

et al. (2015) presented a decision-making approach that assisted a cloud service user in se-

lecting a cloud service provider based on the quality of its services. Johnson (2008) proposed

a framework for pricing government e-services to help governments to expand online service

delivery quickly and broadly, and increase the net benefits to stakeholders.

Enterprises are moving toward service-oriented architecture with web services to mod-

ernize their legacy applications by using wrapping techniques (Baghdadi and Al-Bulushi,

2015). Baresi et al. (2016) proposed a solution to integrate existing registries, along with

a match-making approach to ease the publication and retrieval of services. The service-

oriented disassembly sequence planning framework that we describe is a novel e-business

application for the end-of-life treatment of e-waste. The e-service concept that is introduced

for the disassembly context will transform the business model of the disassembly industry.

2. PROBLEM FORMULATION

Different considerations have led stakeholders to pursue different objectives for disas-

sembly planning. For instance, according to the Waste Electrical and Electronic Equipment

Directive Directive, e-waste regulators need to check whether an end-of-life treatment op-

erator is able to recover (reuse and recycle) at least 75% of the weight, and remove all

of the hazardous materials. The components containing hazardous materials need to be

removed from the equipment for further processing. Apart from fulfilling these fundamen-

tal environmental objectives, remanufacturers want to improve the economic efficiency by

prioritizing the valued components during disassembly. We develop a multi-objective dis-

assembly sequence planning model according to these considerations by introducing three

disassembly indices as shown in Figure 1. The multi-objective disassembly sequence plan-

ning model involves different e-waste stakeholders distributed across different areas. It is

a complex business process that needs to be optimized, and the enabling technologies to

support e-business engineering need to be implemented to handle it through the Internet.

• Decision variable
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Economic considerations
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Figure 1: Multi-objective disassembly sequence planing model.

The decision variable X = (x1, x2, · · · , xm) is a disassembly sequence, representing the

order in which each disassembly operation is undertaken. Each disassembly operation xi

in X has a corresponding sequence number i. And m is the total number of disassembly

operations.

• Objective functions

Each component c has three important properties: toxicity level h(c), potential recovery

value v(c) and potential recovery weight w(c). The indices for an X are computed accord-

ing to these properties of each component and the sequence number of each disassembly

operation.

Index of diminished toxicity fh(X). Some of the components in e-waste are haz-

ardous. The level of their toxicity can be represented by using a qualitative method. For

example, we will use the number 5, 3, 1, and 0 to represent high, medium, low and no

toxicity, respectively. This index can be computed as follows:

fh(X) =
m∑
i=1

(∑
c∈Ci

h(c)

)
/i, (1)

where Ci denotes the set of components disassembled by operation xi. Higher fh(X) is

achieved when the components with higher toxicity level are disassembled earlier.

Index of potential recovery value fv(X). The potential recovery value means the

value of reused components or the materials recycled form components. The reusable com-
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ponent can be all recovered while the recyclable component can be recovered at a rate

depending on the material types and recycling conditions. This index can be computed as

follows:

fv(X) =
m∑
i=1

(∑
c∈Ci

v(c)

)
/i, (2)

Higher fv(X) is achieved when the components with greater potential recovery value are

disassembled earlier.

Index of potential recovery weight fw(X). The potential recovery value means

the value of reused components or the materials recycled form components. The reusable

component can be all recovered while the recyclable component can be recovered at a rate

depending on the material types and recycling conditions. This index can be computed as

follows:

fw(X) =
m∑
i=1

(∑
c∈Ci

w(c)

)
/i, (3)

Higher fw(X) is achieved when the components with heavier potential recovery weight are

disassembled earlier.

The objective functions of the multi-objective disassembly sequence planning problem

can be set as follows:

maximize: F (X) = (fh(X), fv(X), fw(X)). (4)

• Disassembly precedence constraints

A feasible solution for the problem is a disassembly sequence that is subject to disas-

sembly precedence constraints, which come from the geometric and connecting constraints

among the components. The disassembly precedence constraints are represented by a dis-

assembly precedence graph. It can be translated to disassembly precedence rules, which are

described by pairs of precedent sets and following sets in the form of Rulej : Prej → Folj,

where the symbol→means the components in set Prej have disassembly precedence over the

components in set Folj. Figure 2 gives an example to illustrate the disassembly precedence
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graph and disassembly precedence rules representing the disassembly precedence constraints.
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Figure 2: An example of disassembly precedence constraints. (a) 2D product model, (b) list of operations,
(c) disassembly preference graph, and (d) disassembly preference rules translated from the disassembly
preference graph.

3. MTLBO ALGORITHM: ADDRESSING DISASSEMBLY SEQUENCE PLAN-

NING

This section starts with a brief review on the teaching-learning-based optimization (TL-

BO) algorithm and multi-objective optimization theory, and then presents the proposed

MTLBO algorithm in detail and compares it with the TLBO algorithm.

3.1. The TLBO algorithm

The TLBO algorithm was first proposed by Rao et al. (2011). It is a population-based

evolutionary algorithm that inspired the teaching-learning process. It includes two fun-

damental modes of learning: learning from a teacher (teaching phase) and learning from

interacting with other learners (learning phase).

Suppose there are m learning subjects offered to n learners. In each generation G, the

grade that learner i gets in subject j is denoted as xG
i,j. The vector X

G
i = (xG

i,1, x
G
i,2, · · · , xG

i,m)

formed by all the grades of learner i is the decision vector of the optimization problem.

And the objective function value f(XG
i ) is the result of learner i considering all the subject
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grades. The learner with the best result is considered as the teacher and presented as

XG
best = (xG

best,1, x
G
best,2, · · · , xG

best,m). The mean grade of all the learners in subject j is denoted

as aGj . The new vector generated from XG
i is denoted as V G

i = (vGi,1, v
G
i,2, · · · , vGi,m).

In the teaching phase, a learners result may be improved by learning from the teacher.

In the learning phase, a learners result may be improved by learning from another learner.

The mutation and selection strategies implemented in the TLBO algorithm are listed below.

• Mutation in teaching phase:

vGi,j = xG
i,j + r(xG

best,j − F · aGj ), (5)

where r is a random number in the range [0, 1] and F = round(1 + r), which is

computed as either 1 or 2 decided by r.

• Selection in teaching phase:

XG
i =

 V G
i , if f(V G

i ) is better than f(XG
i ),

XG
i , otherwise.

(6)

• Mutation in learning phase:

vGi,j =

 xG
i,j + r(xG

i,j − xG
p,j), if f(XG

i ) is better than f(XG
p ),

xG
i,j + r(xG

p,j − xG
i,j), otherwise,

(7)

where p is randomly chosen from the population and p ̸= i.

• Selection in learning phase:

XG+1
i =

 V G
i , if f(V G

i ) is better than f(XG
i ),

XG
i , otherwise.

(8)

TLBO algorithm has been successfully applied to solve many optimization problems (Rao

and Patel, 2013; Pawar and Rao, 2012; Rao and Kalyankar, 2013). Its merits include that

8



it does not require any parameters to be tuned, except population size and iteration times.

It outperforms some other well-known meta-heuristics also.

Directly applying the evolution mechanism from the TLBO algorithm is not suitable to

solve the disassembly sequence planning problem, however. In this problem, the decision

space grows exponentially in the number of disassembly operations, while the disassembly

precedence constraints are complex. These characteristics will cause there to be few feasible

solutions for a population if a random solution generation method is embedded in TLBO

algorithm. Furthermore, the disassembly precedence constraints cannot be honored when

using an arithmetic operation method during the evolutionary iterations needed to achieve

an optimal solution. This will lead to only a few feasible solutions in the offspring. Hence,

the evolutionary mechanism of TLBO algorithm should be modified to suit the disassembly

sequence planning better.

3.2. Multi-objective optimization

A multi-objective optimization problem with k objective functions can be defined as:

maximize: Y = F (X) = (f1(X), f2(X), · · · , fk(X)),

subject to: x ∈ Ω,
(9)

where X is the decision vector, Ω is the decision space, and Y is the objective vector.

The objectives in a multi-objective optimization problem are contradictory, namely, when

one of the objective functions is improved, the others will be affected and get worse. Hence, it

is impossible to achieve the best results for all of the objective functions. The best trade-offs

among the multiple objectives can be defined in terms of Pareto optimality.

Let U = (u1, u2, · · · , uk) and V = (v1, v2, · · · , vk). U is said to dominate V, denoted as

U ≻ V , if and only if:

∀i ∈ (1, 2, · · · , k), ui ≥ vi and ∃i ∈ (1, 2, · · · k), ui > vi. (10)
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Let P ∈ Ω. P is said to be Pareto optimal if:

¬∃Q ∈ Ω, F (Q) ≻ F (P ). (11)

The set of all the Pareto optimal solutions is called the Pareto-optimal set (S∗) and the

set of all the Pareto optimal objective vectors is called the Pareto-optimal frontier (Fr∗)

stated as follows:

S∗ = {P ∈ Ω|¬∃Q ∈ Ω, F (Q) ≻ F (P )},

F r∗ = {F (P )|P ∈ S∗}.
(12)

NSGA II is an effective multi-optimization optimization algorithm (Deb et al. 2002).

The selection mechanism of NSGA II is based on a fast non-dominated sorting approach

and a crowding distance sorting approach, which guard the selection process against a u-

niformly spread Pareto-optimal frontier. These two sorting approaches are implemented in

this research.

In a population, the set of all the solutions, whose objective vectors are mutual non-

dominated, is called a non-dominated frontier in NSGA II. A population (Pop) can be

separated into different non-dominated frontiers (Fr1, F r2, · · ·):

Pop = (Fr1, F r2, · · ·),

where ∀P ∈ Fri−1 and ∀Q ∈ Fri, F (P ) ≻ F (Q), (i = 2, 3, · · ·).
(13)

In a population, the non-dominated rank (Prank) of a solution P is defined as:

Prank = i, if P ∈ Fri, i ∈ {1, 2, · · ·}. (14)

The crowding distance (Pdistance) of P is calculated as the sum of its individual distance

values (Pdistance,i) corresponding to each objective i:

Pdistance =
k∑

i=1

Pdistance,i. (15)
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The computation of Pdistance,i requires sorting the population according to objective i (fi)

in the descending order. Thereafter, if fi(P ) is the smallest or largest, Pdistance,i is assigned an

infinite value. Otherwise, it is assigned a value equals to the absolute normalized difference

in values of fi of the two adjacent solutions.

3.3. Proposed MTLBO algorithm

An MTLBO algorithm is proposed to solve the multi-objective disassembly sequence

planning problem. To make it applicable for the problem with complex disassembly prece-

dence constraints, a feasible solution generator was designed to generate feasible solutions,

and teaching phase and learning phase operators were designed to improve the solutions by

applying the precedence preservation cross-over operation method. To sort the population

for selection, a fast non-dominated sorter and a crowding distance sorter were designed

according to NSGA II.

In the authors previous work, a simplified teaching-learning-based optimization (STLBO)

algorithm was proposed to solve the single-objective disassembly sequence planning problem

(Xia et al., 2014). The MTLBO algorithm was developed based on the STLBO algorithm.

It is based on Pareto-optimality and has two parts beyond the STLBO algorithm. They are

the fast non-dominated sorter and the crowding distance sorter. Both were modified from

those in the STLBO algorithm.

The MTLBO algorithm is illustrated in Figure 3. In the selection phase, parent pop-

ulation PG and offspring population OG in Gth generation are combined together to form

a combined population RG. RG is sorted into non-dominated frontiers (Fr1, Fe2, · · · , F ri)

using feasible solution generator. If |Fr1| + |Fe2| + · · · + |Fri| = N (population size), all

the solutions in the top i frontiers are selected for the next generation population PG+1. If

|Fr1| + |Fr2| + · · · + |Fri| < N and |Fr1| + |Fe2| + · · · + |Fri+1| > N , all the solutions in

the top i frontiers are selected for PG+1, and Fri+1 should be sorted using crowding distance

sorter, after which, the top best solutions in Fri+1 are selected to fill the vacant positions

of PG+1. In the evolution phase, transitional population QG+1 is generated from PG+1 us-

ing teaching phase operator, and then OG+1 is generated from QG+1 using learning phase
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operator.
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Crowding 
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sorter

Rejected

Fi

OG

Selection phase Evolution Phase

Teaching Learning

Figure 3: The MTLBO algorithm.

The multi-objective disassembly sequence planning problem is combinatorial. The deci-

sion variable is represented and coded as a permutation. For instance, the permutation [2 1

4 3] states that the disassembly operation o2 is considered first, o1 second, o4 third, and o3

last.

• Feasible solution generator

Feasible solution generator is used to generate feasible solutions randomly according to

the disassembly precedence constraints. The algorithm first checks the current disassembly

state and precedence constraints to find the available disassembly operations. Second, it

randomly chooses an operation from them, pushes it back to the solution and deletes it from

the available disassembly operations. The algorithm uses these two steps continue iteratively

until the disassembly operations are all pushed back to the solution. The pseudo-code of

the feasible solution generator is outlined as follows, where X denotes a feasible solution, A

is the set of available disassembly operations and n is the number of disassembly operation.

Pseudo-code 1: feasible solution generator
X = ∅; A = ∅;
For each Ruler do flagr = 0; End for
For i = 1 to n do
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For each Ruler do
if (flagr = 0&&Prer ⊆ X) then A = A ∪ Folr; flagr = 1;

End for
Randomly choose an element e from A; push e back to X; delete e from A;

End for

• Fast non-dominated sorter

Fast non-dominated sorter was developed according to the fast non-dominated sorting

approach, which is used to sort a population (P ) into different non-dominated frontiers

(Fr1, F r2, · · ·). The pseudo-code of fast non-dominated sorter is outlined as follows, where

SX denotes the set of solutions whose objective vectors dominated by that of solution X,

nX denotes the number of solutions whose objective vectors dominate those of solution X,

and Frnext denotes the next non-dominated frontier.

Pseudo-code 2: fast non-dominated sorter
For each X in the population do
SX = ∅;nX = 0;
For each P in the population do
If (f(X) ≻ f(P )) then SX = SX ∪ P ; else if (f(P ) ≻ f(X)) then nX = nX + 1;

End for
If (nX = 0) then Xrank = 1;Fr1 = Fr1 ∪X;

End for
i = 1;
While Fri∅ do
Let Frnext = ∅;
For each X in Fri do
For each P in SX do
nP = nP − 1; If (nP = 0) then Prank = i+ 1;Frnext = Frnext ∪ P ;

End for
End for
i = i+ 1;Fri = Frnext;

End while
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• Crowding distance sorter

Crowding distance sorter was developed according to the crowding distance sorting ap-

proach, which is used to sort the solutions with the same non-dominated rank according

to the crowding distance in descending order. The pseudo-code for the crowding distance

sorter is outlined below, where l denotes the number of solutions in Fri, Fri[j] denotes jth

solution in Fri, and Fri[j]distance denotes the crowding distance of Fri[j].

Pseudo-code 3: crowding distance sorter
l = |Fri|;
For j = 1 to l do Fri[j]distance = 0; End for
For each objective fk do
Sort Fri according to fk in descending order;
Fri[1]distance = Fri[l]distance = ∞;
d = fk(Fri[1])− fk(Fri[l]);
For j = 2 to (l C 1) do
Fri[i]distance = Fri[i]distance + (fk(Fri[i− 1])− fk(Fri[i+ 1]))/d;

End for
End for
Sort Fri according to Fri[i]distance in descending order.

• Teaching phase operator

Teaching phase operator is used to generate the transitional population modified from

the parent population. The solution which is randomly chosen from the first non-dominated

frontier (Fr1) of PG is considered as the teacher. The teacher tries to improve the results

of learners by giving his or her experiences and knowledge (better disassembly sequence) to

the learners with expectation that their results will reach his or her level. A self-adaptive

parameter, the teaching factor pt is computed for modifying the existing learners. It is

calculated by the non-dominated rank r of the modified learner according to the following

equation:

pt =
r + 1

r + 3
(16)
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Learners with a larger non-dominated rank will have a higher probability of learning

from the teacher.

Each solution XQ in QG is generated according to the corresponding learner X and

a teacher XT . A precedence preservative operator is applied to maintain the precedence

relationships in the feasible solutions when they are being modified. The pseudo-code of

teaching phase operator is outlined as follows, with m defined as the number of disassembly

operations (length of a solution).

Pseudo-code 4: teaching phase operator
QG = ∅;
For each X in PG do
XQ = ∅;
Randomly choose a teacher XT from Fr1; Calculate pt;
For i = 1 to m do
Set p ∈ [0, 1] randomly;
If (p < pt) then XQ[i] = XT [1]; else XQ[i] = X[1];
Erase XQ[i] in XT and X;

End for
QG = QG ∪XQ;

End for

The teaching-phase operator procedure generates a new solution by choosing and setting

the elements one by one from the left to the right. First, the probability is set randomly.

Second, if the probability is less than pt, the leftmost element of the teacher will be chosen

and pushed back to the new solution; otherwise the left-most element of the learner will be

used. Third, the chosen element will be erased for both the teacher and the learner. Then,

these three steps are repeated until the new solution contains all the disassembly operations.

In this way, the disassembly precedence in the solutions is preserved. For instance, Table 1

gives an example with 5 elements: a new solution ([ 2 3 4 5 1 ]) is generated from a teacher

([ 2 3 1 4 5 ]) and a learner ([ 4 3 5 1 2 ]). Suppose that Operation 3 has precedence over

Operation 5. Then, the precedence will be preserved in the new solution when our approach

is used.

• Learning phase operator
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Table 1: An example of using teaching phase operator to generate a new solution from a teacher and a
learner with 5 elements.

Step Probability Teacher Learner Solution

1 0.41 [ 2 3 1 4 5 ] [ 4 3 5 1 2 ] [ 2 ]
2 0.23 [ 3 1 4 5 ] [ 4 3 5 1 ] [ 2 3 ]
3 0.86 [ 1 4 5 ] [ 4 5 1 ] [ 2 3 4 ]
4 0.72 [ 1 5 ] [ 5 1 ] [ 2 3 4 5 ]
5 0.33 [ 1 ] [ 1 ] [ 2 3 4 5 1 ]

Notes: the underlined figure indicates the chosen element in each step.

Learning phase operator is used to generate the offspring population modified from the

transitional population. All the solutions in QG are considered as the learners, who learn

from each other and try to improve their results. Each solution XO in OG is generated

according to the corresponding learner (X), another randomly chosen learner (XA) from

QG, and a new randomly generated learner XR. The pseudo-code of learning phase operator

is shown next.

Pseudo-code 5: learning phase operator
OG = ∅;
For each X in QG do
XO = ∅;
Randomly choose XA ̸= X from QG;
Randomly generate XR using feasible solution generator;
For i = 1 to m do
Set p ∈ [0, 1] randomly;
If (p < 0.33) then XO[i] = X[1];
Else if (p < 0.67) then XO[i] = XA[1];
Else XO[i] = XR[1];
Erase XO[i] in X, XA and XR;

End for
OG = OG ∪XO;

End for

3.4. Comparison of MTLBO algorithm with TLBO algorithm

The proposed MTLBO algorithm is different from the TLBO algorithm. First, the

generation methods for the initial population are different. In the MTLBO algorithm, the
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initial population is generated using the feasible solution generator, hence each individual

is a feasible solution, while in the TLBO algorithm, the initial population is generated

randomly without considering the individuals feasibility. Second, the realization methods

for the evolutionary mechanism are different. In theby MTLBO algorithm, learners are

modified using both the teaching and learning phase operators, applying the precedence-

preserving cross-over operation. So the disassembly precedence constraints will be retained

in the modified solutions. In contrast, with the TLBO algorithm, the learners are modified

using multidimensional matrix computation. Third, the fast non-dominated and crowding

distance sorting approach are implemented in MTLBO, making it suitable for the multi-

objective disassembly problem, while TLBO is used to solve single-objective optimization

problems.

4. NUMERICAL SIMULATIONS

We conducted simulations to test the performance of the MTLBO algorithm to solve the

multi-objective disassembly sequence planning problem. All tested algorithms were coded

with C++, and carried out on a PC with a 2 GHz Intel Core2 Duo CPU T5750 and 2

gigabytes of memory.

4.1. Case 1

In Case 1, 10 disassembly operations (o1, o2, ,̇o10) are needed to disassemble an e-waste

to remove the hazardous or valuable components. The properties of these components

(c1, c2, ,̇c8) are listed in Table 2. The disassembly precedence constraints are represented by

disassembly preference rules:

Rule1 : Pre1 = ∅ → Fol1 = {o1, o2},

Rule2 : Pre2 = {o1, o2} → Fol2 = {o3, o6, o8, o10},

Rule3 : Pre3 = {o3} → Fol3 = {o4, o5, o7},

Rule4 : Pre4 = {o5} → Fol4 = {o9}.
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Table 2: Properties of the components in Case 1.

Component Operation h v w

c1 o1 0 5 2
c2 o2 1 0 5
c3 o4 3 2 4
c4 o6 0 4 1
c5 o7 0 5 3
c6 o8 5 0 1
c7 o9 0 5 1
c8 o10 1 0 5

Notes: h indicates the toxicity level, v de-
notes the potential recovery value and w is a
parameter for the potential recovery weight.

To demonstrate the effectiveness and robustness of the MTLBO algorithm, four tests

were implemented:

Test 1: maximize F (X) = (fh(X), fv(X), fw(X)) using MTLBO, N = 100, Gmax = 500;

Test 2: maximize F (X) = (fh(X), fv(X)) using MTLBO, N = 100, Gmax = 500;

Test 3: maximize F (X) = (fh(X), fw(X)) using MTLBO, N = 100, Gmax = 500;

Test 4: maximize F (X) = (fv(X), fw(X)) using MTLBO, N = 100, Gmax = 500.

In Test 1, all the three mentioned objectives are chosen. In Tests 2-4, two of them

were chosen for each. The aim of solving a multi-objective disassembly sequence planning

problem is to find a set of non-dominated solutions for the decision-makers to select from.

Now, see Figure 4.

For Test 1, the acquired non-dominated solutions can be plotted in three dimensions

with the axes denoting the three objective function values, as illustrated in Figure 4(a). For

Tests 2-4, the acquired non-dominated solutions can be similarly plotted with two axes, as

illustrated in Figure 4(b)-4(d).

In Figure 4, each point marked by a circle represents a non-dominated solution. The

relationships between the different objectives are shown in Figure 4(a). However this three-

dimensional plot is not very intuitive. Figure 4(b), 4(c) and 4(d) give a clearer picture of
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(a) (b)

(c) (d)

Figure 4: Non-dominated solutions of (a) Test 1, (b) Test 2, (c) Test 3 and (d) Test 4.

the relationships between each two of the objectives. The three objectives contradict one

another. Choosing a solution from among the acquired non-dominated solution set depends

on the decision-makers preferences for the objectives. Therefore, the optimization results

can help in supporting decisions.

The above results indicate that the proposed MTLBO algorithm is effective and main-

tains a good spread of non-dominated solutions.

To compare the performance of MTLBO algorithm with that of NSGA II, we conducted

an additional test to assess it relative to Test 2, as follows:

Test 5: maximize F (X) = (fh(X), fv(X)) using NSGA II, N = 100, Gmax = 500.

Tests 2 and 5 were run 30 times independently. The MTLBO algorithm found 31.17 non-

dominated solutions on average with a standard deviation of 0.75, while NSGA II found only

27.10 on average with a standard deviation of 2.14. One of the test results is illustrated
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in Figure 5. It shows that the MTLBO algorithm found a better spread of non-dominated

solutions and had better convergence to the Pareto-optimal solutions than NSGA-II did.
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Figure 5: Non-dominated solutions of Test 2 and Test 5.

Two additional tests were also conducted to assess the comparative effects of different

settings for Gmax on the performance of the MTLBO algorithm:

Test 6: maximize F (X) = (fh(X), fv(X)) using MTLBO, N = 100, Gmax = 100;

Test 7: maximize F (X) = (fh(X), fv(X)) using MTLBO, N = 100, Gmax = 1000.

The results of Test 2, 6 and 7 are illustrated in Figure 6, showing that the performance

is improved when Gmax is increased. We found 27 non-dominated solutions in Test 6, 31 in

Test 2, and 33 in Test 7. The convergence to Pareto-optimal solutions improved as Gmax

increased from 100 to 500 to 1000. Test 7 had a better spread of solutions than Tests 2 and

6 did. Thus, the reader should recognize that it seems like a larger Gmax values support

better convergence and solution spread.

4.2. Case 2

Case 2 studies an LCD TV. Figure 7 gives its exploded view and the top-level structure

of its bill of materials. In an LCD TV, there are some valuable materials, such as plastics,

iron (Fe), copper (Cu) and aluminum (Al). There are also some hazardous materials, such
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Gmax=500

Gmax=1000

Gmax=100

Figure 6: Non-dominated solutions of Test 2, Test 6 and Test 7.

as: tin (Sn), lead (Pb) and cadmium (Cd) (in the printed circuit boards); mercury (Hg) and

indium (In) (in the LCD screen); polychlorinated biphenyls (PCB) (in the capacitors), and

poly-brominated diphenyl ethers (PBDE) contained in the flame retardants used in plastics.

Product

Front cover subassembly

Back cover subassembly

Base subassembly

Main board 

Control buttons board

Remote control receiver board

Surface cover

Power supply board

LNB converter board

DVD rom

(a) (b)

Notes: LNB converter board is a low-noise block converter printed circuit board. It is often used in screen 

cable TV and broadband Internet technology hardware to support improved signal capture and delivery to 

enhance the quality of a user’s experience with whatever content is being delivery.

Figure 7: Production info, LCD TV: (a) exploded view; (b) top-level bill of materials structure.

Descriptions of all the disassembly operations and the properties of the disassembled

components are given in Table 3. The disassembly precedence constraints are represented

by disassembly preference rules:
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Rule1 : Pre1 = ∅ → Fol1 = {o1, o2},

Rule2 : Pre2 = {o1} → Fol2 = {o3, o15},

Rule3 : Pre3 = {o3} → Fol3 = {o4, o5, o6, o7, o8, o10},

Rule4 : Pre4 = {o8} → Fol4 = {o9},

Rule5 : Pre5 = {o5, o7, o9, o10} → Fol5 = {o11},

Rule6 : Pre6 = {o11} → Fol6 = {o12, o13},

Rule7 : Pre7 = {o13} → Fol7 = {o14},

Rule8 : Pre8 = {o15} → Fol8 = {o16, o17}.

Table 3: Disassembly operations and the properties of the disassembled components.

# Disassembly operation h v/Chinese Yuan w/g

O1 Unscrew and remove base subassembly
O2 Unscrew and remove cover plate 1 0.09 23.0
O3 Remove back cover subassembly
O4 Disassemble back cover subassembly 1 2.87 723.8
O5 Remove wire with pin
O6 Remove control button part 3 0.02 5.5
O7 Unscrew and remove main board 5 0.79 196.0
O8 Unscrew and remove loudspeaker part
O9 Unscrew and remove power supply board 5 0.65 118.0
O10 Unscrew and remove metal support 0 0.59 183.0
O11 Unscrew
O12 Remove Remote control receiver board 3 0.01 3.0
O13 Remove metal mounting plate 0 2.09 639.0
O14 Separate surface frame and LCD screen 6 11.51 3170.8
O15 Disassemble base subassembly 0 0.11 35.0
O16 Disassemble brace part 2 0.28 75.0
O17 Disassemble seat part 0 0.16 50.0

Notes: h indicates the toxicity level, v denotes the potential recovery value and w is a parameter
for the potential recovery weight.

The MTLBO algorithm was implemented for this case. The objective functions were set

up to: maximize F (X) = (fh(X), fv(X), fw(X)). Also, the parameters were set as: N = 100

and Gmax = 500. The non-dominated solutions that were obtained are shown in Table 4.
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Table 4: Non-dominated solutions for Case 2 supporting multi-objective decision-making.

Solution # fh fv fw

1 3.68 2.06 547.21
2 3.81 2.04 541.00
3 2.99 2.23 589.96
4 3.82 2.04 541.60
5 4.43 1.69 450.53
6 3.29 2.20 582.60
7 4.21 1.89 500.53
8 3.39 2.17 572.96
9 4.04 2.00 528.24
10 3.85 2.02 535.57
11 4.35 1.72 454.28
12 3.95 2.02 533.22
13 3.22 2.21 583.99
14 4.10 1.90 503.46
15 3.46 2.17 572.58
16 4.32 1.81 479.96
17 3.34 2.17 572.22
18 3.65 2.10 557.90
19 3.95 2.00 528.50
20 4.05 1.91 507.88

Notes: fh is the index of diminished tox-
icity, fv is the index of potential recovery
value and fw is the index of potential re-
covery weight.

A decision can be made based on the Pareto-optimal solutions that we found, according

to the decision makers preferences related to the multiple objective functions. For example,

if a decision maker gives weight of 0.5, 0.3 and 0.2 to fh, fv and fw respectively, the 3rd

solution will be viewed as the best. This is because the value of its objective function,

(0.5fh + 0.3fv + 0.2fw = 120.16), is the biggest.

In summary, our proposed MTLBO algorithm seems to have worked quite well, and

achieved better convergence and non-dominated solution spread than NSGA II did in solving

the multi-objective disassembly sequence planning problem.
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5. SERVICE-ORIENTED DISASSEMBLY SEQUENCE PLANNING FRAME-

WORK

Effective disassembly sequence planning methods can improve disassembly efficiency,

reduce disassembly cost and environmental impact, and improve the recovery value of e-

waste. To make disassembly planning more effective, it is necessary to obtain detailed

information on e-waste at the outset of the analysis work. However, it is likely to not be

effective to get this kind of information support through current e-waste-related information-

sharing mechanisms. Also, the disassembly model should be built in a way that ensures the

representation of the disassembly process constraints. And finally, there needs to be an

optimization algorithm that performs effectively when it is used to solve the disassembly

sequence planning problem.

Service-oriented technologies promise a way to create the basis for agility so that compa-

nies can deliver flexible business processes (Demirkan et al., 2008). They are mission-critical

supporting technologies for e-business applications. The disassembly and recovery of e-

waste involve complex business processes across the lifecycle of their production and use.

So information support services, disassembly modeling, and optimization services need to

be integrated together when they are used in computer networks, such as the Internet. We

proposed a service-oriented disassembly sequence planning framework to provide a com-

prehensive and standardized service-based environment for distributed information sharing

between the producer and the disassembler. Our framework also provides a service-oriented

environment for disassembly modeling and optimization.

Service-oriented disassembly sequence planning offers a useful extended e-business model

for the end of the service life involving the kinds of electronic and electrical products that

we have studied in this research. We introduced the use of cloud services for the disassembly

context, and why it will fundamentally transform the business model that is in use today

in the disassembly industry. The hallmarks of our proposed approach involve how the

characteristics of customization and distribution can be leveraged for better performance.

Our framework also links the relevant stakeholders so they can do more effective disassembly
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sequence planning together by collaborating via the Internet.

Figure 8 illustrates our service-oriented model. Different stakeholders can access services

through the service-oriented platform via the Internet. They can be those who request

or provide related services. We considered three different kinds of services: information

support, disassembly modelling, and optimization. When a disassembler receives a request

to disassemble e-waste, the relevant services can be invoked to create a disassembly sequence

plan.

Service-oriented platform

Figure 8: Service-oriented disassembly sequence planning model.

Our three-layer service-oriented disassembly sequence planning framework is shown in

Figure 9. The resources layer considers distributed information that is provided by different

stakeholders, and the software and algorithms used for disassembly modeling and optimiza-

tion. The resources are provided as cloud services in the core service layer. The service

management layer is used for the description and publication of cloud services, as well as

their registration and match-making for their use in the marketplace.

In the three-layer framework, adaptive, secure and on-demand cloud services for disas-

sembly sequence planning are offered over the Internet. The framework provides a service-
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Resources layer

Core services layer

Services management layer

Figure 9: Service-oriented disassembly sequence planning framework.

oriented request-find-provide business model for disassembly planning. For instance, for

e-waste such as we have discussed, the disassembler will need to request help from infor-

mation support services. When they are found, the appropriate information providers will

provide the services. After that, the disassembler will need to request additional disassem-

bly modelling and optimization services to try to optimize disassembly sequence planning.

Again, the relevant services will be invoked when they are identified.

So the reader should see that disassembly sequence planning services can be invoked

by taking advantage of the cloud, with the services delivered by different providers. An

interoperable, service-oriented system for this can be realized by implementing our proposed

framework. Many valuable and effective optimization algorithms have been proposed to solve

different kinds of disassembly planning problems in prior research. They can be developed

for our proposed system and be invoked by disassemblers. More importantly, our MTLBO

algorithm seems like a good candidate for this.
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6. Conclusion

In this article, we proposed an effective MTLBO algorithm to solve multi-objective disas-

sembly sequence planning problem. As many non-dominated solutions as possible should be

reviewed by a stakeholder to select in order make better decisions. To this end, we investigat-

ed a set of experimental simulations. The simulations showed that our MTLBO algorithm

achieved good convergence and spread for the non-dominated solutions it found. In addi-

tion, the algorithm performed better than NSGA II to solve the multi-objective disassembly

problem. We also proposed a service-oriented disassembly sequence planning framework

to help the stakeholders involved with handling e-waste to more effectively collaborate on

disassembly sequence planning via the Internet. Our approach extends the e-business model

to include treatment of e-waste at the end of its useful service life. It addresses key ques-

tions on how to take advantage of Web services and e-business technologies to support more

sustainable business practices.

Some future works include: (1) developing a more practical mathematical model to solve

disassembly problems by considering more disassembly issues to optimize, such as disassem-

bly cost, environmental impact, energy consumption, etc.; (2) improving the performance

of the optimization algorithms to solve the problems we focus on; and (3) developing a

more detailed service-oriented disassembly sequence planning system to transform the busi-

ness model of the disassembly industry. The latter, in our view, needs to be based on

e-business engineering approaches and technologies that will support process performance

improvement.
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Appendix. Terminology

TLBO Teaching-learning-based optimization

STLBO Simplified teaching-learning-based optimization

MTLBO Modified teaching-learning-based optimization

NSGA II Non-dominated sorting genetic algorithm II
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