254 research outputs found

    Association of Adiponectin SNP+45 and SNP+276 with Type 2 Diabetes in Han Chinese Populations: A Meta-Analysis of 26 Case-Control Studies

    Get PDF
    Recently, many studies have reported that the SNP+45(T>G) and SNP+276(G>T) polymorphisms in the adiponectin gene are associated with type 2 diabetes (T2DM) in the Chinese Han population. However, the previous studies yielded many conflicting results. Thus, a meta-analysis of the association of the adiponectin gene with T2DM in the Chinese Han population is required. In the current study, we first determined the distribution of the adiponectin SNP+276 polymorphism in T2DM and nondiabetes (NDM) control groups. Our results suggested that the genotype and allele frequencies for SNP+276 did not differ significantly between the T2DM and NDM groups. Then, a meta-analysis of 23 case-control studies of SNP+45, with a total of 4161 T2DM patients and 3709 controls, and 11 case-control studies of SNP+276, with 2533 T2DM patients and 2212 controls, was performed. All subjects were Han Chinese. The fixed-effects model and random-effects model were applied for dichotomous outcomes to combine the results of the included studies. The results revealed a trend towards an increased risk of T2DM for the SNP+45G allele as compared with the SNP+45T allele (OR = 1.34; 95% CI, 1.11–1.62; P<0.01) in the Chinese Han population. However, there was no association between SNP+276 and T2DM (OR = 0.90; 95% CI, 0.73–1.10; P = 0.31). The results of our association study showed there was no association between the adiponectin SNP+276 polymorphism and T2DM in the Yunnan Han population. The meta-analysis results suggested that the SNP+45G allele might be a susceptibility allele for T2DM in the Chinese Han population. However, we did not observe an association between SNP+276 and T2DM

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on four research projects and a list of publications.National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Agreement 958461National Aeronautics and Space Administration Grant NAGW-1272U.S. Army Corp of Engineers Contract DACA39-87-K-0022U.S. Navy - Office of Naval Research Grant N00014-89-J-1107U.S. Navy - Office of Naval Research Grant N00014-92-J-1616Digital Equipment CorporationJoint Services Electronics Program Contract DAAL03-92-C-0001U.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019U.S. Department of Transportation Agreement DTRS-57-88-C-00078TTD13U.S. Department of Transportation Agreement DTRS-57-88-C-00078TTD30U.S. Department of Transportation Agreement DTRS-57-92-C-00054TTD1DARPA/Consortium for Superconducting Electronics Contract MDA972-90-C-0021National Science Foundation Fellowship MIP 88-5876

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF

    Constraints on the cosmic expansion history from GWTC-3

    Get PDF
    We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z)H(z), including its current value, the Hubble constant H0H_0. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z)H(z). The source mass distribution displays a peak around 34M34\, {\rm M_\odot}, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a H(z)H(z) measurement, yielding H0=687+12kms1Mpc1H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}} (68%68\% credible interval) when combined with the H0H_0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0H_0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8kms1Mpc1H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}} with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0H_0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0H_0) is the well-localized event GW190814

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF

    All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Get PDF

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF
    Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the search template grid, and by analyzing data from the latest (third) observing run (O3). In the frequency range searched, from 60 to 500 Hz, we find no evidence of gravitational radiation. This is the most sensitive search for Scorpius X-1 using a HMM to date. For the most sensitive sub-band, starting at 256.06256.06Hz, we report an upper limit on gravitational wave strain (at 95%95 \% confidence) of h095%=6.16×1026h_{0}^{95\%}=6.16\times10^{-26}, assuming the orbital inclination angle takes its electromagnetically restricted value ι=44\iota=44^{\circ}. The upper limits on gravitational wave strain reported here are on average a factor of 3\sim 3 lower than in the O2 HMM search. This is the first Scorpius X-1 HMM search with upper limits that reach below the indirect torque-balance limit for certain sub-bands, assuming ι=44\iota=44^{\circ}

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure
    corecore