12,007 research outputs found

    A Serine/Threonine Protein Kinase Encoding Gene KERNEL NUMBER PER ROW6 Regulates Maize Grain Yield

    Get PDF
    Increasing grain yield of maize (Zea mays L.) is required to meet the rapidly expanding demands for maize-derived food, feed, and fuel. Breeders have enhanced grain productivity of maize hybrids by pyramiding desirable characteristics for larger ears. However, loci selected for improving grain productivity remain largely unclear. Here, we show that a serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 (KNR6) determines pistillate floret number and ear length. Overexpression of KNR6 or introgression of alleles lacking the insertions of two transposable elements in the regulatory region of KNR6 can significantly enhance grain yield. Further in vitro evidences indicate that KNR6 can interact with an Arf GTPase-activating protein (AGAP) and its phosphorylation by KNR6 may affect ear length and kernel number. This finding provides knowledge basis to enhance maize hybrids grain yield

    Matrix Black Holes

    Get PDF
    Four and five dimensional extremal black holes with nonzero entropy have simple presentations in M-theory as gravitational waves bound to configurations of intersecting M-branes. We discuss realizations of these objects in matrix models of M-theory, investigate the properties of zero-brane probes, and propose a measure of their internal density. A scenario for black hole dynamics is presented.Comment: 26 pages, harvmac; a few more references and additional comment

    Quantum Theory Approach for Neutron Single and Double-Slit Diffraction

    Full text link
    We provide a quantum approach description of neutron single and double-slit diffraction, with specific attention to the cold neutron diffraction (λ20\lambda \approx 20\AA) carried out by Zeilinger et al. in 1988. We find the theoretical results are good agreement with experimental data.Comment: 10 page

    A Note on Noncommutative Brane Inflation

    Get PDF
    In this paper, we investigate the noncommutative KKLMMT D3/anti-D3 brane inflation scenario in detail. Incorporation of the brane inflation scenario and the noncommutative inflation scenario can nicely explain the large negative running of the spectral index as indicated by WMAP three-year data and can significantly release the fine-tuning for the parameter β\beta. Using the WMAP three year results (blue-tilted spectral index with large negative running), we explore the parameter space and give the constraints and predictions for the inflationary parameters and cosmological observables in this scenario. We show that this scenario predicts a quite large tensor/scalar ratio and what is more, a too large cosmic string tension (assuming that the string coupling gsg_s is in its likely range from 0.1 to 1) to be compatible with the present observational bound. A more detailed analysis reveals that this model has some inconsistencies according to the fit to WMAP three year results.Comment: 20 pages, 5 figures; accepted for publication in JCA

    Temporally stable coherent states for infinite well and P\"oschl-Teller potentials

    Full text link
    This paper is a direct illustration of a construction of coherent states which has been recently proposed by two of us (JPG and JK). We have chosen the example of a particle trapped in an infinite square-well and also in P\"oschl-Teller potentials of the trigonometric type. In the construction of the corresponding coherent states, we take advantage of the simplicity of the solutions, which ultimately stems from the fact they share a common SU(1,1) symmetry \`a la Barut--Girardello. Many properties of these states are then studied, both from mathematical and from physical points of view.Comment: 48 pages, 21 figure

    Herschel Observations of the W43 "mini-starburst"

    Full text link
    Aims: To explore the infrared and radio properties of one of the closest Galactic starburst regions. Methods: Images obtained with the Herschel Space Observatory at wavelengths of 70, 160, 250, 350, and 500 microns using the PACS and SPIRE arrays are analyzed and compared with radio continuum VLA data and 8 micron images from the Spitzer Space Telescope. The morphology of the far-infrared emission is combined with radial velocity measurements of millimeter and centimeter wavelength transitions to identify features likely to be associated with the W43 complex. Results: The W43 star-forming complex is resolved into a dense cluster of protostars, infrared dark clouds, and ridges of warm dust heated by massive stars. The 4 brightest compact sources with L > 1.5 x 10^4 Lsun embedded within the Z-shaped ridge of bright dust emission in W43 remain single at 4" (0.1 pc) resolution. These objects, likely to be massive protostars or compact clusters in early stages of evolution are embedded in clumps with masses of 10^3 to 10^4 Msun, but contribute only 2% to the 3.6 x 10^6 Lsun far-IR luminosity of W43 measured in a 16 by 16 pc box. The total mass of gas derived from the far-IR dust emission inside this region is ~10^6 Msun. Cometary dust clouds, compact 6 cm radio sources, and warm dust mark the locations of older populations of massive stars. Energy release has created a cavity blowing-out below the Galactic plane. Compression of molecular gas in the plane by the older HII region near G30.684-0.260 and the bipolar structure of the resulting younger W43 HII region may have triggered the current mini-star burst.Comment: 5 pages, 3 figures, accepted for A&A Special Issu

    Electromagnetic and Gravitational Scattering at Planckian Energies

    Get PDF
    The scattering of pointlike particles at very large center of mass energies and fixed low momentum transfers, occurring due to both their electromagnetic and gravitational interactions is re-examined in the particular case when one of the particles carries magnetic charge. At Planckian center-of-mass energies, when gravitational dominance is normally expected, the presence of magnetic charge is shown to produce dramatic modifications to the scattering cross section as well as to the holomorphic structure of the scattering amplitude.Comment: 33 pages, Revtex file, no figs; a footnote and two references adde

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes

    Contributions of Zea mays subspecies mexicana haplotypes to modern maize

    Get PDF
    Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 x 10(-8) ~3.87 x 10(-8) per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties

    Tunable Excitons in Biased Bilayer Graphene

    Full text link
    Recent measurements have shown that a continuously tunable bandgap of up to 250 meV can be generated in biased bilayer graphene [Y. Zhang et al., Nature 459, 820 (2009)], opening up pathway for possible graphene-based nanoelectronic and nanophotonic devices operating at room temperature. Here, we show that the optical response of this system is dominated by bound excitons. The main feature of the optical absorbance spectrum is determined by a single symmetric peak arising from excitons, a profile that is markedly different from that of an interband transition picture. Under laboratory conditions, the binding energy of the excitons may be tuned with the external bias going from zero to several tens of meV's. These novel strong excitonic behaviors result from a peculiar, effective ``one-dimensional'' joint density of states and a continuously-tunable bandgap in biased bilayer graphene. Moreover, we show that the electronic structure (level degeneracy, optical selection rules, etc.) of the bound excitons in a biased bilayer graphene is markedly different from that of a two-dimensional hydrogen atom because of the pseudospin physics
    corecore