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The scattering of pointlike particles at very large center-of-mass energies and fixed low momentum
transfers, occurring due to both their electromagnetic and gravitational interactions, is reexamined
in the particular case when one of the particles carries a magnetic charge. At Planckian center-of-
mass energies, when gravitational dominance is usually expected, the presence of magnetic charge is
shown to produce dramatic modifications to the scattering cross section as well as to the holomorphic

structure of the scattering amplitude.

PACS number(s): 04.60.—m, 04.40.Nr, 14.80.Hv

I. INTRODUCTION

In perturbative quantum field theory, all of the infor-
mation about interactions is customarily relegated to the
perturbing Hamiltonian, with the exactly integrable part
corresponding to the free propagation of quanta (forward
scattering). In situations where a well-defined perturba-
tive domain is not available, such a decomposition of the
original Hamiltonian into “free” and “interacting” parts
is clearly not meaningful. It is more desirable, there-
fore, to formulate the theory in such a way that the part
that is exactly tractable contains nontrivial information
about the interaction, even though this may be semiclas-
sical. In some cases, it turns out that there are kinemati-
cal regimes where in fact the semiclassical approximation
is exact, permitting the calculation of scattering ampli-
tudes without further approximations. We shall focus
on two such cases in the sequel. The first deals with an
electromagnetic system consisting of a point charge and
a Dirac monopole, both of very small mass. The second
is basically a generalization of the first, in which gravita-
tional interactions between these particles is also taken
into account.

It is well known that a local field theory of electromag-
netism incorporating both electric and magnetic charges
is not as easy to formulate as one with electric charges
alone. Furthermore, if we assume that the electric charge
is small, given essentially in terms of the fine structure
constant, then the magnetic charge, by virtue of Dirac
quantization, will certainly not be small. Thus, the sec-
tor of the theory with magnetic charge is not amenable to
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a perturbative treatment. However, there exists a kine-
matical region in which exact computation of the scatter-
ing amplitude of these particles is possible. The way this
comes about is the following: if we imagine a situation
in which the center-of-mass (c.m.) energy of the system
is very high, while the momentum transfer between the
scattering constituents is fixed at a relatively low value,
then many of the degrees of freedom of the system decou-
ple. The remaining degrees of freedom become strongly
coupled and turn out to be accessible to exact analyses
without further approximations. In the case of pure elec-
tric charge-charge scattering, the amplitude corresponds
exactly to the one calculated in the so-called Eikonal ap-
proximation of quantum electrodynamics. In this case,
of course, radiative corrections can be calculated pertur-
batively, unlike in the charge-monopole case.

When the c.m. energies approach Planckian values,
quantum effects of general relativity can no longer be
ignored. But, as of now, there is no fully satisfactory
quantized theory of gravity. When one tries to quantize
gravity from a local field theoretic viewpoint, one imme-
diately runs into uncontrollable ultraviolet divergences.
The string theory approach, though excellent from the
standpoint of perturbation theory, is yet to be com-
pletely understood on a nonperturbative basis. Other
approaches such as the Ashtekar formalism are not de-
veloped well enough for analyzing physical processes in-
volving exchange of gravitational quanta. However, as we
shall see, in the kinematical regime under consideration,
amplitudes of several processes involving gravitational in-
teractions become exactly calculable, despite the lack of a
full quantum gravity theory. Furthermore, the interplay
between gravitational and electromagnetic interactions
become especially interesting in this kinematical regime
when one of the particles is magnetically charged. In
this case the fine structure constant of electromagnetism
a does not evolve with the c.m. squared energy s, but in-
creases with increasing the squared momentum transfer
t. So if t is held fixed then a does not run at all. Thus,
in the kinematical region of interest, one expects gravi-
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tational interactions to dominate over electromagnetism.
With monopole-charge scattering, though, this is not the
case as we show below.

We shall see that longitudinal and transverse degrees
of freedom behave quite differently in the above situa-
tion, with the latter essentially dropping out of the prob-
lem. This will lead to the truncation of the full action of
the theory under consideration (both for general relativ-
ity and quantum electrodynamics) to a two-dimensional
action defined on the boundary of space time. In this
sense, the theory has a distinctly topological nature and
yet nontrivial dynamical results follow from it.

The paper is organized as follows. In the second sec-
tion we review earlier literature on pure electric charge-
charge scattering within the “shock-wave” picture. Scal-
ing arguments leading to a truncation of the Maxwell
action and eventually to the shock wave picture will be
‘summarized for completeness. Then we introduce mag-
netic monopoles in the theory, and proceed to generalize
the foregoing formalism to calculate the scattering ampli-
tude. Particular attention will be paid to subtleties aris-
ing from problems such as the Dirac string singularity. In
the third section gravity will be introduced and the inter-
actions involving both electromagnetism and gravity will
be studied. Once again we will motivate the discussion
by considering the full Einstein action and how it gets
simplified, in the absence of electromagnetism [1]. Next
we discuss charge-charge and charge-monopole scattering
at Planckian energies. The relative contributions of elec-
tromagnetic and gravitational scattering in the two cases
will be contrasted in detail. We will also comment on the
behavior of singularities, namely the poles in the scatter-
ing amplitude and how they differ from one process to
another. We conclude with a number of observations on
our results and future outlook.

II. ELECTROMAGNETIC SCATTERING AT
HIGH ENERGIES

At sub-Planckian c.m. energies that are still large com-
pared to the rest masses of the particles, the dominant
physical processes originate from a truncated version of
the original Maxwell action. The derivation of this trun-
cation is first briefly sketched, and the resulting shock
wave fields calculated in a frame where one of the par-
ticles moves almost luminally. The other scattering par-
ticle, assumed to be relatively slow, scatters off these
fields with an exactly computable amplitude. The re-
view of this material follows the treatment of Verlinde
and Verlinde [2] and of Jackiw et al. [3], and is followed
by generalization to the case of monopole-charge scatter-
ing.

A. Effective theory at high energies

Suppose there are two spinless charged particles mov-
ing at very high velocities, such that the center-of-mass
energy +/s is very high. The action for the electromag-
netic field is given by
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S = _i/d‘lm(F;wF”V) ) (1)

where F,, = 0,4, — 0,A, is the second-rank elec-

tromagnetic field strength tensor and A* = (AO,/_f is

the electromagnetic four potential. At high center-of-
mass energies and very low momentum transfer /¢, the
scattering is almost exclusively in the forward direction.
Without loss of generality, if we assume the particles to
move initially in the z direction, with four-momentum
p* = (p°, ), then we have, for lightlike particles, the en-
ergy E = p, ~ /s and p, = py ~ 0. The square roots
of s and t thus measure the typical momenta associated
with the longitudinal and the transverse directions. Now,
if we associate two length scales with the longitudinal
and transverse directions, then the characteristic trans-
verse length scale is much bigger than the longitudinal
length scale. Thus, we scale the null coordinates z* such
that £ — Az® and z* — z%, where « runs over the light
cone indices +, —, while 7 signifies the transverse coor-
dinates z,y. Under this scaling the A, s transform as
A, — A"1A,. The transverse A; s remain unchanged.
The transformed action now has the form

s = _% / d*c (A" 2FapF + 2Fo;F* + X2F;;F7) .

(2)
The parameter A may now be chosen to depend on s:

k
A= 7 -0 , (3)
where k is a finite constant having dimensions of energy.
Then the limit s — oo becomes equivalent to the limit
A — 0. Thus, in this kinematical regime, the transverse
part of the action with Fj; can be ignored and what we
have left is an effective action of the form

S = _i / d*z (A2FapF*? + 2F,F*).  (4)

Notice that in the partition function the fluctuations of
the term F,gF 2B are suppressed in the imaginary ex-
ponent (due to the smallness of A) and the configura-
tion with the dominant contribution is Fog = 0, i.e.,
F*~ = E, = 0 [4]. This shows that the electric field
is localized in the transverse plane. Similarly, if we
write the original action in the dual formalism, with the
F,, = F,,, then F*— = B, = 0. This brings us to
the shock wave picture: fields due to processes character-
ized by longitudinal momenta that are overwhelmingly
larger than transverse momenta are essentially confined
to the plane (called the “shock front”) perpendicular to
the direction of motion of the source particles.

From the field theory standpoint, a charged scalar field
theory coupled to electromagnetism also undergoes sim-
plification in this kinematical regime: the action under
the same scale transformation becomes

s = /d“z (Da¢pD*¢* + X2D;pD*¢*) . (5)
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Once again, when neglecting terms of order A%, we see
that only the longitudinal components of the gauge fields
remain coupled. Thus, if we were to describe the gauge
field interaction in terms of currents j*, then only the
light cone components 5% would be physically relevant.
Furthermore, if these currents were to be associated with
charges moving almost luminally, then

i) = 0. (6)

This allows us to define two functions k™ and k—, where

jx = jx (@%,7),

jr = k™ (z7,7L),
o = O4kT (m+,1‘l) . (7
In short, if we define a vector k such that
k(:l:) = k+ (:c+,7_"l)——k* (.'I:_,F_L) (8)
then
Ji* = e*Pogk, (9)
where €*? is antisymmetric and €' = 1. The above
form of 7 automatically ensures the current conservation
9, = 0.

The flatness condition F*~ = 0 above admits a solu-
tion in terms of the light cone components of the gauge
potential Ay = 04+Q. If, further, we impose the Landau
gauge 0,A* = 0, Q obeys D’Alembert’s equation
which implies

Q= ot ($+,’FJ_)+Q_ (z“,fl). (11)

It is then easy to show that the electromagnetic Lagrange
density

L = "?}FuuFuV _j“A#
can be written as
o 1 =
= _%a_n—vzmm — 0:0V0_0"

—8,kt0_Q" — 0_k~ 0,0t (12)

which reduces to a total derivative in the light cone co-
ordinates:

L= —o_ (%sr 20,0 + 0, kt sr)

8, (%m V0.0 + 8_k“9+> . (13)

This shows that the action § = f d*zL is a surface term
defined on the boundary of null plane:

S = }{ dT/ d?r, (%Q“ V2Ot — %m Vi~
+EktQ — ic—m), (14)

Here all the quantities are evaluated on the contour
parametrized by the affine parameter 7. An overdot de-
notes 8/97. This shows that although the Lagrange den-
sity was reduced to a total derivative, the values of the
gauge parameter at the boundary plays a significant role.
In fact, they are the only dynamical degrees of freedom
in the problem. This simplification of the action has its
origin in the kinematics of the situation. On extremizing
this action, the equations of motion obtained are

VIOt = —k*, (15)
Vi = -k, (16)

O (771) = —gy K (a7 70),
1
Q- (.’B_,T_"J_) = ——V*z‘ k™ (CE_,T_"_L) . (17)

It can be verified that these solutions are identical to
those obained by solving the full set of Maxwell’s equa-
tions with (7) as the source current. In other words, once
again we arrive at the shock wave description of highly
energetic charged particles. It can be shown [3] that ex-
act scattering amplitude for charge-charge scattering, to
be computed below semiclassically, can also be obtained
from the above reduced action.

B. Charge-charge scattering

The foregoing analysis allows us to compute ezactly
the S matrix for the scattering of two highly energetic
particles assumed to carry electric charge. Making use
of Lorentz covariance of the theory, we will do the cal-
culations in a special inertial frame in which one of the
charges moves with velocity close to luminal, while the
other is moving relatively slowly. The shock wave front
due to the former extends over the entire transverse
plane. Thus, the target particle, assumed to be mov-
ing in a direction opposite to that of the source, encoun-
ters this shock wave and its wave function acquires an
Aharanov-Bohm-type phase factor. The overlap between
the wave functions of the target particle before and after
its encounter with the shock front leads to the scattering
amplitude.

The potential of the lightlike particle can be found in
various ways. First, we approach it from a very well
known physical situation, namely, that of Cherenkov ra-
diation. If a particle carrying an electric charge e’ moves
in the positive z direction in a dielectric medium with a
dielectric constant ¢, at a speed 3 greater than the speed
of light in that medium, then it emits electromagnetic
radiation. The charge carries with it a shock wave, in
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front of which all potentials and fields vanish. The vec-
tor potential due to this charge behind the shock wave is
given by the formula (e.g., [5])

pe’
\/(z —Bt)® + (1 — B2%) r 2

Az and A, being zero.

Az(z’ yaz) = Py (18)

r) is the transverse distance
from the charge given by 7, 2 = 2 +y2. Thus A suffers a
discontinuity across the shock front giving rise to singular
fields. Now if we put € = 1, which means that the motion
is in a vacuum, and take the limit 8 — 1, then expression
for A will be the quantity of our interest. Of course, now
the charge will move exactly at the speed of light in a
vacuum.

The same result can be derived somewhat more for-
mally following [3]. We consider the electromagnetic po-
tential A, of a static charged particle with an electric
charge e¢/. Then we give it a Lorentz boost 3 along the
positive z axis. The gauge potential transforms accord-
ingly following the laws of special relativity. On taking
the limit 8 — 1, the potential of the lightlike particle is
found to be a pure gauge almost everywhere except on
the shock plane where it has a discontinuity:

A® = A% = —2¢' In(ury) 6(z7),

i =0, i=1,2. (19)
Here, u is a dimensional parameter inserted to make the
logarithm in Eq. (19) dimensionless. The potential A* is
singular on the shock plane (z~ = 0) as was seen from the
Cherenkov formula. Now this potential is gauge equiva-
lent to the potential A’* where A'* = A* +8*A, A being
a Lorentz scalar. Choosing A to be —2e’6(z ™) In ur, , we
get

A% =A% =, A, = -—26’0(2:—)6 Inpr,. (20)

We see that the gauged transformed vector potential is a
pure gauge everywhere except on the hyperplane = = 0
which is also the shock plane. Thus, as one expects, the
fields are nonvanishing only on this plane and are given
by

[
;  2e'rh

E' = ~ d(z™), E? =0,
) I |
B =257, Br=o0. (21)
L

These singular field configurations cause an instanta-
neous interaction with the (slower) target particle. First,
consider the classical motion of the slow particle. This
reduces to solving the Lorentz force equation for the
test charge e of mass m with given boundary conditions.
Since it has negligible velocity, we use the nonrelativistic
form of the equation and also neglect the B-dependent
piece. Thus we have

dzv

2ee’ .,

The solution to the above equation can be easily guessed.
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Without loss of generality, let us assume that at the ini-
tial time ¢ = 0, e is almost stationary on the z axis at
a distance b from the origin. As the electric fields are
all directed radially, the impulse imparted to e should be
along the positive = axis after which it starts moving in
that direction with a uniform velocity. The § function
shows that the shock wave arrives from the left and hits
it at t = 0. Being nonzero only at that instant, it also al-
lows us to replace z and y by b and 0 respectively on the
right of the equation. Inserting the constants correctly
we have the solution

2ee’

bm

which clearly satisfies Eq. (22). This is the classical tra-
jectory of the charge e. The total momentum transfer
(or the impulse) is just 2ee’/b which is finite although
the fields are singular on the shock plane.

Having solved the classical part, we now consider the
quantum problem for the charge e. As stated earlier, we
look at how the wave function changes under the influ-
ence of the other charge which effectively provides just
a classical background field. For early times t < z the
particle is free and its wave function is just a plane wave
given by

Yo (%,7) = o = explipz] for z~ <0, (24)

y(t) = 2(t) = 0,  xz(t) = ——t0(t)+b, (23)

with momentum eigenvalue p#. Immediately after the
shock front passes by, its interaction with the gauge po-
tential enters via the ‘minimal coupling prescription’ by
which we replace all the 8,’s with 9, — ieA,. The cor-
responding wave function acquires a multiplicative phase
factor exp (ie [ dz*A,). Thus from Eq. (20), for z~ > 0,
the modified wave function is

forz™ >0,
(25)

P> (2*,7L) = exp [~iee' In(u?r})] ¥p

where 1o and v are related through the continuity re-
quirement

Y = P>

Here it may be noted that the additional phase factor due
to electromagnetic interaction is a function of 7, only,
which is the length of the radius vector from the particle
on the shock plane. It does not depend on the angular
variable. This is due to the fact that the electric field of
an electrically charged particle is central in nature. The
wave function ¥s can now be expanded in terms of the
complete set of momentum eigenfunctions (plane waves)
with suitable coefficients in the form [6]

at 27 = 0. (26)

s = / dkyd®ky A(ks,Fy)

X exp[iEL ST — tkyx™ — 'ik—l'_'_] (27)

with the on shell condition k4 = (k% +m?)/k_ . Obvi-
ously the coefficients A(ky,k,) are the probability am-
plitudes for finding the particle with momentum k* when



5668 SAURYA DAS AND PARTHASARATHI MAJUMDAR 31

an experiment is performed on it after it has undergone
the shock wave interaction. So we proceed to calculate
them by multiplying both sides of Eq. (27) by a plane
wave and integrating over . Using the orthonormality
of the eigenfunctions, we get

O(ks —
Alky kL) = iﬁﬁ
x/ d*r exp{i[—2ee’ In(ury)+q-7.]},

(28)

where §=p, — k | is the transverse momentum transfer,
k and p being the final and initial momenta respectively.
The integration over the transverse z-y plane can be per-
formed exactly [3] yielding the amplitude

k T(1—dee!) [ 4\ 7%
f(s,t) = 47:];:0 S(k+ —p+) [(iee’) ) (jt) ’

(29)
where we have put in the canonical kinematical factors.
t = —q? is the transverse momentum transfer. With this

amplitude, one can easily show that the scattering cross
section is

d?c (e€')?

dk? 2

(30)

where we have used a property of the I' function, namely
IT'(a + ib)| = |I'(a — ib)|, @ and b being real.

It has been shown in [3] that this scattering amplitude
is identical to the amplitude obtained in the eikonal ap-
proximation where virtual momenta of exchanged quanta
are ignored in comparison to external momenta, leading
to a resummation of a class of Feynman graphs [7]. Since,
generically ee’ ~ #, this approximation will receive
usual perturbative radiative corrections. The second-
order pole singularity in the cross section as t — 0 is,
of course, typical of processes where massless quanta are
exchanged.

C. Charge-monopole scattering

Now that we have calculated the amplitude of the scat-
tering of two charges, one can inquire as to what changes,
if any, will take place if we replace one of the charges by a
Dirac magnetic monopole. This question is worth pursu-
ing for various reasons. First of all, the (albeit imagined)
existence of monopoles will imply that the Maxwell equa-
tions assume a more symmetric form, due to the prop-
erty of duality of field strengths and electric and mag-
netic charges. Within quantum mechanics, as Dirac has
shown, monopoles offer a unique explanation of the quan-
tized nature of electric charge. But, as is well known,
introduction of monopoles in the theory brings in other
problems such as singularities in the vector potential. It
will be interesting to see how one can deal with them in
the present formalism and investigate the range of va-
lidity of the shock wave picture in this context. One

should also keep in mind the fact that a satisfactory lo-
cal quantum field theory for monopoles is still lacking.
Further, given Dirac’s quantization condition, monopole
elelctrodynamics cannot be understood in perturbative
terms around some noninteracting situation. Thus, as
advertised earlier, the shock wave picture may be one of
the few important probes available for such processes.

Recall, however, following [8] that it is not possible
to choose a single non-singular potential to describe the
field of the monopole everywhere. We need at least two
such potentials, each being well behaved in some region
and being related by a local gauge transformation in the
overlapping region. In spherical polar coordinates, these
potentials can be chosen as [8]

A = 2 _(1-cost)p, 0<6<m,
rsinf
-oII —g ~
= 7 <.
A rsin0(1+cose)g{>, 0<f0<nm (31)

The Dirac strings associated with the two potentials are
along the semi-infinite lines § = 7 and 0 respectively,
i.e., along the negative and positive halves of the z axis.
AT and AM become singular along these two lines respec-
tively. It may be noted that here we have made the gauge
choice A° = 0, and have chosen an orientation of our co-
ordinates such that only the z and y components survive.
In the region —7 < ¢ < 7, where either of A ! or A !
may be used, they are related by a gauge transformation
with the gauge parameter 2g¢. It can be readily verified
that

Vx Al = Vx A" = 25 (32)

r

Here the curls are taken in the respective regions of va-
lidity of the potentials. In the following calculations,
for convenience we shall work with A ! only, but all
subsequent results will be independent of this particu-
lar choice.

As in the last section, we give the monopole a Lorentz
boost of magnitude 3 along the positive z axis. It can
be shown that if Eqs. (31) are rewritten in Cartesian
coordinates, then A ! transforms to [9]

z— [t
Rﬂ]

_gesr
AL = T [1— (33)

T 2
L

Before proceeding further, let us examine the behavior of
the Dirac strings under Lorentz boosts. For this purpose
it is convenient to write Eq. (33) in the form

BAT = 1[1—2_’(%]([5. (34)

On the z axis (§ =0 or 7), we have r; — 0 implying
that Rg — |z — Bt|. Thus the above equation reduces to

BAT = 911 —sgn(z - Bt)]. (35)
L
Thus for z > ft, i.e., in front of the boosted monopole

the vector potential vanishes, while it becomes singular
behind it (z < Bt). It is as if the monopole drags the
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Dirac string along with it and as in the static case, the
semi-infinite line of singularity originates from it. Simi-
larly, by looking at the boosted potential A'H, it can be
easily verified that for this, the string is always in front
of the monopole and “pushed” by it as it moves. These
results also hold in the limit 3 — 1, i.e., for the potential,

h Y

. - 2g S
) G B AT _ )
0 = élml A; = e (7)o (36)

The corresponding electromagnetic fields are
; 2
B = W5y oo,
ri

2065 50, B0 (37)
r}

Ei

Unlike the fields of a charge in motion, here the magnetic
field is radial, whereas the electric field is circular on the
shock plane. Here also /I{] is a pure gauge everywhere
except on the null plane z— = 0. It may be noted that
the above E and B fields can be obtained by makmg the
followmg transformations in (21): e — g, E - B and
B — —E. Thisisa consequence of the duality symmetry
in Maxwell’s equations incorporating monopoles.

As before let us now calculate the classical trajectory
of the charge under the influence of the monopole shock
wave. Here the nonrelativistic Lorentz force equation for
e becomes

v 2eg

t - z) [dy — e, (38)

where we have ignored the velocity of the slow test
charge. Imposing identical boundary conditions for the
charged particle e as before and taking into account the
fact that in this case the momentum transfer will be along
the y axis (now that the E field lines are circles on the
shock plane) the solution 7(t) is

() = b, y(t) = 2i0(t).  (39)

z(t) = 0,
In this case the impulse is 2eg/bm.

In the quantum case, the charge e interacts instan-
taneously with the monopole shock wave, the net effect
being a gauge rotation in the wave function of the former.
To compute this explicitly, we proceed as follows [9]. We

first rewrite A ! o in (36) as a total derivative in the form
Al = 2¢0(z")Vé . (40)

We note in passing that the gauge potentials for a lu-
minally boosted electric charge (20) and monopole (40),
both given as total derivatives on the transverse plane,
form the real and imaginary parts respectively of the gra-
dient of the holomorphic function Inz with z = r e*®,
with ¢ now the azimuthal angle on the transverse plane.

For t < z, i.e., before the arrival of the monopole with
its shock front, the wave function of the charge e is once
again the plane wave

¢< (‘,B:tv FJ_)

After encountering the shock wave, it is modified by the
gauge-potential-dependent phase factor. The final form
of the wave function is

¥ (z%,7L) = expli2egd] 1)

by virtue of the potential (40) with the usual require-
ment of continuity. At this point we make the additional
assumption of Dirac quantization, namely, for an inter-
acting monopole-charge system, the magnitudes of their
electric and magnetic charge must be constrained by the
relation

= 1 forz™ <O0. (41)

forz™ >0 (42)

eg = -721 n o= 0,+1,+2,... . (43)

Thus we get
P> = ePyg . (44)

This sort of phase factor in the small angle scattering of
a monopole and a charge was first found by Goldhaber
[10]. It depends on the angular variable ¢ only. This may
be a reflection of the noncentral nature of the classical
charge-monopole interaction.

Expanding %~ in plane waves as before we get an in-
tegral expression for the scattering amplitude as follows:

Aky k1) = é%l/dzu expli (ng + ¢-71)] -

(45)

Once again ¢ = p; — k, is the momentum transfer
and as before we have the dispersion relation ky =
(k% + m?)/k_ . By conveniently choosing the orientation
of the transverse axes as in the previous section, the angu-
lar integration gives (1/¢%) f0°° dp pJn(p) , where J,(p)
is the Bessel function of order n. This integral is also
standard [11] and the result is

OE

Here we note an important difference from the previ-
ously calculated charge-charge amplitude. There the ar-
guments of the I" functions were complex, whereas in this
case they are real. In fact, the amplitude in this case is
simply

k+ n
t) = —— 8(ky — —1, 47
f5,8) = g dlh =) (55) (47)
where we have incorporated the canonical kinematical
factors. Such factorization makes the expression for the
amplitude siinple. We observe that it is proportional to
the monopole strength n. It follows that the scattering
cross section becomes
dz 2
£ VL (48)
dk? t2
It may be mentioned that we would have obtained the
same result if we had used the second of the gauge poten-
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tials in (31) and performed the Lorentz boost etc. One
way to see this is by noting that the potentials, boosted
to B = 1, are both gauge equivalent to a gauge potential
Aj, given by

Al =0 = A, A = 29¢8(z”) everywhere .
(49)

The apparent disappearance of the Dirac string singular-
ity in this gauge is a red herring; the gauge transforma-
tion has flipped the Dirac string onto the shock plane,
thus preventing it from being manifest. More impor-
tantly, the gauge potential, though globally defined func-
tionally, is not single-valued, being a monotonic function
of a periodic angular variable. Thus, the singularity has
been traded in for non-single-valuedness. Of course, the
theory of fields that are not single-valued functions is in
no way easier to formulate than that for singular fields.
It is interesting to note further that for subluminal boost
velocities one cannot obtain a globally defined potential
A'* in any gauge.

We would like to make a few more remarks at this
point. First of all, if we choose another Lorentz frame in
which the electric charge is lightlike while the monopole
is moving slowly, we would get identical results for the
scattering amplitude. The easiest way to see this is to
use the dual formalism wherein one introduces a gauge
potential A} such that the dual field strength F,, =
0, AM — 8,,Aﬂ’!. If this gauge potential is used to de-
fine electric and magnetic fields, then the standard field
tensor F'*¥ must satisfy a Bianchi identity of the form
0,F* = 0 which would then imply that the gauge po-
tential due to a point charge must have a Dirac string
singularity. Further, the monopole will behave identi-
cally to the point charge of the usual formalism, so that
our method above is readily adapted to produce identical
consequences. Second, one can also treat the scattering
of two Dirac monopoles in the same kinematical limit
exactly as in Sec. IIB, using this dual formalism. This
would yield a result identical to the one for the electric
charge case, with e and e’ being replaced by g and ¢’,
the monopole charges. Finally, having dealt with par-
ticles carrying either electric or magnetic charge, it is
straightforward to extend our calculations when one of
them is a dyon, that is, it has both electric and magnetic
charge. The electromagnetic fields on the shock front of
the boosted dyon will be the superposition of the fields
produced by a fast charge and a monopole. Also, depend-
ing upon the nature of the charge on the other particle
(electric or magnetic), one must employ the usual or the
dual formalism.

With the above observations we are in a position to
address the problem of dyon-dyon scattering in this for-
malism. Consider two dyons (e1,g1) and (ez, g2), where
the ordered pair denotes its electric and magnetic charge
contents respectively. Let us assume that the first one is
ultrarelativistic. By means of an electromagnetic duality
transformation we can “rotate” a dyon by an angle 6,
so that the new values of electric and magnetic charges
become €’ and g’. In terms of the old quantities they can
be expressed in matrix notation as
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e\ [ cos@® sind ey
(g’) - (—sinG cos9) (g1> (50)
e\ [ cosf sinf ez
<g>_~(—sin9 cosG) (gz)' (51)

Now, physical observables do not depend on the param-
eter . We can make use of this symmetry and choose it
to be such that

and

tanf = 22 (52)
€2

This implies that the first dyon transforms to

o = 162 + 9192

Vei+gZ’
g = —e192 1 gi€e2 (53)

ves+g3

while for the second dyon

e=1/e}+43,

g=0. (54)
This shows that the slow test dyon has been ro-
tated to a pure electric charge. Then from the re-
sults derived previously, the total phase shift in its
wave function after being hit by the shock wave of
the dyon (e’,¢’) is [ee' Inp?r % + 2eg’$] . Having found
this, we can express this in terms of the parame-
ters of the two dyons we started with. The result is
[(elez +g192) Inp?r1 %2 — 2 (e192 — giez) (}5] . The calcula-
tion of the scattering amplitude now becomes straightfor-
ward. It may be noted that the quantities (eiez + g192)
and (e;g2 — g1ez) are the only combinations of the elec-
tric charges e;,e; and the magnetic charges g1,g2 that
are invariant under duality rotations [12]. Thus it is
remarkable that the total phase shift and hence the
scattering amplitude depends only on these combina-
tions. Alternatively, we could also have made the choice
tan@ = —ea/gs, in which case e would become zero and
the second dyon transforms into a monopole. Obviously
these different choices are merely for convenience and the
scattering amplitude does not depend on it. Thus dyon-
dyon scattering can always be reduced to dyon-charge
or dyon-monopole scattering. Also note that by a dual-
ity rotation the usual Dirac quantization condition gets
transformed into the generalized expression

n
€192 — €291 = 5

This implies that the second term in the phase shift be-
comes n¢ as in the charge-monopole scattering case.

Finally, we can ask the question as to what happens
if we consider a massive vector field, e.g., that described
by the Proca Lagrangian

1 u?
L = —ZF,“,F‘“’ + ~2—A“A". (55)
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The solution in the static limit for A* in the Lorentz
gauge is given by

4o _ ¢exp(—ar)

- , A =0, (56)

where €’ is a point charge at rest. Formally we can apply
a Lorentz boost to this potential and try to take the limit
B — 1. The result is

e’ exp (‘MRB/W)

Rg

BAr = nH (57)

which vanishes identicaly when we take the limit 8 — 1.
Thus no shock wave emerges in this case and there are
no J-function electromagnetic fields on the null plane
z~ = 0. This observation can also be understood as
follows. In the formulation of the boundary field the-
ory in Sec. IT A it was shown that the gauge parameter
Q(Q27,97) was the only dynamical degree of freedom
in the theory and the corresponding equations of mo-
tion yielded the shock wave picture. On the other hand,
the Lagrangian of the massive vector field does not have
the required gauge invariant structure to admit such a
parameter. This accounts for the absence of the shock
wave.

III. ELECTROMAGNETIC VERSUS
GRAVITATIONAL SCATTERING AT
PLANCKIAN ENERGIES

A. Gravity at Planckian energies

At Planckian c.m. energies the Einstein action also
undergoes a truncation akin to the electromagnetic sit-
uation [1]. We briefly sketch how this comes about be-
fore summarizing results on the shock wave geometry and
gravitational scattering. We define the Planck length lp;
to be the inverse of the Planck energy. If s > t, then the
longitudinal momenta determined by the center-of-mass
energy /s is much higher than the typical transverse
momenta which depends on t. Now, if /s ~ Mp), then
correspondingly, the characteristic length scales associ-
ated with the longitudinal direction I =~ lp;, while the
transverse length scales I > lp;. We would also take the
coordinates to be dimensionless, in which case the metric
tensor g,, assumes the dimensions of (length)?. With
an appropriate coordinate choice, the metric tensor may
be cast into the form

op 0
G = (goﬁ hij) . (58)

Now we make the ansatz that only those components of
the metric become physically relevant which are of the
same order of magnitude as the typical length scales of
the system. In other words, gog ~ luz and h;; ~ 1,2
If we define two dimensionless metrics §og and izij such
that

9o = 1) Gap,

hij = 1.% hyj (59)

then it follows that § and h are of the order of unity.
With these assumptions the usual Einstein action

1
Sple) = — [d= va R (60)
splits up into two parts in the form
where
1
S” l:g,h:l = —5/\/5(\/}: Rh
1 y
+Z\/ﬁh”3igagaj g..,ge“"eﬁ‘s) (62)
and

1
Sy [h,g] = _5/‘/5<\/§ R,
1 L
+Z\/§g“56ahij85hkle’ke”>. (63)

It can be shown that substitution of Eq. (59) in the above
gives the relation

Silo,h] = (/ten)? Sy [9,R], (64)
SJ_ [h,g] = (lL/lPl)Z Sy [il7 g:l ’ (65)

where we have used G ~ [%,. From the length estimates
made earlier, we see that the S| part of the action is

strongly coupled with coupling constant g = (lp1 / l“)2

whereas the S| part has a weak coupling g; = (Ip1/11)°.
This shows us that as far as the transverse directions are
concerned (governed by g, ), the physics is essentially
classical, due to the weak coupling. In fact, the partition
function is dominated by configurations for which §; =
0. It can be shown that here too one gets a zero curvature
constraint:

R._ = 0. (66)

Once again we are able to justify using a semiclassical
method to deal with such a situation, with the strongly
coupled part of the action S| being treated exactly.

B. Spacetime around a lightlike particle

The spacetime geometry that emerges for a particle
boosted to velocities close to luminal, is expected to
emerge from the coupling of the above truncated ac-
tion to a suitably constrained matter energy-momentum
tensor. This has been done in Ref. [1]. Identical an-
swers can however be obtained by a process of boosting
the static (Schwarschild) metric due to a point parti-
cle, adopted in Ref. [6]; we sketch this approach below.
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Essentially this boosting means the mapping of a solu-
tion of Einstein equation with a lightlike particle, namely
Minkowski space, to another Minkowski space but with
one of the null coordinates shifted nontrivially, now with-
out any lightlike particle present [13]. It is argued below
how this can be interpreted as a gravitational shock wave.

Once again we choose to carry out the analysis in a
Lorentz frame in which the velocity of one particle is
very much greater than that of the other. We know
that the space-time around a point particle is spheri-
cally symmetric and is described by what is known as
the Schwarzchild metric. If we assume the mass m of the
particle to be small, then it is given in the Minkowski
coordinates (T, z,y, Z) by

2Gm
ds? = —(1—- ==~ d71?
+ (1 + %T) (dz? + dy® + dZ?), (67)

where R = (/22 + y2 + Z2? and m < R/G [13]. If the

above coordinate system is moving with a relative veloc-
ity B with respect to coordinates (¢, z,y, z) then the two
are related by a Lorentz transformation of the form

T = tcoshf — zsinh®,
Z —¢sinh @ + z cosh 6. (68)

@ is called the rapidity which is related to the boost ve-
locity by the relation

tanhf = g. (69)

Now to take the limit 8 — 1 or alternatively 8 — oo, we
also set

m = 2po e"a, (70)

where the rest energy of the particle is 2py > 0. This
parametrization is consistent with the fact that the mass
of the particle must exponentially vanish as its velocity
approaches that of light. When we substitute Eq. (68) in
Eq. (67), we have the metric due to a particle moving at
the speed of light in the z* direction (i.e., along = = 0).
In terms of the light cone and the transverse coordinates
this metric becomes

ds? = <1+ g%n—) [——dw_ da:++d:c2+dy2]
2

4Gm [ po m
— | =dz— + —dzT| , 71
+R [mdw +4p0$] (71)

with
Po m 2

2 — 2 2 £o - "+ . 2
R 4+ Yyt + (mm 4p0:1: ) (72)

Using this and neglecting terms of order m or above, we
get the limiting form of the metric:

d
lim ds? = —dz~ (dw+ - 4Gpoi) + da? + dy?,

m—0 l.’l)_l
(73)
where the limit is evaluated at z= # 0 and (z*,z,y)

fixed. Defining a new set of coordinates through the re-
lation

de't = dzt — ——~4Gp0 dz”
lz=|

dz'~ = dz~, (74)
dz'* = dz*

we observe that the above metric is just a flat Minkowski
metric:

ds?* = —dz'~ da'* + dz'? 4 dy'?. (75)

The crucial point to note here is that the metric suf-
fers a discontinuity at £~ = 0 through the term |:1:“[_1.
Now, taking the leading-order terms in Eq. (72), it can
be shown that de~ /2~ = dR/R, which gives

4Gp0 dR

dz't =dzt - 0(z~
x x (z7) R

(76)
A solution of the above equation near the null plane
(Jz=| = 0)is

't = 2t 4+ 2Gpo 6(z")In (p?r.?). (77)

Note that the coordinates z~ and z* remain unchanged.
This step function at the null plane 2z~ = 0 is the grav-
itational equivalent of the electromagnetic shock wave.
There we had a similar discontinuity in the gauge po-
tential A*. Here we have two flat regions of space-time
corresponding to ¢t < z and ¢t > 2z which are glued to-
gether at the null plane t = z (or = = 0). However
there is a shift of coordinates at this plane given by Eq.
(77). 1t is as if a two-dimensional flat space-time on the
t-z plane is cut along the line ¢ = z and pasted back
again after being shifted along this line by the amount
given above.

Now that we have found the metric around a lightlike
particle, in principle we should be able to predict the
behavior of another (slower) test particle encountering
it. Since the sole effect of the gravitational shock wave is
the cutting and pasting of the Minkowski space along the
null direction = = 0 after a shift of the z* coordinate,
it is easy to see that the test particle wave function will
acquire a phase factor upon passing through this shock
front. One more remark is in order at this point. The
logarithmic singularity in the expression for the shift in
the coordinate z* in Eq. (77) causes an infinite time
delay of all interactions via virtual particle exchanges.
This shows that it is the shock wave interactions which
dominate over all standard field theoretic effects such as
particle creation via brehmstrahlung etc. However, as
we shall show later, the gravitational shock wave may
not dominate in all situations where other interactions
mediated also by shock wave fronts exist.
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C. Gravitational scattering

To begin with we will assume the particles to be neu-
tral and as before, also spinless. We look at the behavior
of the wave function of a slow test particle in the back-
ground metric of the lightlike particle carrying with it
a “gravitational” shock wave. Before the arrival of the
shock wave (z~ < 0), the test particle is in a flat space
time as derived in the last section. Thus, as before, its
quantum mechanical wave function is a plane wave of the
form

Yo (aF,7L) = €F° (78)

with definite momentum p#. This can be written in terms
of the lightcone and transverse coordinates as

Ye(z*,r1) = exp(i[przyL —piz” —p_zT]). (79)

On encountering the shock wave, it is transported to an-
other flat space-time defined by ™ > 0 which is related
to the previous one by a shift in the z* coordinates. From
the explicit expression for this shift in Eq. (77) we see
that the wave function immediately gets modified into

Y (a®,7) = exp{i[przs —p- (e +2GpoInr ?)]},
(80)

which is also a plane wave but in the new coordinates.
We have put 4 = 1 in Eq. (77) and evaluated the above
at x— = 0". Noting that the factor 2Gp_py can be
written as Gs, the phase shift in the final wave function
is —Gsln ri. But this is just the electromagnetic phase
shift that we got in the last section in the case of charge-
charge scattering with Gs replacing the earlier coupling
ee’. This implies that the scattering amplitude will also
be the same as the previous case with this replacement.
Consequently we have, for the gravitational scattering of
the two particles,

ks T(1—4Gs) [ 4\ ¢
f(S,t) - 47Tk0 6(k+ p+) F(’LGS) —t
(81)
The corresponding cross section is
2 2.2
o G5 (82)
dk? t2

Despite the striking similarity with electromagnetism,
there is an important difference here. The coupling is
now proportional to s, the square of the center-of-mass
energy. The above cross section seems to increase with-
out limit with increase of s, thus violating unitarity. To
understand this, we must note that at super-Planckian
energies one expects gravitational collapse and inelastic
processes to take place. Hence the above expression fails
to be a faithful representation of the actual scattering
and one has to invoke a full theory of quantum grav-
ity at such extreme energies [6]. Similar arguments hold
good for all the other cross sections found in this paper.

Another important point to note is the structure of
poles in the scattering amplitude (81). It seems that
there is a “bound state” spectrum at

Gs = —iN , N =1,2,3,...

It has been remarked in [14] that the ¢ dependence of the
residues of the poles can be expressed as polynomials in
t with degree N —1. Thus, the largest spins of the bound
states are NV — 1. This is similar to the Regge behavior of
hadronic resonances, albeit with an imaginary slope. It
remains to be seen whether these poles are “physical” in
the sense they correspond to resonant states or as argued
in [1] are just artifacts of our kinematical approximations.
Nevertheless, we will show in the subsequent sections that
the introduction of electromagnetism does have an effect
on their location in the complex s plane.

D. Charge-charge versus gravitational scattering

After having considered the pure gravitational scat-
tering, we introduce electromagnetic interactions in the
following way. In addition to their mass, we now assume
the particles to carry electric charges e and €/, e being
the charge of the slow test particle. Then the charge ¢’
will also have an electromagnetic shock wave associated
with it. The electric and magnetic fields on the shock
front are those found in the previous section, given in
Eq. (21). We assume that the resultant effect of the com-
bined shock wave (gravitational and electromagnetic) on
the test particle is to produce a phase shift in its wave
function which is the sum of the individual phase shifts.
This tacitly presumes the independence of the gravita-
tional and electromagnetic shock waves. We shall not
attempt to prove this supposition at this point except to
note that this assumption has also been made without
explicit mention in previous works [3,6,9]. However, it
can be justified rigorously for a variety of situations [15].
Both phase shifts being proportional to In u#?r2 , the net
effect is succinctly captured by the shift Gs — Gs + e€/,
with the final form of the wave function after is crosses
the null plane = = 0 being

Ys(z¥,z1) = exp [~i(ee’ + Gs)Inp®r} +ipz] .
(83)
Consequently, the scattering amplitude becomes

k
Flo,t) = o= 8ks =)

(1 —iee’ —iGs) [ 4 1—iee’~iGs (84)
I'(iee’ + iGs) t ’

This gives the cross section
d? 1
T‘: ~ (e + Gs)? . (85)
dk*

To compare the relative magnitudes of the two terms,
we recall that the electromagnetic coupling constant ee’
evolves only with ¢ through radiative corrections and not
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with s. Thus in the kinematical regime that we are con-
sidering, it remains fixed at its low energy value. For ex-
ample, if the particles carry one electronic charge each,
then ee’ ~ 1/137. On the other hand, at Planck scales,
the second term in the cross section is of order unity.
This shows that gravity is the principal contributor in
the scattering process and electromagnetic effects can be
treated as small perturbations. Likewise, the poles of the
scattering amplitude (84) are shifted by O(«) corrections
to the pure gravity poles. Observe that these poles ap-
pear only when gravitational interactions are taken into
account, because it is only in this case that the interac-
tion is a (monotonically increasing) function of energy.

E. Charge-monopole versus gravitational scattering

Motivated by the conclusions of the last section, we
now proceed to investigate whether they undergo any
modifications when we assume one of the particles to
carry a magnetic charge. In other words, will gravity still
dominate over electromagnetic interactions at Planckian
energies? With the replacement of the electric charge e’
of the fast moving particle by a magnetic charge g, the
fields on the electromagnetic shock front are given by Eq.
(37). As before, when it crosses the charge e, we add
the gravitational and electromagnetic phase shifts in its
wave function. While the former is still —GslInr, 2, the
latter, as seen from Eq. (2.39), is now ¢n¢. Thus, charge-
monopole electromagnetic effects cannot be incorporated
by a shift of Gs, in contrast to the charge-charge case.
Thus the wave function assumes the form

Ps(z,z1) = exp [z (n¢ — Gslnp®r? + zpm)] . (86)

Because of the azimuthal dependence, the calculation of
the overlap with momentum eigenstates has to be done
ab initio. Clearly, the relevant integral for the evaluation

of f(s,t) is

/dzr_L expli(ng — Gs Inpu’r? +q-7.)].

Once again, the integration over ¢ is readily done, and
the above reduces to

= s (87)
0

Here J,(p) is the Bessel function of order n. The above
integral is again a standard one [11] and finally we get
the amplitude
k+ n .
f(s,t) = Inkg 6(ks —p4) (5 - 163)
I'(2 —iGs) ( 4 )1"“"”

“T(2 1iGs) \—t (88)

and hence the cross section

d2 2
ANV Y G (89)
a2 i
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Since n is at least of order unity, it is clear from the
above expression, that for /s ~ Mp}, both terms are of
the same order of magnitude. This means that unlike
charge-charge scattering, even at Planck scale gravity is
no longer the dominant shock wave interaction. Elec-
tromagnetism with monopoles becomes equally impor-
tant. This dramatic difference from the charge-charge
case is a consequence of the Dirac quantization condi-
tion, which restricts the values of e and g from being
arbitrarily small. In fact, the above may be considered a
rephrasal of the strong coupling aspects of the monopole
sector in electromagnetism and of the gravitational in-
teractions at Planck scale. As already mentioned earlier,
gravitational effects would indeed tend to dominate for
Gs > 1 if the Dirac quantum number 7 is held fixed. But
it is far from clear if, in this circumstance, the simple-
minded semiclassical analysis performed above will go
through without modification. Indeed, as explained in
Ref. [6], super-Planckian energies will most probably en-
tail real black hole collisions with the ensuing technical
complications.

Returning once more to the analytic structure of
f (s,t), we see that now they occur at

Gs:—i(N+g) ,

that is, a shift in s by half-odd integral values. Once
again, the spectrum of these “bound states” is no longer
a perturbation on the spectrum in the pure gravity situ-
ation. More interestingly, notwithstanding claims in the
literature (cf. [1]) that the ’t Hooft poles are artifacts
of the large impact parameter approximation, the shift
observed above due primarily to the monopoles strongly
suggest another possibility: the Saha phenomenon [16].
Recall that this implies that any charge-monopole pair
composed of spinless particles will, as a consequence of
Dirac quantization, possess a half-odd integral quantized
(field) angular momentum. If we blithely regard the inte-
ger N, which also occurs in the spectrum of bound states
in pure gravitational scattering, as the spin of the states,
then it is enticing to consider the shift by one-half the
Dirac quantum number 7 in the charge-monopole case to
be the extra spin that the system would pick up in accord
with Saha’s predictions. Further, if one speculatively as-
sociates the Regge-like behavior observed in purely gravi-
tational scattering with the spectrum of some string the-
ory (albeit with imaginary slope parameter), then the
spectrum with charge-monopole electromagnetic scatter-
ing can as well be speculated to correspond to some su-
persymmetric string theory. In any event the role of
electric-magnetic duality, were we to actually discern any
such string structures, can hardly be overemphasized.

IV. CONCLUSION

While reinforcing the general result that at c.m. en-
ergies of the order of the Planck scale and low momen-
tum transfer, two-particle scattering is primarily a shock
wave phenomenon with standard exchange processes rel-
egated to relative unimportance, our work emphasizes
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the role of electromagnetic shock waves associated with
the magnetic monopole sector. Since this sector is gener-
ically a strong coupling one akin to gravity at Planck-
ian energies, it is not surprising that the contributions
of the two interactions to the cross section are compa-
rable. While similar cross sections have been computed
for gravity within string theories [17] that are ostensi-
bly correct theories of quantum gravity with tractable
ultraviolet behavior, it will be interesting to see if the re-
cently proposed “dual” strings [18] (or some modification
thereof) exhibit the behaviour observed above. The ma-
jor advantage of the shock wave picture is its universality
in dealing with gauge particle exchanges within this, al-
beit somewhat restricted, kinematical region. Even when
a well-defined local field theory is not available, nontriv-
ial physical information can indeed be obtained within
this picture. The task that remains then is to formulate
the theory in such a way that a systematic procedure is
available to compute corrections to the predictions given
by this picture.

The assumption of decoupling of electromagnetic and

gravitational shock waves that we have made above, of
course, warrants justification, even though similar as-
sumptions have been tacitly made in earlier work. This
decoupling will be crucial if one wishes to apply the shock
wave picture to analyze gravitational collapse and Hawk-
ing radiation from black holes [19], where the relevant
particles carry electric and magnetic charge, or we have
charged particles scattering off charged black holes. It
appears that such decoupling naturally happens for parti-
cles interacting via electromagnetism and gravity within
the framework of general relativity. However, no such
statement can be made for particles whose fields are de-
rived from dilaton gravity [15].
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