243 research outputs found

    End-Tethered Chains Increase the Local Glass Transition Temperature of Matrix Chains by 45 K Next to Solid Substrates Independent of Chain Length

    Full text link
    The local glass transition temperature Tg of pyrene-labeled polystyrene (PS) chains intermixed with end-tethered PS chains grafted to a neutral silica substrate was measured by fluorescence spectroscopy. To isolate the impact of the grafted chains, the films were capped with bulk neat PS layers eliminating competing effects of the free surface. Results demonstrate that end-grafted chains strongly increase the local Tg of matrix chains by \approx45 K relative to bulk Tg, independent of grafted chain molecular weight from Mn = 8.6 to 212 kg/mol and chemical end-group, over a wide range of grafting densities σ\sigma = 0.003 to 0.33 chains/nm2^2 spanning the mushroom-to-brush transition regime. The tens-of-degree increase in local Tg resulting from immobilization of the chain ends by covalent bonding in this athermal system suggests a mechanism that substantially increases the local activation energy required for cooperative rearrangements

    Direct comparison of current-induced spin polarization in topological insulator Bi2Se3 and InAs Rashba states

    Get PDF
    Three-dimensional topological insulators (TIs) exhibit time-reversal symmetry protected, linearly dispersing Dirac surface states. Band bending at the TI surface may also lead to coexisting trivial two-dimensional electron gas (2DEG) states with parabolic energy dispersion that exist as spin-split pairs due to Rashba spin-orbit coupling (SOC). A bias current is expected to generate spin polarization in both systems arising from their helical spin-momentum locking. However, their induced spin polarization is expected to be different in both magnitude and sign. Here, we compare spin potentiometric measurements of bias current-generated spin polarization in Bi2Se3(111) films where Dirac surface states coexist with trivial 2DEG states, with identical measurements on InAs(001) samples where only trivial 2DEG states are present. We observe spin polarization arising from spin-momentum locking in both cases, with opposite signs of the spin voltage. We present a model based on spin dependent electrochemical potentials to directly derive the signs expected for the TI surface states, and unambiguously show that the dominant contribution to the current-generated spin polarization measured in the TI is from the Dirac surface states. This direct electrical access of the helical spin texture of Dirac and Rashba 2DEG states is an enabling step towards the electrical manipulation of spins in next generation TI and SOC based quantum devices

    Determination of Interface Atomic Structure and Its Impact on Spin Transport Using Z-Contrast Microscopy and Density-Functional Theory

    Full text link
    We combine Z-contrast scanning transmission electron microscopy with density-functional-theory calculations to determine the atomic structure of the Fe/AlGaAs interface in spin-polarized light-emitting diodes. A 44% increase in spin-injection efficiency occurs after a low-temperature anneal, which produces an ordered, coherent interface consisting of a single atomic plane of alternating Fe and As atoms. First-principles transport calculations indicate that the increase in spin-injection efficiency is due to the abruptness and coherency of the annealed interface.Comment: 16 pages (including cover), 4 figure

    Spin-polarized multiexcitons in quantum dots in the presence of spin-orbit interaction

    Get PDF
    An efficient electron spin-relaxation mechanism has been observed in InAs quantum dots (QDs) that manifests itself as a sharp drop in the circular polarization of the light emitted by Fe spin-light emitting diodes, which incorporate a single layer of InGaAs QDs, for a narrow range of magnetic fields around 5 T. The underlying mechanism occurs when the QDs are occupied by three-electron-hole pairs forming a tri-exciton (3X) and is a two-step process. The first step involves the spin flip of one of the three electrons mediated by the spin-orbit interaction; in the second step the 3X relaxes to its ground state via phonon emission

    Foxp3 expression in macrophages associated with RENCA tumors in mice.

    Get PDF
    The transcription factor Foxp3 represents the most specific functional marker of CD4+ regulatory T cells (TRegs). However, previous reports have described Foxp3 expression in other cell types including some subsets of macrophages, although there are conflicting reports and Foxp3 expression in cells other than Treg is not well characterized. We performed detailed investigations into Foxp3 expression in macrophages in the normal tissue and tumor settings. We detected Foxp3 protein in macrophages infiltrating mouse renal cancer tumors injected subcutaneously or in the kidney. Expression was demonstrated using flow cytometry and Western blot with two individual monoclonal antibodies. Further analyses confirmed Foxp3 expression in macrophages by RT PCR, and studies using ribonucleic acid-sequencing (RNAseq) demonstrated a previously unknown Foxp3 messenger (m)RNA transcript in tumor-associated macrophages. In addition, depletion of Foxp3+ cells using diphtheria toxin in Foxp3DTR mice reduced the frequency of type-2 macrophages (M2) in kidney tumors. Collectively, these results indicate that tumor-associated macrophages could express Foxp3

    Rates of Mutation and Host Transmission for an Escherichia coli Clone over 3 Years

    Get PDF
    Although over 50 complete Escherichia coli/Shigella genome sequences are available, it is only for closely related strains, for example the O55:H7 and O157:H7 clones of E. coli, that we can assign differences to individual evolutionary events along specific lineages. Here we sequence the genomes of 14 isolates of a uropathogenic E. coli clone that persisted for 3 years within a household, including a dog, causing a urinary tract infection (UTI) in the dog after 2 years. The 20 mutations observed fit a single tree that allows us to estimate the mutation rate to be about 1.1 per genome per year, with minimal evidence for adaptive change, including in relation to the UTI episode. The host data also imply at least 6 host transfer events over the 3 years, with 2 lineages present over much of that period. To our knowledge, these are the first direct measurements for a clone in a well-defined host community that includes rates of mutation and host transmission. There is a concentration of non-synonymous mutations associated with 2 transfers to the dog, suggesting some selection pressure from the change of host. However, there are no changes to which we can attribute the UTI event in the dog, which suggests that this occurrence after 2 years of the clone being in the household may have been due to chance, or some unknown change in the host or environment. The ability of a UTI strain to persist for 2 years and also to transfer readily within a household has implications for epidemiology, diagnosis, and clinical intervention

    Meta-Analysis of Differentiating Mouse Embryonic Stem Cell Gene Expression Kinetics Reveals Early Change of a Small Gene Set

    Get PDF
    Stem cell differentiation involves critical changes in gene expression. Identification of these should provide endpoints useful for optimizing stem cell propagation as well as potential clues about mechanisms governing stem cell maintenance. Here we describe the results of a new meta-analysis methodology applied to multiple gene expression datasets from three mouse embryonic stem cell (ESC) lines obtained at specific time points during the course of their differentiation into various lineages. We developed methods to identify genes with expression changes that correlated with the altered frequency of functionally defined, undifferentiated ESC in culture. In each dataset, we computed a novel statistical confidence measure for every gene which captured the certainty that a particular gene exhibited an expression pattern of interest within that dataset. This permitted a joint analysis of the datasets, despite the different experimental designs. Using a ranking scheme that favored genes exhibiting patterns of interest, we focused on the top 88 genes whose expression was consistently changed when ESC were induced to differentiate. Seven of these (103728_at, 8430410A17Rik, Klf2, Nr0b1, Sox2, Tcl1, and Zfp42) showed a rapid decrease in expression concurrent with a decrease in frequency of undifferentiated cells and remained predictive when evaluated in additional maintenance and differentiating protocols. Through a novel meta-analysis, this study identifies a small set of genes whose expression is useful for identifying changes in stem cell frequencies in cultures of mouse ESC. The methods and findings have broader applicability to understanding the regulation of self-renewal of other stem cell types
    corecore