27 research outputs found

    Integrative Analysis to Investigate Complex Interaction in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is a neurodegenerative disorder featuring progressive cognitive and functional deficits. Pathologically, AD is characterized by tau and amyloid β protein deposition in the brain. As the sixth leading cause of death in the U.S., the disease course usually last from 7 to 10 years on average before the consequential death. In 2019 there are estimated 5.8 million Americans living with AD affecting 16 million family members. At certain stage of the disease course, patients with inability of maintaining their daily functioning highly depend on caregivers, primarily family caregivers, that incur estimated 18.4 billion unpaid hours of cares, which is equivalent to 232 billion dollars. These huge economic burdens and inevitable emotional distress on the family and the society would also increase as the number of AD affected population could triple by 2050. Altered cellular composition is associated with AD progression and decline in cognition, such as neuronal loss and astrocytosis, which is a key feature in neurodegeneration but has often been overlooked in transcriptome research. To explore the cellular composition changes in AD, I developed a deconvolution pipeline for bulk RNA-Seq to account for cell type specific effects in brain tissues. I found that neuronal and astrocyte relative proportions differ between healthy and diseased brains and also among AD cases that carry specific genetic risk variants. Brain carriers of pathogenic mutations in APP, PSEN1, or PSEN2 presented lower neuron and higher astrocyte relative proportions compared to sporadic AD. Similarly, the APOE ε4 allele also showed decreased neuronal and increased astrocyte relative proportions compared to AD non-carriers. In contrast, carriers of variants in TREM2 risk showed a lower degree of neuronal loss compared to matched AD cases in multiple independent studies. These findings suggest that genetic risk factors associated with AD etiology have a specific effect on the cellular composition of AD brains. The digital deconvolution approach provides an enhanced understanding of the fundamental molecular mechanisms underlying neurodegeneration, enabling the analysis of large bulk RNA-sequencing studies for cell composition. It also suggests that correcting for the cellular structure when performing transcriptomic analysis will lead to novel insights of AD. With deconvolution methods to delineate cell population changes in disease condition, it would help interpret transcriptomics results and reveal transcriptional changes in a cell type specific manner. One application demonstrated in this dissertation work is to use cell type proportion as quantitative trait to identify genetic factors associated with cellular composition changes. I performed cell type QTL analysis and identified a common pathway associated with neuronal protection underlying aging brains in the presence or absence of neurodegenerative disease symptoms. A protective variant of TMEM106B, which was previously identified with a protective effect in FTD, was identified to be associated with neuronal proportion in aging brains, suggesting a common pathway underlying neuronal protection and cognitive reservation in elderly. This extended analysis yield from deconvolution results demonstrated one promising direction of using deconvolution followed by cell type QTL analysis in identifying new genes or pathways underlying neurodegenerative or aging brains. To understand the complexity of the brain under disease condition, network analysis as a large-scale system-level approach provides unbiased and data-driven view to identify gene-gene interactions altered by disease status. Using network analysis, I replicated and reconfirmed the co-expression pattern between MS4A gene cluster and TREM2 in sporadic AD, from which further evidence was inferred from Bayesian network analysis to show that MS4A4A might be a potential regulator of TREM2 that is validated by in-vitro experiments. In Autosomal Dominant AD (ADAD) cohort, disrupted and acquired genes were identified from PSEN1 mutation carriers. Among these genes, previously identified AD risk genes and pathways were revealed along with novel findings. These results demonstrated the great potential of applying network approach in identifying disease associated genes and the interactions among them. To conclude the dissertation work from methodological, empirical, and theoretical levels, deconvolution pipeline for bulk RNA-Seq, cell type QTL analysis, and network analysis approaches were applied to understand transcriptome changes underlying disease etiology. From which previous AD related findings were replicated that validated the methods, and novel genes and pathways were identified as potential new therapeutic targets. Based on prior knowledge and empirical evidence observed from this dissertation work, a model is proposed to explain how genetic factors are assembled as a highly interconnected interactome network to affect proteinopathy observed in neurodegenerative disorders, that cause cellular composition changes in the brain, which ultimately leads to cognitive and functional deficits observed in AD patients

    Developing a new treatment for superficial fungal infection using antifungal Collagen-HSAF dressing

    Get PDF
    Fungal pathogens are common causes of superficial clinical infection. Their increasing drug resistance gradually makes existing antifungal drugs ineffective. Heat stable antifungal factor (HSAF) is a novel antifungal natural product with a unique structure. However, the application of HSAF has been hampered by very low yield in the current microbial producers and from extremely poor solubility in water and common solvents. In this study, we developed an effective mode of treatment applying HSAF to superficial fungal infections. The marine-derived Lysobacter enzymogenes YC36 contains the HSAF biosynthetic gene cluster, which we activated by the interspecific signaling molecule indole. An efficient extraction strategy was used to significantly improve the purity to 95.3%. Scanning electron microscopy images revealed that the Type I collagen-based HSAF (Col-HSAF) has a transparent appearance and good physical properties, and the in vitro sustained-release effect of HSAF was maintained for more than 2 weeks. The effective therapeutic concentration of Col-HSAF against superficial fungal infection was explored, and Col-HSAF showed good biocompatibility, lower clinical scores, mild histological changes, and antifungal capabilities in animals with Aspergillus fumigatus keratitis and cutaneous candidiasis. In conclusion, Col-HSAF is an antifungal reagent with significant clinical value in the treatment of superficial fungal infections

    Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers

    Get PDF
    More than 20 genetic loci have been associated with risk for Alzheimer's disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case-control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ42 near GLIS1 on 1p32.3 (β = -0.059, P = 2.08 × 10-8) and within SERPINB1 on 6p25 (β = -0.025, P = 1.72 × 10-8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10-2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10-2), and age at onset (SERPINB1: β = 0.043, P = 4.62 × 10-3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies

    Phenylthiourea Specifically Reduces Zebrafish Eye Size

    Get PDF
    Phenylthiourea (PTU) is commonly used for inhibiting melanization of zebrafish embryos. In this study, the standard treatment with 0.2 mM PTU was demonstrated to specifically reduce eye size in larval fish starting at three days post-fertilization. This effect is likely the result of a reduction in retinal and lens size of PTU-treated eyes and is not related to melanization inhibition. This is because the eye size of tyr, a genetic mutant of tyrosinase whose activity is inhibited in PTU treatment, was not reduced. As PTU contains a thiocarbamide group which is presented in many goitrogens, suppressing thyroid hormone production is a possible mechanism by which PTU treatment may reduce eye size. Despite the fact that thyroxine level was found to be reduced in PTU-treated larvae, thyroid hormone supplements did not rescue the eye size reduction. Instead, treating embryos with six goitrogens, including inhibitors of thyroid peroxidase (TPO) and sodium-iodide symporter (NIS), suggested an alternative possibility. Specifically, three TPO inhibitors, including those that do not possess thiocarbamide, specifically reduced eye size; whereas none of the NIS inhibitors could elicit this effect. These observations indicate that TPO inhibition rather than a general suppression of thyroid hormone synthesis is likely the underlying cause of PTU-induced eye size reduction. Furthermore, the tissue-specific effect of PTU treatment might be mediated by an eye-specific TPO expression. Compared with treatment with other tyrosinase inhibitors or bleaching to remove melanization, PTU treatment remains the most effective approach. Thus, one should use caution when interpreting results that are obtained from PTU-treated embryos

    Temporal mTOR inhibition protects Fbxw7-deficient mice from radiation-induced tumor development.

    Get PDF
    FBXW7 acts as a tumor suppressor in numerous types of human cancers through ubiquitination of different oncoproteins including mTOR. However, how the mutation/loss of Fbxw7 results in tumor development remains largely unknown. Here we report that downregulation of mTOR by radiation is Fbxw7-dependent, and short-term mTOR inhibition by rapamycin after exposure to radiation significantly postpones tumor development in Fbxw7/p53 double heterozygous (Fbxw7+/-p53+/-) mice but not in p53 single heterozygous (p53+/-) mice. Tumor latency of rapamycin treated Fbxw7+/-p53+/- mice is remarkably similar to those of p53+/- mice while placebo treatedFbxw7+/-p53+/- mice develop tumor significantly earlier than placebo treated p53+/- mice. Furthermore, we surprisingly find that, although temporal treatment of rapamycin is given at a young age, the inhibition of mTOR activity sustainably remains in tumors. These results indicate that inhibition of mTOR signaling pathway suppresses the contribution of Fbxw7 loss toward tumor development
    corecore