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ABSTRACT OF THE DISSERTATION 

Integrative Analysis to Investigate Complex Interaction in Alzheimer’s Disease 

by 

Zeran Li 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2019 

Carlos Cruchaga, Chair 

Alzheimer’s disease (AD) is a neurodegenerative disorder featuring progressive cognitive 

and functional deficits. Pathologically, AD is characterized by tau and amyloid β protein 

deposition in the brain. As the sixth leading cause of death in the U.S., the disease course usually 

last from 7 to 10 years on average before the consequential death. In 2019 there are estimated 5.8 

million Americans living with AD affecting 16 million family members. At certain stage of the 

disease course, patients with inability of maintaining their daily functioning highly depend on 

caregivers, primarily family caregivers, that incur estimated 18.4 billion unpaid hours of cares, 

which is equivalent to 232 billion dollars. These huge economic burdens and inevitable 

emotional distress on the family and the society would also increase as the number of AD 

affected population could triple by 2050.  

Altered cellular composition is associated with AD progression and decline in cognition, 

such as neuronal loss and astrocytosis, which is a key feature in neurodegeneration but has often 

been overlooked in transcriptome research. To explore the cellular composition changes in AD, I 

developed a deconvolution pipeline for bulk RNA-Seq to account for cell type specific effects in 

brain tissues. I found that neuronal and astrocyte relative proportions differ between healthy and 
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diseased brains and also among AD cases that carry specific genetic risk variants. Brain carriers 

of pathogenic mutations in APP, PSEN1, or PSEN2 presented lower neuron and higher astrocyte 

relative proportions compared to sporadic AD. Similarly, the APOE ε4 allele also showed 

decreased neuronal and increased astrocyte relative proportions compared to AD non-carriers. In 

contrast, carriers of variants in TREM2 risk showed a lower degree of neuronal loss compared to 

matched AD cases in multiple independent studies. These findings suggest that genetic risk 

factors associated with AD etiology have a specific effect on the cellular composition of AD 

brains. The digital deconvolution approach provides an enhanced understanding of the 

fundamental molecular mechanisms underlying neurodegeneration, enabling the analysis of large 

bulk RNA-sequencing studies for cell composition. It also suggests that correcting for the 

cellular structure when performing transcriptomic analysis will lead to novel insights of AD. 

With deconvolution methods to delineate cell population changes in disease condition, it 

would help interpret transcriptomics results and reveal transcriptional changes in a cell type 

specific manner. One application demonstrated in this dissertation work is to use cell type 

proportion as quantitative trait to identify genetic factors associated with cellular composition 

changes. I performed cell type QTL analysis and identified a common pathway associated with 

neuronal protection underlying aging brains in the presence or absence of neurodegenerative 

disease symptoms. A protective variant of TMEM106B, which was previously identified with a 

protective effect in FTD, was identified to be associated with neuronal proportion in aging 

brains, suggesting a common pathway underlying neuronal protection and cognitive reservation 

in elderly. This extended analysis yield from deconvolution results demonstrated one promising 

direction of using deconvolution followed by cell type QTL analysis in identifying new genes or 

pathways underlying neurodegenerative or aging brains. 



xviii 

To understand the complexity of the brain under disease condition, network analysis as a 

large-scale system-level approach provides unbiased and data-driven view to identify gene-gene 

interactions altered by disease status. Using network analysis, I replicated and reconfirmed the 

co-expression pattern between MS4A gene cluster and TREM2 in sporadic AD, from which 

further evidence was inferred from Bayesian network analysis to show that MS4A4A might be a 

potential regulator of TREM2 that is validated by in-vitro experiments. In Autosomal Dominant 

AD (ADAD) cohort, disrupted and acquired genes were identified from PSEN1 mutation 

carriers. Among these genes, previously identified AD risk genes and pathways were revealed 

along with novel findings. These results demonstrated the great potential of applying network 

approach in identifying disease associated genes and the interactions among them.  

To conclude the dissertation work from methodological, empirical, and theoretical levels, 

deconvolution pipeline for bulk RNA-Seq, cell type QTL analysis, and network analysis 

approaches were applied to understand transcriptome changes underlying disease etiology. From 

which previous AD related findings were replicated that validated the methods, and novel genes 

and pathways were identified as potential new therapeutic targets. Based on prior knowledge and 

empirical evidence observed from this dissertation work, a model is proposed to explain how 

genetic factors are assembled as a highly interconnected interactome network to affect 

proteinopathy observed in neurodegenerative disorders, that cause cellular composition changes 

in the brain, which ultimately leads to cognitive and functional deficits observed in AD patients.
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Chapter 1: Introduction and Overview 
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1.1 The Alzheimer’s Disease discovery and its impact nowadays 

In 1901, Alois Alzheimer, a German psychiatrist and a lecturer at the Munich University 

Hospital received a patient case of a 51 years female named Auguste D[129]. She was sent by 

her husband describing her symptoms as paranoid, progressive sleep and memory disturbance, 

aggressiveness, crying, and confusion. This lady was admitted to the Community Psychiatric 

Hospital at Frankfurt am Main, and remained impatient until her death in 1906. The brain 

material of her autopsy was sent to Alzheimer for examination, from which he observed 

distinctive plaques and neurofibrillary tangles in the histology, which were later identified as 

pathological hallmarks of Alzheimer’s disease. In 1906, Alzheimer presented his finding of this 

“peculiar” dementia case in the 37th Meeting of South-West German Psychiatrists in Tubingen. 

Although at the meeting it did not spur much interests from the audience, Alzheimer’s finding 

was included as “Alzheimer's disease” in the 3th edition of his coworker Emil Kraepelin’s text 

‘Psychiatrie’ in 1910[129].  

For the past one hundred years since its first diagnosis, Alzheimer’s Disease (AD) is like 

a shadow that never leaves, and it also grows larger as human life expectancy increases as age 

being its most important risk factor. In 2019, there are estimated 5.8 million Americans living 

with AD affecting 16 million family members. At certain stage of the disease course, patients 

with inability of maintaining their daily functioning highly depend on caregivers, primarily 

family caregivers, that incur estimated 18.4 billion unpaid hours of cares, which is equivalent to 

232 billion dollars[15, 69]. These huge economic burdens and inevitable emotional distress on 

the family and the society would also increase as the number of AD affected population could 

triple by 2050[121].  
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As the sixth leading cause of death in the U.S., the disease course usually last from 7 to 

10 years on average before the consequential death[133]. Due to progressive neuronal death in 

the affected brain regions, apart from cognitive functions it will also disable movement functions 

of the patients with the results being long term bed-bound and later having swallowing problems 

that ultimately lead to organ failure or lethal aspiration pneumonia[15]. 

1.2 Cognitive deficits as the primary clinical symptoms and related 

measurements 

Among all the neurodegenerative disorder that would result in dementia, Alzheimer’s 

Disease is the most common form[23]. Impaired declarative memory is usually the first 

noticeable sign but sometimes it could also be other executive functions such as planning or 

problem-solving skills. More detailed cognitive deficit rating scales, such as the clinical 

dementia rating[189] (CDR), have been developed to further categorize cognitive performance 

for both clinical and research purposes. CDR = 0 is considered as normal without dementia; 

CDR = 0.5 is very mild dementia; CDR = 1 is mild dementia; CDR = 2 is moderate dementia; 

CDR = 3 is severe dementia.  

As our knowledge about neurodegenerative disorders accumulates, neuropsychological 

tests also evolve to optimize their diagnostic and prognostic utilities. Efforts have been spent on 

ensuring the test construct validity and stability with appropriate norms[88]. Test construct 

validity hinges heavily on an accurate and unambiguous design that projects the clinical batteries 

to their designated cognitive domains to ensure they are measuring what they are designed to 

measure. The assessment criteria of AD developed by the Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) integrates evidence from multiple modalities including clinical, 
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behavioral, demographical, neuropsychological, neuropathological, neuroimaging, family 

history, and postmortem materials to standardize and ensure accurate diagnosis[91]. 

1.3 Diagnostic evidence from genetic, imaging, blood and CSF 

biomarkers 

Symptoms, such as memory loss or difficulties with executive functions, are usually what 

AD patients first complained to the physicians, however, pathologic changes have developed 

decades (10-20 years) before cognitive symptoms onsets[138, 211]. To capture preclinical stages 

and the disease development trajectory and dynamics, a variety of biomarkers or diagnostic 

evidence based on genetic, CSF, blood, and imaging biomarkers have been developed to 

facilitate early detection and differentiation among different dementia sub forms. 

1.3.1 Genetics 

Amyloid β is one of the two pathological hallmarks of AD, which was first isolated from 

a late onset AD (LOAD) patient[105]. Later, the same authors isolated cerebrovascular amyloid 

protein from Down’s syndrome, a disease caused by the presence of all or part of a third copy of 

chromosome 21(trisomy 21). Because of the close resemblance of the two proteins and the 

cerebrovascular amyloid protein discovery in Down’s syndrome, the authors accurately predicted 

that the amyloid β gene might be located on chromosome 21[104]. Three amyloid β related 

genes amyloid-beta precursor protein (APP), presenilin 1 (PSEN1), presenilin 2 (PSEN2) were 

identified associated with familial AD with in a Mendelian dominance pattern and high 

penetrance[148]. Then an amyloid cascade was hypothesized (Figure 1.1) suggesting over 

accumulation or failed clearance of amyloid β is the central event in the pathogenesis of AD, 

which led to neuronal and synaptic dysfunction, and ultimately to cognitive deficits[106]. Many 

statements surround the amyloid centered theory have been fulfilled but one issue raised 
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regarding whether amyloid β being the cause or the consequence of AD. If amyloid 

accumulation is the leading cause, then drugs targeting clearance of amyloid should ameliorate 

the symptom. However, so far, none of the drug developments targeting amyloid pathway is 

successful, which may suggest the alternative hypothesis that amyloid accumulation might be the 

consequence or by-product of AD.  

A second doubt surround the amyloid pathway comes from the differences in inheritance 

mechanism between sporadic and familial AD. Unlike familial AD which has a clear Mendelian 

inheritance pattern with three major gene players and an early onset of disease manifestation, 

sporadic AD is late onset and attributed to complex traits with multiple risk genes located 

throughout the genome[162]. It seems that genes with rare variants such as APP, PSEN1, PSEN2 

in familial AD exert high risk effects to familial AD, whereas many genes with common variants 

exert medium or low risk effects to sporadic AD (Figure 1.2). For sporadic AD, apolipoprotein 

E (APOE) is the gene with the largest and dosage dependent effect[84]. APOE has three major 

Figure 1.1 Amyloid cascade hypothesis. Image reproduced from Blennow et al.[29] with permission. 



6 

alleles, protective allele ε2, common allele ε3, and risk allele ε4. In Caucasian cohorts, carriers of 

two ε4 alleles have increased risk of 14.9 relative to two ε3 alleles. Walking down to the risk 

ladder, one ε4 allele renders increased risk of 2.6 for ε2/ε4, and increased risk of 3.2 for ε3/ε4. 

Carriers with protective allele ε2 have reduced risk of 0.6 in both ε2/ε2 and ε2/ε3[84]. APOE 

influence LOAD risk in an amyloid dependent manner[235, 252]. The rare TREM2 variant 

p.R47H (rs75932628) carriers exhibit increased AD risk by a range from 1.7-fold to 3.4-

fold[112, 212]. This gene is related to microglia and immune system through 

neuroinflammation[79]. The involvement of immune system leads to another hypothesis for AD 

surround inflammation and infection with microbial triggers, for example herpes infection[219] 

and oral P. gingivalis infection[75, 203]. Instead of thinking genetic variants as disease causing 

factors, is it possible that the genetic vulnerability that failed to protect the brain from insult is 

the cause of sporadic AD? For example, the vulnerability of blood brain barrier[254] and 

neuroinflammation triggered by microbial, stress, or even lack of sleep[68] initiate amyloid 

protein accumulation, then leads to neuronal death and subsequent cognitive deficits. The shift of 

thinking paradigm may drive therapeutic strategy and drug design switching from amyloid 

clearance to anti-inflammation or boost immune resilience to insults. Apart from researches 

focusing on protein coding genes, investigation of non-coding RNA in neurodegeneration[232] 

and 3D spatial structure of genome[218] may also shed light on figuring out the mechanism 

underlying AD.   

As shown in Figure 1.2, AD has a substantial but heterogeneous genetic component. The 

rare mutations in the APP, PSEN1 and PSEN2[64, 238] that cause autosomal dominant AD 

(ADAD) only account for 1-2% of overall AD cases. There are also early-onset AD cases with 

unknown genetic risk factors that remain elusive. Apart from early-onset AD, the most common 
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manifestation of AD presents late-onset (LOAD) and accounts for the majority of the cases (90-

95%). Despite appearing sporadic in nature, a complex genetic architecture underlies LOAD 

risk. APOE ε4 as discussed above is the most common genetic risk factor. In addition, recent 

whole genome and whole exome analysis have identified rare coding variants in TREM2[26, 

113], PLD3[58], ABCA7[65, 249]  and SORL1[86, 226] that are associated with AD and confer 

risk comparable to that of carrying one APOE ε4 allele. Besides age at onset, the clinical 

presentations of LOAD and ADAD are remarkably similar with an amnestic and cognitive 

impairment phenotype[230, 258]. A minor fraction of cases of ADAD have additional 

neurological findings, sometimes also seen in LOAD[230, 258]. Twin studies have estimated 

that the heritability of Alzheimer's disease is about 0.74 and argued that unexplained variance is 

due to environmental factors[101]. So far, genetic studies have identified around 30 common and 

rare genetic variants that contribute to the AD phenotypes; however, these genes with disease 

susceptibility only explain a small proportion of the genetic heritability of the AD population. 

The remaining unexplained heritability has been named as missing heritability[80, 177, 178]. In 

Chapter 4, an omnigenic model will be discussed from a network perspective to explain a 

potential cause of the missing heritability problem.  
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1.3.2 CSF and plasma biomarkers 

 Biomarkers are objective measures of biological or pathogenic changes that can be used 

as diagnostic, prognostic, or disease progression measurement tools. Cerebrospinal fluid (CSF) is 

a clear and colorless fluid that the brain and spinal cord are immersed in.  Due to its direct 

contact with the extracellular space of the brain, it is optimal as a biomarker to capture biological 

or pathogenic changes in the brain. CSF biomarkers can be divided to basic and core biomarkers. 

Basic biomarkers measure basic brain function that might be changed in AD condition but not 

specific to AD, which include measurements of blood brain barrier and immune system response 

to chronic inflammation (Table 1.1 basic biomarker section). The core biomarkers measure AD 

specific molecular pathology that is specific to AD, including APP metabolism and amyloid 

deposition, tau phosphorylation and axonal degeneration (Table 1.1 core biomarker section).  

Figure 1.2 AD gene risk allele frequency and risk effect. Image from Karch and Goate[148] with 

permission. 
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Amyloid β proteins of different length are cleaved from APP protein by beta-secretase 

and gamma-secretase (Figure 1.3), and Aβ40, Aβ42, and Aβ40:42 ratios are primarily measured as 

biomarkers. Six different tau isoforms can be divided through alternative splicing from exon 2, 3, 

and 10 of MAPT gene (Figure 1.4a). There are a number of phosphorylation sites of threonine 

and serine across the tau isoforms but the commonly referred as phosphorylated tau levels are 

measured from Thr181 or Thr231 phosphorylation sites (Figure 1.4b). Other CSF biomarkers 

related to neuronal and synaptic proteins, for example, visinin-like protein 1 (VLP-1) and 

synaptosomal-associated protein 25 (SNAP-25), and oxidative stress markers such as F2-

isoprostanes were also be able to differentiate AD from controls.  

Figure 1.3 APP protein cleavage and amyloid β proteins. 

Image from Blennow et al.[29] with permission. 

Biomarker Pathogenic process Biomarker level change in AD

CSF cell count inflammation unchanged

CSF: serum albumin ratio BBB function Pure AD: unchanged; AD with cerebrovascular pathology: increase

IgG or IgM index or oligoclonal bands Intrathecal immunoglobin production unchanged

Aβ 1-42 APP metabolism and plaque formation AD and prodromal AD: reduction

p-tau181 and p-tau231 Tau phosphorylation AD and prodromal AD: increase

total tau Axonal degeneration AD and prodromal AD: increase

Core biomarker

Basic biomarker

Table 1.1 CSF biomarkers 
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CSF biomarkers have shown great potential in measuring pre-symptomatic changes 

before the plaque becomes too widespread or the proceeding of irreversible neurodegeneration. 

However, collection of CSF through lumbar puncture is invasive with potential risks of post-

lumbar puncture headache, back discomfort or pain, bleeding, and brainstem herniation. 

Therefore, developments of non-invasive biomarkers, such as plasma derived biomarker, have 

been pursuit to look for alternative sources other than CSF, for example plasma Aβ1-42[180], 

Aβ40 to Aβ42 ratio[109], APP669–711 to Aβ42 ratio[195], α 2-Macroglobulin (α2M) and 

complement factor H (CFH)[135], neurofilament light protein (NFL)[179].  

1.3.3 Imaging  

As amyloid β aggregation being directly related to AD and potentially a predictor of AD 

decades before cognitive deficits, Aβ PET imaging has been used clinically as a diagnosis tool 

and prognosis measurement[270]. Although the Aβ’s role in AD is still under debate, it has been 

shown that amyloid β deposition proceeds neuronal loss or cerebral atrophy observed on MRI. 

Five different amyloid β tracers showed that the frontal, temporal and posterior cingulate cortices 

Figure 1.4 Tau isoforms. a) Tau protein isoforms and b) 

phosphorylation sites. Image from Blennow et al.[29] with 

permission. 
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showed the highest retention rate for Aβ (Figure 1.5) that correlates with regional amyloid β 

plaque density and the sequence of amyloid β deposition found in post-mortem brains in 

sporadic AD[32]. Noticeably, the pattern of amyloid β tracer retention in familial AD mainly 

located in striatal region which is different from the patterns of sporadic AD. Based on the 

retention patterns observed, amyloid β imaging could also be used to differentiate sporadic AD 

from dementia with Lewy bodies (DLB) and early-onset AD from frontotemporal lobar 

degeneration (FTLD), because DLB exhibits a posterior retention pattern that sporadic AD does 

not have, and FTLD should not have C-PIB retention. However, it is worth noticing that about 

25% cognitive normal elderly also have fibrillary Aβ deposition[185], which had been observed 

long before the amyloid β PET imaging era[216].   

 

 

 

 

 

Figure 1.5 Amyloid β PET radiotracer imaging. 

Surface projection images obtained from five AD patients 

with different amyloid beta PET radiotracer. Five images 

showed consistent pattern with highest retention in 

frontal, temporal and posterior cingulate cortices 

representing amyloid β deposition in the brain. Image 

from Villemagne et al.[270] with permission. 
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Similar to amyloid β imaging, tau imaging also showed consistent tau tracer retention 

pattern (Figure 1.6) with post-mortem studies, besides it is more correlated with neuronal injury 

markers. As opposed to amyloid β imaging which focusing on total amyloid β load, regional tau 

distribution in terms of density and topological distribution of tau provide more information in 

disease progression than total tau load. 

 Apart from tracers based PET that requires tracer injection into the patients, gradient 

recalled echo MRI based approach post-processing method, Gradient Echo Contrast Imaging 

(GEPCI), has been developed utilizing transverse relaxation rate constant to avoid tracer 

injection. The GEPCI metrics showed strong correlation with both amyloid β accumulation 

measured from PET and cognitive performance[292]. Another non-tracer imaging technique 

based on functional connectivity MRI also showed success in differentiating APOE4+ from 

APOE4- carriers in the absence of amyloid deposition[240] suggesting early genetic effect can 

be measured with functional connectivity MRI. Strong evidences suggested the default mode 

network is strongly associated with AD[17, 111, 116, 241]. 

 Since 2011, the diagnosis guideline for AD in the U.S. had been revised from the 1984 

diagnostic criteria, which was mainly based on the clinical judgement of the patient’s symptoms, 

to incorporate biomarker tests[15]. An A/T/N system have been proposed to integrate multiple 

biomarker modalities: “A” refers to β-amyloid related biomarker including amyloid PET or CSF 

A42; “T” refers to tau related biomarker including CSF phosphor tau or tau PET; and “N” 

refers to non-specific neurodegeneration or neuronal injury biomarkers including 18F-FDG PET, 

structural MRI or CSF total tau[137]. With either positive or negative binary traits defined by 

respective cutoffs within each category, a biomarker profile integrating multimodal 

measurements can be established for the subject to inform diagnosis[136]. As mentioned above, 
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tau imaging result is highly correlated with neuronal function biomarker 18F-FDG PET, thus one 

potential problem with ATN is that the integrative approach includes highly correlated metrics 

may incur a cost of redundant tests or repetitive information. Besides, the binary traits may over 

simplify the complexity of AD manifestation as opposed to a more quantitative approach. 

 

 

 

1.4 Neuropathological verification for postmortem assessment of AD 

Mostly for research purposes, neuropathological assessments are performed during 

autopsy on post mortem materials to verify the clinical diagnosis of AD. The CERAD 

neuropathology criteria contains gross and microscopic findings focusing on hippocampus, 

amygdala and various cortical regions[91, 186]. They use a semi-quantitative approach to assess 

frequency of senile plaques, including both neuritic plaques relative to the patent’s age and 

diffuse plaques, neurofibrillary tangles, and others such as cerebrovascular changes. From those 

Figure 1.6 Tau radiotracer imaging. Representative PET images with three different tau 

radiotracers. Top row is sagittal view; center row is transverse view; bottom row is coronal view. 

Compared to healthy elderly controls (HC), AD patients showed tracer retention in mesial temporal, 

temporoparietal and posterior cingulate cortical regions. 18F-THK5351-PET and 18F-flortaucipir-PET 

in HC show ‘off-target’ retention in the stratum. 18F-THK5351-PET also show tracer retention in the 

striatum. Image from Villemagne et al.[270] with permission.  
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together with clinical history, a categorical assessment result will be derived to report the 

certainty of AD diagnosis, and they are definite, probable, possible, or no evidence of AD.  

Other commonly used neuropathological assessment with slightly different focuses are 

Braak and Braak[34], Khachaturian[150], NIA-Reagan Institute[5], and the Tierney A3[259] 

criteria. Braak and Braak staging focuses on the distribution patterns of neurofibrillary tangles 

and neuropil threads[34], which is divided into six stages – stage I and II are characterized by 

either mild or severe alteration of the transentorhinal region; stage III and IV are marked by 

conspicuous changes in both transentorhinal region and entorhinal cortex; stage V and VI 

include destruction of all isocortical associated regions. Khachaturian[150] documented 

consensus criteria of AD diagnosis reached upon by the neuropathology panel at the “research 

workshop on the diagnosis of Alzheimer’s Disease” organized by National Institute of Aging 

(NIA) in 1983.  These criteria focus on microscopic findings in frontal, temporal, and parietal 

lobes, the amygdala, the hippocampal formation, the basal ganglia, the substantia nigra, the 

cerebellar cortex, and the spinal cord. The number of amyloid plaque and neurofibrillary tangles 

per field for different age ranges are specified for AD diagnosis.  Another more recent consensus 

recommendation of postmortem diagnostic criteria for AD are proposed to reassesses the 

previous criteria documented in Khachaturian[150]. This meeting was led by both NIA and 

Nancy Reagan Institute of the Alzheimer's Association. This NIA-Reagan Institute[5] criteria 

emphasize on the heterogeneous clinicopathological characteristics of AD, thus the diagnosis are 

only probabilistic rather than deterministic statements in any given patient based on both 

CERAD and Braak and Braak staging criteria. Besides, there might be other pathological process 

involved along with AD that contribute to dementia, for example stroke, Parkinson’s disease, 

progressive supranuclear palsy, and etc. A study that compared different pathological criteria 
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found the CERAD category of definite AD closely resemble the cases that fulfil the Tierney 

A3[259] AD criteria[194].  

1.5 Relation to other neurodegenerative disorders 

Under the umbrella term of neurodegenerative disease resulted from neuronal loss, 

patients suffering from various cognitive or motor deficits are categorized into different 

arbitrarily defined diseases based on their clinical manifestations. Despite distinct symptoms and 

affected brain regions (Table 1.2), different neurodegenerative diseases share some common 

features that may suggest potential shared mechanisms underlying disease etiology[99]. For 

example, the two major clinical manifestations, cognitive deficit and motor deficit, divide the 

realm into two halves. Age is the most important risk factor for all of the neurodegenerative 

diseases. Aggregation and progression of misfolded proteins are also involved in all of them, 

although being the cause or the result of the disease is still under debate. The common features 

suggest common pathways being altered in neurodegenerative diseases, including protein quality 

control, the autophagy-lysosome pathway, mitochondria homeostasis, protein seeding and 

propagation of stress granules, and synaptic toxicity and network dysfunction[99]. Genetically, 

MAPT gene (microtubule associated protein tau) only plays a modest role in sporadic AD but a 

substantial role in Frontotemporal Dementia (FTD) and Progressive Supranuclear Palsy (PSP). 

The most important susceptibility region for late-onset AD surrounding the APOE gene is 

involved in non-AD neurodegenerative disorders and conditions[62], such as Lewy body 

dementias(LBD)[25, 284], Parkinson's disease (PD)[40], amyloid angiopathy[25, 110, 285], 

TDP-43 proteinopathy[283], hippocampal sclerosis[25, 83, 283].  
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1.6 Dissertation Overview  

As discussed above, unlike the rare familial Mendelian dominant AD, late onset AD 

inherited as complex traits are more common in the population and resulted from dozens of 

variants involving genes distributed across the whole genome. To tackle the complex interaction 

in AD, the primary purpose of this dissertation is to apply integrative analysis approaches to 

demystify and obtain a more accurate and comprehensible picture of AD etiology.  

Alzheimer’s disease is characterized by neuronal loss and astrocytosis in the cerebral 

cortex. However, the specific effects that pathological mutations and coding variants associated 

with AD have on the cellular composition of the brain are often ignored. In chapter 2, to 

investigate cerebral cortex cell-type population structure I developed an in-silico deconvolution 

method to infer cellular composition from RNA-Seq. I firstly assembled a reference panel to 

model the transcriptomic signature of neurons, astrocytes, oligodendrocytes and microglia. The 

panel was created by analyzing expression data from purified cell lines. I evaluated alternative 

digital deconvolution methods and selected the best performing ones for my primary analyses. I 

tested the digital deconvolution accuracy on induced pluripotent stem cell (iPSC) derived 

neurons/microglia cells and neuronal Translating Ribosome Affinity Purification followed by 

RNA-Seq. Finally, I verified its accuracy by creating artificial admixture with pre-defined 

Major 

Symptoms

Cerebral 

Cortex

Basal 

Ganglia
Thalamus Hippocampus Cerebellum Brain Stem Protein Aggregation 

AD Cognitive Affected Affected Affected Affected - - Aβ, tau

FTD Cognitive Affected Affected Affected - - - TDP-43, tau, FUS

LBD Cognitive Affected - - Affected - Affected Aβ, tau, α-synuclein

ALS Motor - - - - - Affected TDP-43, FUS, UPS

HD Motor Affected Affected - - - - polyglutamine protein

PD Motor - Affected Affected - - - α-synuclein

MSA Motor - Affected - - Affected Affected α-synuclein

Table 1.2 Neurodegenerative diseases comparison
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cellular proportions. Once the deconvolution approach was optimized, I calculated the cell 

proportion in AD cases and controls from the different brain regions of LOAD and ADAD 

datasets. I found that neuronal and astrocyte relative proportions differ between healthy and 

diseased brains and also among AD cases that carry specific genetic risk variants. Brain carriers 

of pathogenic mutations in APP, PSEN1 or PSEN2 presented lower neurons and higher 

astrocytes relative proportions compared to sporadic AD.  Similarly, the APOE ε4 allele also 

showed decreased neuronal and increased astrocyte relative proportions compared to AD non-

carriers.  On the contrary, carriers of variants in TREM2 risk showed a lower degree of neuronal 

loss than matched AD cases in multiple independent studies. These findings suggest that genetic 

risk factors associated with AD etiology have a specific imprinting in the cellular composition of 

AD brains. 

 In chapter 3, I utilized cell-type proportions inferred from deconvolution procedure as 

disease status proxy to identify new genetic variants related to AD. Instead of using disease 

phenotype, studies which used endo-phenotypes, such as CSF APOE levels[59], CSF amyloid-β, 

tau, and phosphorylated tau (ptau181)[71], and AD proxy[174] have successfully uncovered other 

variants associated with AD. Using cell type composition inferred from RNA-Seq data as a 

disease status proxy, I performed cell type association analysis to identify potential new locus 

that are related to cellular population changes in disease cohort. We imputed and merged 

genotyping data from seven studies (five centered on neurodegeneration; two focused on 

schizophrenia and multiple tissue controls), and derived major CNS cell type proportions as 

described in chapter 2 from cortical RNA-Seq data. Neuronal proportion were normalized by 

subtracting the mean from each tissue deconvolution results after removing outliers. I identified a 

variant rs1990621 located in the TMEM106B gene region significantly associated with neuronal 
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proportion in cortical RNA-Seq dataset. This variant is in high LD with rs1990622 (r2 = 0.98) 

which was previously identified as a protective variant in FTD cohorts[266]. In conclusion, I 

have identified a variant associated with neuronal proportion with potential protective effect in 

neurodegeneration disorders.  

In Chapter 4, using network analysis I replicated and reconfirmed the co-expression 

pattern between MS4A gene cluster and TREM2 in sporadic AD, from which further evidence 

was inferred from Bayesian network analysis to show that MS4A4A might be a potential 

regulator of TREM2 that is validated by in-vitro experiments. In Autosomal Dominant AD 

(ADAD) cohort, disrupted and acquired genes were identified from PSEN1 mutation carriers. 

Among the genes, previous identified AD related gene and pathways were revealed together with 

novel findings. These results demonstrated the great potential of applying network approach in 

identifying disease associated genes and the interactions among them.  

In conclusion, contribution from this dissertation work to AD research is summarized in 

Chapter 5, and future directions in research to facilitate diagnosis, intervention, and disease-

modifying therapies are also discussed in the context of this dissertation work.  
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Chapter 2: Genetic variants associated with 

Alzheimer’s disease confer different cerebral 

cortex cell-type population structure 
 

 

 

 

 

 

 

 

 

This chapter was adapted from:  

Li Z, Del-aguila JL, Dube U, et al. Genetic variants associated with Alzheimer's disease confer 

different cerebral cortex cell-type population structure. Genome Med. 2018;10(1):43
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2.1 Abstract 

Background: Alzheimer's disease (AD) is characterized by neuronal loss and astrocytosis in the 

cerebral cortex. However, the specific effects that pathological mutations and coding variants 

associated with AD have on the cellular composition of the brain are often ignored. 

Methods: I developed and optimized a cell-type-specific expression reference panel and 

employed digital deconvolution methods to determine brain cellular distribution in three 

independent transcriptomic studies. 

Results: I found that neuronal and astrocyte relative proportions differ between healthy and 

diseased brains and also among AD cases that carry specific genetic risk variants. Brain carriers 

of pathogenic mutations in APP, PSEN1, or PSEN2 presented lower neuron and higher astrocyte 

relative proportions compared to sporadic AD. Similarly, the APOE ε4 allele also showed 

decreased neuronal and increased astrocyte relative proportions compared to AD non-carriers. In 

contrast, carriers of variants in TREM2 risk showed a lower degree of neuronal loss compared to 

matched AD cases in multiple independent studies. 

Conclusions: These findings suggest that genetic risk factors associated with AD etiology have a 

specific imprinting in the cellular composition of AD brains. My digital deconvolution method 

provides an enhanced understanding of the fundamental molecular mechanisms underlying 

neurodegeneration, enabling the analysis of large bulk RNA-sequencing studies for cell 

composition and suggests that correcting for the cellular structure when performing 

transcriptomic analysis will lead to novel insights of AD.  
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2.2 Introduction 

2.2.1 Altered cellular composition confounds downstream transcriptomic 

analysis 

Altered cellular composition is associated with AD progression and decline in cognition. 

Neuronal loss in the hippocampus is characteristic in the initial stages of AD, which could 

explain early memory disturbances[205, 282]. As the disease progresses, neuronal death is 

observed throughout the cerebral cortex. Furthermore, ~25% of individuals who die by ~75 years 

of age who were cognitively normal also presented substantial cerebral lesions that resemble AD 

pathology, including amyloid plaque, NFTs, and neuronal loss[132]. Thus, the identification of 

the brain cellular population structure is essential for understanding neurodegenerative disease 

progression[107]. However, stereology protocols for counting neurons can be tedious, require 

extensive training and are susceptible to technical artifacts which may lead to biased 

quantification of cell-type distributions[107]. 

Recently there has been a growing interest in understanding the transcriptomic changes 

attributed to AD[9, 46, 98, 184, 197, 206, 247, 287], as these may point to underlying molecular 

mechanisms of disease. These studies are typically designed to analyze the expression profiles of 

large cohorts ascertained from homogenized regions of the brain (e.g. bulk RNA-Seq) of affected 

and control donors. However, bulk RNA-Seq captures the gene expression of all of the 

constituent cells in the sampled tissue, and the altered cellular composition associated with AD 

has been reported to confound downstream analyses[247].  

2.2.2 Digital deconvolution approach 

Digital deconvolution approaches enhance the interrogation of expression profiles to 

identify the cellular population structure of individual samples, alleviating the requirement of 
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additional neurostereology procedures. These approaches have been developed, tested and 

applied to ascertain cellular composition altered in many traits[157, 199, 242, 293]. However, 

digital deconvolution has not been applied to identify the cellular population structure from 

RNA-Seq from human brain of AD cases and controls. Technical constraints restrict the 

dissociation of cells from the brains for very specific conditions[38, 290, 291]. Nevertheless, a 

limited number of RNA-Seq from isolated cell populations from the brain have been 

generated[38, 290, 291]. Using these resources, I am now able to generate a reference panel for 

digital deconvolution of human brain bulk RNA-Seq data. 

I sought to investigate the cellular population structure in AD by analyzing RNA-Seq 

from multiple brain regions of LOAD participants.  To do so, I assembled a novel brain reference 

panel and evaluated the accuracy of digital deconvolution methods by analyzing additional cell-

type specific RNA-Seq samples and by creating synthetic admixtures with defined cellular 

distributions. Then I analyzed large cohorts of pathologically confirmed AD cases and controls 

(N = 613) and verified that it predicts cellular distribution patterns consistent with 

neurodegeneration. Finally, I generated RNA-Seq from the parietal lobe of participants from the 

Charles F. and Joanne Knight Alzheimer's Disease Research Center  (Knight-ADRC)[153], 

including non-demented controls, LOAD cases, with enriched proportions of carriers of high-risk 

coding variants associated with AD, and also ADAD from The Dominantly Inherited Alzheimer 

Network[72] (DIAN). I compared the cell composition in ADAD and LOAD; and also evaluated 

differences among carriers of coding high-risk variants in PLD3, TREM2 and APOE ε4. My 

findings indicated that cell-type composition differs among carriers of specific genetic risk 

factors, which might be revealing distinct pathogenic mechanisms contributing to disease 

etiology.  



23 

2.3 Methods 

2.3.1 Subjects and Samples 

DIAN and Knight-ADRC  

Parietal lobe tissue of post-mortem brain was obtained with informed consent for 

research use and were approved by Washington University in St. Louis review board. RNA was 

extracted from frozen brain using Tissue Lyser LT and RNeasy Mini Kit (Qiagen, Hilden, 

Germany).  RNA-Seq Paired end reads with read length of 2×150bp were generated using 

Illumina HiSeq 4000 with a mean coverage of 80 million reads per sample (Table 2.1; Table 

2.2). RNA-Seq was generated for 19 brains from The Dominantly Inherited Alzheimer Network 

(DIAN), 84 brains with late-onset AD and 16 non-demented controls from The Charles F. and 

Joanne Knight Alzheimer's Disease Research Center (Knight ADRC)[153]. The AD brains 

selected from the Knight-ADRC are enriched for carrier of variants in TREM2 (N=20; Table 

2.2) and PLD3 (N=33; Table 2.2). The clinical status of participants was neuropathologically 

confirmed[187].  We identified three additional participants from the Knight-ADRC study with 

PSEN1 (p.A79V, p.I143T and p.S170F) mutations. CDR scores were obtained during regular 

visits throughout the study prior to the subject’s decease[190]. A range of other pathological 

measurement were collected during autopsy including Braak staging, as previously 

described[35].  
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RNA was extracted from frozen brain tissues using Tissue Lyser LT and RNeasy Mini 

Kit (Qiagen, Hilden, Germany) following the manufacturer’s instruction. RIN (RNA integrity) 

and DV200 were measured with RNA 6000 Pico Assay using Bioanalyzer 2100 (Agilent 

Technologies). The RIN is determined by the software on the Bioanalyzer taking into account 

the entire electrophoretic trace of the RNA including the presence or absence of degradation 

products. The DV200 value is defined as the percentage of nucleotides greater than 200nt. RIN 

and DV200 for all the samples can be found on Table 2.2. The yield of each sample is 

determined by the Quant-iT RNA Assay (Life Technologies) on the Qubit Fluorometer (Fisher 

Scientific). The cDNA library was prepared with the TruSeq Stranded Total RNA Sample Prep 

with Ribo-Zero Gold kit (Illumina) and then sequenced by HiSeq 4000 (Illumina) using 2×150 

paired end reads at McDonnell Genome Institute, Washington University in St. Louis with a 

Mayo
a

MSBB
b DIAN Knight-ADRC

Sample Size 191 300 19 103

Age 83 ± 7.77 83.3 ± 7.55 50.6 ± 7.06 85.1 ± 9.78

% Male 45.5 36 68.4 38.8

% APOE  ε4+ 33.2 31.7 14.3 45.6

Brain weight - - 1187.7 ± 184.5 1138.1 ± 142.5

AD
c 82 135 19 87

PA
d 29 0 0 0

Control 80 85 0 16

CDR
e
 = 0 - 40 0 13

CDR = 0.5 - 40 0 9

CDR = 1 - 30 2 11

CDR = 2 - 44 4 14

CDR = 3 - 146 1 56

Table 2.1 Demographics and disease status of cohorts from four brain bank resources.

a
 Mayo stands for Mayo Clinic.

b
 MSBB stands for Mount Sinai Brain Bank.

c
 AD stands for Alzheimer’s Disease.

d
 PA stands for pathological aging (amyloid plaques but no tau tangles).

e
 CDR stands for clinical dementia rating for available samples.
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mean of 58.14 ± 8.62 million reads. Number of reads and other QC metrics can be found in 

Table 2.2. 

Mayo Clinic Brain Bank 

Mayo Clinic Brain Bank RNA-Seq was accessed from the AMP-AD portal (synapse ID = 

5550404; accessed January 2017) (Table 2.1). Paired end reads of 2×101bp were generated by 

Illumina HiSeq 2000 sequencers for an average of 134.9 million reads per sample. 

Neuropathology criteria, quality control procedures, RNA extraction and sequencing details are 

explained elsewhere[9]. 
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Total DIAN & ADAD vs LOAD 

ADAD LOAD Control Knight-ADRC t-tests p-value

RIN 5.69 ± 1.13 6.44 ± 1.16 6.71 ± 1.18 6.34 ± 1.19 9.04×10
-03

DV200 86.59 ± 4.12 89.48 ± 3.85 91.19 ± 2.54 89.18 ± 3.97 5.82×10
-03

PMI 14.57 ± 10.29 13.05 ± 6.66 10.52 ± 6.09 12.99 ± 7.4 5.16×10
-01

Age 51.27 ± 11.13 85.72 ± 6.83 87.08 ± 10.2 79.69 ± 15.67 2.61×10
-13

Male % 0.64 0.39 0.38 0.43 4.68×10
-02

APOE4+ % 0.3 0.52 0.06 0.44 1.94×10
-01

CDR 2.2 ± 0.79 2.37 ± 0.93 0.22 ± 0.31 2.04 ± 1.14 5.42×10
-01

Braak 5.94 ± 0.24 4.84 ± 1.29 1.93 ± 0.88 4.61 ± 1.62 8.81×10
-10

Number of Total Reads (Million) 60.92 ± 5.6 57.7 ± 9.28 56.6 ± 7.98 58.14 ± 8.62 4.47×10
-02

Uniquely Mapped Reads % 79.72 ± 4.28 80.74 ± 4.49 81.06 ± 5.96 80.6 ± 4.65 3.32×10
-01

Mapped to Multiple Loci Reads % 16.39 ± 2.1 15.56 ± 2.2 15.08 ± 3.3 15.64 ± 2.36 1.07×10
-01

Disease Status 22 84 16 122 -

   APP 3 0 0 3 -

   PSEN1 18 0 0 18 -

   PSEN2 1 0 0 1 -

   TREM2 0 20 0 20 -

   PLD3
a 0 33 0 33 -

   UNC5C
a 0 4 0 4 -

   Sporadic AD 0 29 0 29 -

Table 2.2 Demographics and AD mutation carriers of DIAN and Knight-ADRC cohorts.

a 
There are two Knight-ADRC subjects that carry both PLD3  and UNC5C  variants.

DIAN & Knight-ADRC
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RNA-Seq based transcriptome data was generated from post-mortem brain tissue 

collected from cerebellum (189 samples) and temporal cortex (191 samples) of Caucasian 

subjects[2, 9]. RNA was extracted using Trizol® reagent and cleaned with Qiagen RNeasy. RIN 

measurement was performed with Agilent Technologies 2100 Bioanalyzer. Samples with RIN 

greater than 5 were included. Library was prepared by Mayo Clinic Medical Genome Facility 

Gene Expression and Sequencing Cores with TruSeq RNA Sample Prep Kit (Illumina). 

Mount Sinai Brain Bank  

Mount Sinai Brain Bank RNA-Seq study was downloaded from the AMP-AD portal 

(synapse ID = 3157743; accessed January 2017) (Table 2.1). Single end reads of 100 nucleotides 

was generated by Illumina HiSeq 2500 System (Illumina, San Diego, CA) for an average of 38.7 

million reads per sample[3].   

This dataset contains 1030 samples collected from four post-mortem brain regions of 300 

subjects: anterior prefrontal cortex (BA10), superior temporal gyrus (BA22), parahippocampal 

gyrus (BA36), and inferior frontal gyrus (BA44). RNA-Seq was generated using the TruSeq 

RNA Sample Preparation Kit v2 and Ribo-Zero rRNA removal kit (Illumina, San Diego, CA)[3].  

iPSC-derived neurons  

 Dermal fibroblasts were obtained from skin biopsies from research participants in the 

Knight-ADRC (Fibroblast lines: F11362, F12455, and F13504). Human fibroblasts were 

reprogrammed into iPSC using non-integrating Sendai virus carrying OCT3/4, SOX2, KLF4, and 

cMYC[255, 265]. iPSCs were manually selected and expanded on Matrigel in mTesR1 

(StemCell Techologies). iPSCs were characterized for expression of pluripotency markers by 

immunocytochemistry and quantitative PCR (qPCR). qPCR with probes specific to Sendai virus 



28 

were used to confirm the absence of virus in the isolated clones. All cell lines were confirmed to 

have a normal karyotype based on G-band karyotyping. To generate cortical neurons, iPSCs 

were plated in a v-bottom plate in neural induction media (StemCell Technologies; 65,000 per 

well) to form highly uniform neural aggregates. After 5 days, neural aggregates were transferred 

onto PLO/laminin-coated tissue culture plates. Neural rosettes formed over 5-7 days. The 

resulting neural rosettes were then isolated by enzymatic selection (StemCell Technologies) and 

cultured as neural progenitor cells (NPCs). NPCs were then differentiated by culturing in neural 

maturation medium (neurobasal medium supplemented with B27, GDNF, BDNF, cAMP). RNA 

was collected from the cells and sequenced following the same protocol and processing pipeline 

as the DIAN and Knight-ADRC dataset. 

In addition, I accessed RNA-Seq data generated for iPSC-derived neurons from the 

Broad iPSC study[7] (Synapse ID: syn3607401). Forebrain neurons from wild-type background 

were generated using an embryoid body-based protocol to produce neural progenitor cells (day 

17) and mature neurons (day 57 and day 100). RNA was purified using a PureLink RNA mini-kit 

(Life Technologies). RNA-Seq libraries were prepared using Illumina Strand Specific TruSeq 

protocol, and sequenced to obtain an average of 75M reads in pairs reads per sample.  

TRAP-seq mice 

All animal procedures were performed in accordance with the guidelines of Washington 

University's Institutional Animal Care and Use Committee. The Rosa26fsTRAP mice 

(Gt(ROSA)26Sortm1(CAG-EGFP/Rpl10a,-birA)Wtp)[294] (The Jackson Laboratory) were crossed with 

PVCre mice (Pvalbtm1(cre)Arbr)[128] (The Jackson Laboratory) to produce PV-TRAP mice directing 

expression of  EGFP-L10a ribosomal fusion protein in parvalbumin (PV) expressing cells.  
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Purification of cell-type specific mRNA by translating ribosome affinity purification 

(TRAP) was described previously[122] with modifications. Briefly, PV-TRAP mouse brain was 

removed and quickly washed in ice-cold dissection buffer (1× HBSS, 2.5 mM HEPES-KOH (pH 

7.3), 35 mM glucose, and 4 mM NaHCO3 in RNase-free water). Barrel cortex was rapidly 

dissected and flash-frozen in liquid nitrogen, and then stored at -80 C until use. Affinity matrix 

was prepared with 150 μl of Streptavidin MyOne T1 Dynabeads, 60 μg of Biotinylated Protein 

L, and 25 μg of each of GFP antibodies 19C8 and 19F7. The tissue was homogenized on ice in 1 

ml of tissue-lysis buffer (20 mM HEPES KOH (pH 7.4), 150 mM KCl, 10 mM MgCl2, EDTA-

free protease inhibitors, 0.5 mM DTT, 100 μg/ml cycloheximide, and 10 μl/ml rRNasin and 

Superasin). Homogenates were centrifuged for 10 min at 2,000 × g, 4 C, and 1/9 sample volume 

of 10% NP-40 and 300 mM DHPC were added to the supernatant at final concentration of 1% 

(vol/vol). After incubation on ice for 5 min, the lysate was centrifuged for 10 min at 20,000 × g 

to pellet insolubilized material. Then 200 μl of freshly resuspended affinity matrix was added to 

the supernatant and incubated at 4 °C for 16–18 hours with gentle end-over-end mixing in a tube 

rotator. After incubation, the beads were collected with a magnet and resuspended in 1000 μl of 

high-salt buffer (20 mM HEPES KOH (pH 7.3), 350 mM KCl, 10 mM MgCl2, 1% NP-40, 0.5 

mM DTT and 100 μg/ml cycloheximide), and collected with magnet as above. After 4 times of 

washing with high-salt buffer, RNA was extracted using Absolutely RNA Nanoprep Kit (Agilent 

Technologies) following manufacturer’s instruction. RNA quantification was measured using 

Qubit RNA HS Assay Kit (Life Technologies) and the integrity was determined by Bioanalyzer 

2100 using an RNA Pico chip (Agilent Technologies). The cDNA library was prepared with 

Clontech SMARTer and then sequenced by HiSeq3000. Single end reads of 50 base pairs were 

generated for an average of 29.2 million reads per sample (24 samples).  
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iPSC-derived microglia 

The data was accessed from the AMP-AD portal (Synapse ID: syn7203233). This dataset 

is comprised of iPSC-derived microglia (N = 10) from human primitive streak-like cells[77]. 

Within 30 days of differentiation, myeloid progenitors coexpressing CD14 and CX3CR1 were 

generated. These iPSC-derived microglia were able to perform phagocytosis and elicit ADP-

induced intracellular Ca2+ transients that asserted their microglia identity as opposed to 

macrophage. Single-ended RNA-Seq data was generated with the Illumina HiSeq 2500 platform 

following the Illumina protocol. 

2.3.2 RNA-Seq QC and Alignment 

FastQC was applied to DIAN and Knight-ADRC RNA-Seq data to perform quality check 

on various aspects of sequencing quality[231]. Each category of FastQC will be explained with 

pass or fail examples together with summary results ascertained from the DIAN and Knight-

ADRC combined dataset. QC result explanations were obtained from the developer’s 

website[11]. 

The DIAN and Knight-ADRC dataset was aligned to human GRCh37 primary assembly 

using Star (ver 2.5.2b)[74]. I used the primary assembly and aligned reads to the assembled 

chromosomes, un-localized and unplaced scaffolds, and discarded alternative haploid sequences. 

Sequencing metrics, including coverage, distribution of reads in the genome[4], ribosomal and 

mitochondrial contents and alignment quality, were further obtained by applying Picard 

CollectRnaSeqMetrics (ver 2.8.2) to detect sample deviation. QC results from FastQC, Star, 

Picard, and Salmon are merged with multi-QC software to generated integrated summary reports 

(Table 2.3).  
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Problematic samples summary: 

 RIN < 5 & DV200 < 75 

o H_VY-82018_S1512310_II.H.40 

o H_VY-83774_S1512313_II.G.39 

 Low Yield 

o H_VY-60410_S1511525_I.D.19 

o H_VY-62240_S1511620_IV 

 High Ribosomal RNA 

o H_VY-83774_S1512313_II.G.39 

o H_VY-82018_S1512310_II.H.40 

o H_VY-9TPSKM_S1512275_I.B.15 

 High Median 5’ to 3’ bias 

o H_VY-60007_S1511546_I.D.21 

o H_VY-83774_S1512313_II.G.39 

 Ethnicity non-Europeans 

o H_VY-83665_S1511508_I.E.31 

o H_VY-61256_S1511537_I.E.31 

o H_VY-62275_S1511542_I.D.19 

o H_VY-11964_S1512298_I.E.29 

o H_VY-23178_S1512475_I.D.19 

o H_VY-62464_S1512484_VI.N 

 Transcriptome-wise outliers  

o H_VY-F1R54Y_D1202616_I.C.18 

o H_VY-1XYTL9_D1202619_I.B.10 

o H_VY-61377_S1511495_I.D.19 

o H_VY-61245_S1512302_IV 

o H_VY-61684_S1512304_IV 

o H_VY-60007_S1511546_I.D.21 

o H_VY-83774_S1512313_II.G.39 
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Table 2.3 Summarized quality check results integrated with Multi-QC
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Per base sequence quality  

Figure 2.1A and Figure 2.1B are passed and failed example for the per base 

sequence quality check. As its name suggested, this analysis summarizes over all 

sequence quality of each sample for each read base. In my case, the read length is 151 

base pairs represented in the x-axis. The y-axis on the graph showed the quality scores. 

The sequence quality is calculated as Q = -10×log10(e) where ‘e’ is the estimated 

probability of the base call being wrong. Thus, higher score indicates higher quality, and 

it ranges from 0 to 40.  A quality score of 20 represents an error rate of 1 in 100, and a 

quality score of 40 represents an error rate of 1 in 10,000 and a call accuracy of 99.99%. 

Green region represents good quality calls from 28 to 40; orange region represents calls 

of reasonable quality from 20 to 28; red represents poor quality calls with quality less 

than 20, with a call accuracy of 99%. The quality of calls on most platforms will degrade 

as the run progresses, so it is common to see base calls falling into the orange area 

towards the end of a read.  

 Each column of box and whisker plot is the summarized quality score of all the 

reads for that particular base position. “The central red line is the median value; the 

yellow box represents the inter-quartile range (25-75%); the upper and lower whiskers 

represent the 10% and 90% points. The blue solid line represents the mean quality”[11]. 

Figure 2.1C is the overall per base sequence quality for all sample, which showed 161 

passed and 9 samples with warning.  

The 9 warning samples are: 

o H_VY-61609_S1512483_VI.N.bam 
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o H_VY-63976_S1511873_VI.M.42.bam 

o H_VY-72221_S1511778_VI.N.bam 

o H_VY-82037_S1511881_II.H.40.bam 

o H_VY-82397_S1511396_I.B.17.bam 

o H_VY-83665_S1511508_I.E.31.bam 

o H_VY-83775_S1511871_II.G.39i.bam 

o H_VY-F11362.1d1B6_Neuron_2_S1512501_VII.O.45.bam 

o H_VY-F11362.1d1F10_Neuron_1_S1512503_VII.Q.47.bam 

 

 

 

Figure 2.1 Sequence quality check. A) Passed sample from H_VY-

1DKYRE_D1202618_I.B.11 and B) Warning sample from H_VY-83775_S1511871_II.G.39i 

and C) Summary sequence quality score showed 161 passed (green lines) and 9 warning 

(yellow lines) for DIAN and Knight ADRC dataset. 
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Per tile sequence quality 

Because we used an Illumina library that retains its original sequence identifiers, the 

sequencing output also documents each read’s flowcell tile information. Thus, for 

Illumina sequencing data FastQC reports quality scores from each tile across all the base 

positions to see if there was a loss in quality associated with any particular part of the 

flowcell. The plot shows the deviation from the average quality for each tile. Cold color 

indicates good quality and warm color indicates bad quality that a tile had worse qualities 

than other tiles for that base. A passed sample plot should be blue all over. FastQC user 

manual explains that “reasons for seeing warnings or errors on this plot could be transient 

problems such as bubbles going through the flowcell, or they could be more permanent 

problems such as smudges on the flowcell or debris inside the flowcell lane”[11]. My 

samples all passed the test except one showed warning (Figure 2.2B). I observed that 

there was a quality drop on the end of the reads in some tiles of the flowcells.  

 

Figure 2.2 Per tile sequence quality. A) passed sample from H_VY-

1DKYRE_D1202618_I.B.11 B) Warning sample from H_VY-62240_S1511620_IV 
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Per sequence quality scores 

The per sequence quality score report allows me to see the overall quality 

distribution of my reads and to detect if I have reads with universally low-quality scores. 

If some reads are poorly imaged, for example, when they are on the edge of the field of 

view, they will have universally poor quality[11]. My samples showed that the majority 

of reads are good quality ranging from 28 to 40 (Figure 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Per sequence quality scores. A) passed example from 

H_VY-1DKYRE_D1202618_I.B.11 B) summary results for all 

samples showed they all passed for this test. 
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Per Base Sequence Content 

Per Base Sequence Content plots out the proportion of DNA bases for each base 

position, which are the percentage of A, T, C, G. In a random library, I would expect that 

there would be little to no difference between the different bases of a sequence run, so the 

lines in this plot should run parallel with each other. The relative amount of each base 

may not be equally 25% for each type of nucleic acid, but should reflect the overall 

amount of these bases in the sequenced genome and should not be hugely imbalanced 

from each other in any case[11]. 

It is worth noting that some types of library will always produce biased sequence 

composition, normally at the start of the read, which is what is happening in my samples 

with Illumina. “Libraries produced by Illumina priming use random hexamers (including 

nearly all RNA-Seq libraries). Those hexamers were fragmented using transposases, 

which inherit an intrinsic bias in the positions at which reads start. This bias does not 

concern an absolute sequence, but instead provides enrichment of a number of different 

K-mers at the 5' end of the reads. Therefore, it is common for Illumina sequencers to 

have the first 7-9 bases with unbalanced base sequence contents. While this is a true 

technical bias, it can be corrected by trimming, but in most cases, it does not seem to 

adversely affect the downstream analysis”[11]. It will however produce a warning or 

error in this module when the difference between A and T, or G and C is greater than 

10% (warning) and 20% (failed) in any position. After the first nine positions, the lines 

run flat and in parallel with each other indicating balanced and unbiased nucleic acid 

contents (Figure 2.4). Due to the technical bias of Illumina library, this module produced 

38 warning and 132 failed test results for the dataset. 
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Per base N content 

“If a sequencer is unable to make a base call with sufficient confidence then it 

will normally substitute an N rather than a conventional base call. This module plots out 

the percentage of base calls at each position for which an N was called”[11]. My samples 

only showed a very low N content at the beginning of the reads due to unavoidable 

library technical bias, and at 100bp for some samples (Figure 2.5). All samples passed 

this test. 

Figure 2.4 Per base sequence content. The percentage of each DNA nucleic acid type 

for each base position was labeled and color coded respectively.  
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Sequence length distribution 

“Some high throughput sequencers generate sequence fragments of uniform 

length, but others can contain reads of wildly varying lengths. Even within uniform 

length libraries some pipelines will trim sequences to remove poor quality base calls from 

the end. This module generates a graph showing the distribution of fragment sizes in the 

Figure 2.5 Per base N content. A) Passed sample from H_VY-

1DKYRE_D1202618_I.B.11 and B) summary for all samples. 
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file which was analyzed”[11]. In many cases this will produce a simple graph showing a 

peak only at one size, which is the case for my sample shown here (Figure 2.6), but for 

variable length FastQ files this will show the relative amounts of each different size of 

sequence fragment[11].  

Adapter content 

I have adapter contamination due to adapter read-through problem associated with 

fragmented short reads. Adapter source was predicted and my sample showed potential 

adapter contamination from Illumina universal adapter (Table 2.4; Figure 2.7A). All 

samples failed this test (Figure 2.7B). 

 

Figure 2.6 Sequence length distribution. Passed sample from H_VY-

1DKYRE_D1202618_I.B.11 
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Expected observations with adapter dimer contamination[11]: 

 Drop in per base sequence quality after base 60 

 Possible bi-modal distribution of per sequence quality scores 

 Distinct pattern observed in per bases sequence content up to base 60 

 Spike in per sequence GC content 

 Overrepresented sequence matching adapter 

 Adapter content > 0% starting at base 1 

 

 

D501-D508 adapter AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTTCCGATCT

D701-D712 adapter GATCGGAAGAGCACACGTCTGAACTCCAGTCAC[i7]ATCTCGTATGCCGTCTTCTGCTTG

i5 index name i5 index bases

D501 TATAGCCT

D502 ATAGAGGC

D503 CCTATCCT

D504 GGCTCTGA

D505 AGGCGAAG

D506 TAATCTTA

D507 CAGGACGT

D508 GTACTGAC

i7 index name i7 index bases

D701 ATTACTCG

D702 TCCGGAGA

D703 CGCTCATT

D704 GAGATTCC

D705 ATTCAGAA

D706 GAATTCGT

D707 CTGAAGCT

Adapter

Index

Table 2.4 Illumina TruSeq Stranded RNA HT adapter and index
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Sequence duplication level 

 “The plot shows the proportion of the library which is made up of the duplicated 

sequences in each of the different duplication level bins. There are two lines on the plot. 

The blue line takes the full sequence set and shows how its duplication levels are 

distributed. In the red plot the sequences are de-duplicated and the proportions shown are 

the proportions of the remained different duplication levels in the original data after 

removing the duplicated sequences. In a properly diverse library most sequences should 

fall into the far left of the plot in both the red and blue lines. A general level of 

Figure 2.7 Adapter content. A) Failed sample from H_VY-

1DKYRE_D1202618_I.B.11 and B) summarized for all samples 
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enrichment, indicating broad over sequencing in the library will tend to flatten the 

lines”[11], lowering the low end and generally raising other categories (Figure 2.8B blue 

line). More specific enrichments of subsets, or the presence of low complexity 

contaminants will tend to produce spikes towards the right of the plot (Figure 2.8A blue 

line). “These high duplication peaks will most often appear in the blue trace as they make 

up a high proportion of the original library, but usually disappear in the red trace as they 

make up an insignificant proportion of the deduplicated set. If peaks persist in the red 

trace then this suggests that there are a large number of different highly duplicated 

sequences which might indicate either a contaminant set or a very severe technical 

duplication. The module also calculates an expected overall loss of sequence were the 

library to be deduplicated shown in the figure headline at the top of the plot, which gives 

a reasonable impression of the potential overall level of loss”[11].  

Note that both biological duplication and technical duplication were not 

differentiated in this analysis and the way to differentiate these two categories is to 

examine if the duplicated reads are mostly from physically connected genome regions 

after alignment[11]. High coverage data has more reads so it is not surprised to see higher 

duplication level. Notice that among the three passed samples, two are low yield samples. 

I would also expect the majority of duplications are from rRNA so the samples with high 

rRNA will have high duplication levels, which is proved by comparing the two figures 

showing one normal rRNA sample (Figure 2.8A) and one high rRNA sample (Figure 

2.8B). In STAR alignment, the default setting for reads aligned to multiple location is 10, 

and when it’s above 20 it will not map to the reference and those will go to unmapped 

category, so from the duplication level plot >10 bin percentage I would be able to have a 
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rough estimation of the percentage of reads that would map to multiple location and 

unmapped percentage of STAR alignment results. For project that look at unmapped 

section of the samples this duplication level information might be extremely important, 

for example circular RNA or microbial RNA focused projects. 

Notice that among the three passed samples, two are low yield samples: 

 H_VY-12152_S1512495.bam 

 H_VY-60410_S1511525_I.D.19.bam (low yield) 

 H_VY-62240_S1511620_IV.bam (low yield) 

 

Figure 2.8 Sequence duplication levels. A) Warning sample from H_VY-

1DKYRE_D1202618_I.B.11 and B) failed sample from H_VY-82018_S1512310_II.H.40 and 

C) summary sample for all samples 
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Per sequence GC content 

“This module measures the GC content across the whole sequence length and 

compares it to a modelled normal distribution of GC content. In a normal random library, 

I would expect to see a roughly normal distribution of GC content where the central peak 

corresponds to the overall GC content of the sequenced genome. An unusually shaped 

distribution could indicate a contaminated library or some other kinds of biased subset. A 

normal distribution which is shifted indicates some systematic bias which is independent 

of base position. If there is a systematic bias which creates a shifted normal distribution 

then this won't be flagged as an error by the module since software doesn't know what the 

sequenced genome's GC content should be”[11].  

This module will indicate a failure if the sum of the deviations from the normal 

distribution represents more than 30% of the reads. Warnings in this module usually 

indicate a problem with the library. Sharp peaks on an otherwise smooth distribution are 

normally the result of a specific contaminant (adapter dimers for example, Figure 2.9A), 

which may well be picked up by the overrepresented sequences module. Broader peaks 

may represent contamination with a different species. In my samples, the distribution 

showed sharp peaks on an otherwise smooth distribution or severely deviated from 

normal distribution may indicate adapter dimers contamination, which might be picked 

by other failed modules, such as overrepresented sequences, adapter content, and kmer 

content. Overall, I have 42 samples with warning and 128 failed samples (Figure 2.9B). 

 



49 

 

 

 

 

 

 

Overrepresented sequences 

“A normal high-throughput library will contain a diverse set of sequences, with 

no individual sequence making up a tiny fraction of the whole. Finding that a single 

sequence is very overrepresented in the set either means that it is highly biologically 

significant, or indicates that the library is contaminated, or not as diverse as 

expected”[11]. This module lists all of the sequence which make up more than 0.1% of 

the total (Figure 2.10). “To conserve memory only sequences which appear in the first 

Figure 2.9 Per sequence GC content. A) Failed sample from H_VY-

1DKYRE_D1202618_I.B.11 and B) GC content curves for all sample. 
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100,000 sequences are tracked to the end of the file. For each overrepresented sequence 

the program will look for matches in a database of common contaminants and will report 

the best hit it finds. Hits must be at least 20bp in length and have no more than 1 

mismatch. Finding a hit does not necessarily mean that this is the source of the 

contamination, but may point me in the right direction. Because the duplication detection 

requires an exact sequence match over the whole length of the sequence any reads over 

75bp in length are truncated to 50bp for the purposes of this analysis. Even so, longer 

reads are more likely to contain sequencing errors which will artificially increase the 

observed diversity and will tend to underrepresent highly duplicated sequences”[11].  

Kmer Content 

The Kmer Content module will do a generic analysis of all of the Kmers in my 

sample library to find those which do not have even coverage through the length of my 

reads (Figure 2.11). The top six kmers are plotted in the graph. This can find a number of 

different sources of bias in the library which can include the presence of read-through 

adapter sequences building up on the end of the sequences. The presence of any 

Figure 2.10 Overrepresented sequences. Warning sample from H_VY-

1DKYRE_D1202618_I.B.11. 



51 

overrepresented sequences in my library (such as adapter dimers) will cause the Kmer 

plot to be dominated by the Kmers these sequences contain. What I have in my samples 

are two folds: 1. Unbalanced sequence content for the first 9 bases which is intrinsic 

technical bias associated with Illumina library. 2. Adapter read through problem at the 

end of the reads which can be corrected with STAR alignment using adapter soft clipping 

option. 

 

 

Figure 2.11 Kmer Content. Failed sample from H_VY-1DKYRE_D1202618_I.B.11. 
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 In summary, my DIAN and Knight ADRC samples have good sequence quality in 

general, reflected in categories such as per base, per tile, per sequence quality scores, and 

per base N content (Table 2.5). Because we used Illumina sequencing, the first nine 

bases of each read have technical bias, therefore, none of the samples passed per base 

sequence content test. However, it does not impact downstream analysis. Due to potential 

rRNA and adapter contamination, several test metrics captured these observations, for 

example, per sequence GC content, sequence duplication levels, overrepresented 

sequences, adapter content, and kmer content. Samples with high rRNA contamination 

were not different from the other samples in terms of deconvolution results, but will be 

excluded from other downstream analysis. Adapter sequences could be soft clipped 

during alignment or trimmed ahead of alignment.  

 

 

 

 

 

 

IGV visualization and IBD to verify sample identity 

Aligned and sorted bam files were loaded into IGV[224] to perform visual 

inspection of target variants. For example, visualization of a PSEN1_S290C delE9 carrier 

in the top red track is compared to a non-carrier in the bottom blue track shown in Figure 

Pass Warning Fail

Basic Statistics 170 0 0

Per base sequence quality 161 9 0

Per tile sequence quality 169 1 0

Per sequence quality scores 170 0 0

Per base sequence content 0 38 132

Per sequence GC content 0 42 128

Per base N content 170 0 0

Sequence Length Distribution 170 0 0

Sequence Duplication Levels 3 148 19

Overrepresented sequences 11 159 0

Adapter Content 0 0 170

Kmer Content 0 0 170

Table 2.5 DIAN and Knight ADRC FastQC summary 
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2.12 using IGV sashimi plot. DelE9 is a mutation (Chr14: 73673093 G>A) in PSEN1 

gene that result in exon 9 exclusion. In this carrier subject, in whom harbors heterozygous 

exon 9 deletion, the peak in the middle represents gene expression level of PSEN1 exon 9 

flanked by exon 8 and exon 10. Because this carrier is heterozygous for delE9, the exon 9 

peak is half in height compared to its neighbors on either side, and there are more reads 

(79 reads) that skipped exon 9 and linked exon 8 and exon 10 compared to the non-carrier 

in the bottom track (0 read). Samples carrying unexpected variants or missing expected 

variants were labeled as potential swapped samples. In addition, variants were called 

from RNA-Seq following BWA/GATK pipeline[171, 181]. The identity of the samples 

was later verified by performing IBD analysis against genomic typing from GWAS 

chipsets.  

Figure 2.12 PSEN1 delE9 Sashimi Plot using IGV. Top red track is from sample H_VY-

2968OM_S1512443_I.B.13, a PSEN1_S290C delE9 carrier, in whom harbors heterozygous exon 

9 deletion. Bottom blue track is from a non-carrier subject.   
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GWAS PCA and Ethnicity Check 

 GWAS principal component analysis (PCA) components were extracted for 

matched RNA-Seq subjects to check ethnic identity. Among RNA-Seq subjects there are 

6 subjects are African Americans, while the rest are European Americans (Figure 2.13).  

 

 

Figure 2.13 GWAS PCA of ethnicity check. HapMap Europeans are color coded as 

yellow; HapMap Africans are color coded as blue; HapMap Asians are color coded as 

red. My samples are color coded as black, which mostly fall into the European ethnic 

group except six subjects labeled with their IDs. 
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2.3.3 Expression quantification 

I applied Salmon transcript expression quantification (ver 0.7.2)[208] to infer the 

gene expression for all samples included in the reference panel and participants in the 

Mayo, MSBB, DIAN and Knight-ADRC. I quantified the coding transcripts of Homo 

Sapiens included in the GENCODE reference genome (GRCh37.75). Similarly, I 

quantified the expression of the mice samples included in the reference panel using the 

Mus Musculus reference genome (mm10). 

2.3.4 Reference panel 

Reference Samples 

I assembled a cell-type specific reference panel from publicly available RNA-Seq 

datasets comprised of both immunopanning collected or iPSC derived neurons, 

astrocytes, oligodendrocytes, and microglial cells from human and murine samples.  For 

immunopanning collected cells, antibodies for cell-type specific antigens were utilized to 

bind and immobilize their targeted cell types in order to immunoprecipitate and purify 

each cell type from the suspensions[290]. cDNA synthesis was accomplished using 

Ovation RNA-Seq system V2 (Nugen 7102) and library prepared with Next Ultra RNA-

Seq library prep kit from Illumina (NEB E7530) and NEBNext® multiplex oligos from 

Illumina (NEB E7335 E7500). TruSeq RNA Sample Prep Kit (Illumina) was used to 

prepare library for paired-end sequence on 100ng of total RNA extracted from each 

sample. Illumina HiSeq 2000 Sequencer was used to sequence all libraries[290]. 
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Both human adult temporal cortex tissue, collected from patients receiving 

neurological surgeries, and mice cells were disassociated, sorted and sequenced as 

described elsewhere[291], and deposited in the Gene Expression Omnibus GSE73721 

and GSE52564. I also accessed neural progenitor cells (day 17) and mature human 

neurons (day 57 and 100) from Broad iPSC deposited in the AMP-AD portal[7] and  

neural progenitor cells and iPSC-derived neurons from[37]. Broad iPSC derived neurons 

accessed from AMP-AD portal were generated using an embryoid body-based protocol to 

differentiate into forebrain neurons[1]. Wild-type cells used in the protocol were obtained 

from UConn StemCell Core.  RNA was purified using PureLink RNA mini-kit (Life 

Technologies) and libraries were prepared by Broad Institute's Genomics Platform using 

TruSeq protocol. Please refer to Table 2.6 for additional information. 

Type Mouse Human iPSC
a

GSM1269905 YZ2-100day

GSM1269906 YZ3-100day

YZ4-100day

YZ5-100day

GSM1901309 GSM1901317 GSM1269903 Astrocyte1

GSM1901310 GSM1901318 GSM1269904 Astrocyte2

GSM1901311 GSM1901319

GSM1901312 GSM1901320

GSM1901313 GSM1901321

GSM1901314 GSM1901322

GSM1901315 GSM1901323

GSM1901316 GSM1901324

GSM1269911

GSM1269912

GSM1269913

GSM1269914

Reference Sample

Neuron

Astrocyte

Oligodendrocyte

Microglia

Table 2.6 Reference samples for each cell type. GEO accession numbers for 

cell-type specific samples. 

a
 Samples accessed from the Broad iPSC cell-lines deposited in the AMP-AD.

GSM1901341

GSM1901340

GSM1901339

GSM1901338

GSM1901336

GSM1901335

GSM1901333

Human
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Marker Genes 

The reference panel was assembled with samples from four distinct cell types. A 

redundant set of well-known cell-type markers was selected from the literature[41, 131, 

291] (Table 2.7). Principal component analysis was performed on the reference panel 

using R function prcomp (version 3.3.3) to verify that the expressions of these gene were 

clustering samples by their cell types (Figure 2.14b; Figure 2.15a).  

Type Human Mouse
a

STMN2 Stmn2

SYN1 Syn1

SYT1 Syt1

GAD1 Gad1

CCK Cck

GFAP Gfap

ALDH1L1 Aldh1l1

AQP4 Aqp4

GJA1 Gja1

SOX9 Sox9

MOG Mog

MOBP Mobp

SOX10 Sox10

GPR37 Gpr37

TLR2 Tlr2

CX3CR1 Cx3cr1

IL1A Il1a

Table 2.7 Gene markers for principal brain cell types. 

a
 Mouse homologous genes were identified from Mouse Genome Database.

Cell Marker

Neuron

Astrocyte

Oligodendrocyte

Microglia
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Figure 2.14 PCA of samples included in the reference panel. a) Transcriptome-wide. Genes included in the reference panel b) PC1 vs PC2 and c) 

PC3 vs PC4. 
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2.3.5 Inference of the cellular population structure 

I ascertained alternative computation deconvolution algorithms implemented in 

the CellMix package (ver 1.6). Based on accuracy and robustness evaluation results I 

compared and reported the following three algorithms that outperformed the others: 

Digital Sorting Algorithm (named “DSA”)[293], which employs linear modeling to infer 

cell distributions; the method population-specific expression analysis (PSEA, also named 

meanProfile in CellMix implementation)[157] that calculates estimated expression 

profiles relative to the average of the marker gene list for each cell type[157]; and a semi-

supervised learning method that employs non-negative matrix factorization (ssNMF in 

CellMix implementation)[103]. I employed a leave-one-out cross-validation procedure to 

evaluate the accuracy provided by each method. The best performing algorithm ssNMF 

integrates cell-type marker genes to resolve the drawbacks of completely unsupervised 

standard non-negative matrix factorization. I followed the standard procedure described 

in the CellMix package, that included the extraction of marker genes from the reference 

samples (function extractMarkers from the CellMix package), and the posterior 

invocation of the function ged to infer cellular population from the gene expression of 

bulk RNA-Seq data. Besides, I tested additional methods which provided considerably 

lower accuracy (least-squares fit[8], quadratic programing[108]) or no significant 

difference (support vector regression[199] or latent variable analysis[51]) to the methods 

presented. 

I selected the reference samples that provide the most faithful transcriptomic 

profile for their respective cell types by following a leave-one-out cross validation 

approach. I trained iteratively deconvolution models using all but one of the samples that 
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was tested.  Only samples predicted with a composition higher than 80% were kept for 

the reference panel (Table 2.6; Figure 2.15b).  
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Figure 2.15 Leave-one-out evaluation of reference panel. a) Gene expression levels (log-transformed) for reference panel. The cell types of the 

isolated/iPSC-derived samples are color-coded and labeled on the y-axis. b) A leave-one-out procedure to obtain the cellular proportion for each of 

the samples of the reference panel was used. Cell-type proportions are shown as stacked percentage (red: astrocytes; green: microglia; blue: 

neuron; purple: oligodendrocyte). 
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2.3.6 Accuracy and Robustness Evaluation 

Chimeric validation 

 To emulate heterogeneous tissue with known and controlled cellular composition, 

I generated chimeric libraries pooling reads (to a total of 400,000) contributed from the 

human reference samples (See Table 2.6).  This process was repeated 720 times, using 

alternative reference samples to model each cell type. The proportion of reads that the 

libraries of neurons, astrocytes, oligodendrocytes and microglia provided to the chimeric 

libraries varied in predefined ranges (Figure 2.16). As a result, each of the chimeric 

libraries contained reads that followed 32 different distributions (neuronal reads 

contributed between 2 to 36% of reads, astrocytes between 22 to 76%, oligodendrocytes 

between 6 to 62% and microglia between 1 to 5%). Refer to Table 2.8 for detailed 

description of the 32 different distributions. I quantified the chimeric reads using Salmon 

(v0.7.2)[208], and employed the reference samples that did not contribute reads to the 

chimeric library as reference panel for the deconvolution methods.  

Overall, I applied my digital deconvolution analyses to 23,040 (720 × 32) 

chimeric libraries. I evaluated the accuracy using the root-mean-square error (RMSE, 

Equation 2.1 to compare the digital deconvolution cellular proportion estimates (method 

ssNMF) versus the defined proportion of reads specific to each of the chimeric libraries: 

 𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖 = 1

𝑛
         (Equation 2.1) 

 �̂�𝑖 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 𝑦𝑖 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 
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Figure 2.16 Chimeric library deconvolution simulation. Human cell-type specific reference samples contributed 720 different 

combinations to generate chimeric libraries. Reads were randomly sampled following 32 pre-specified distributions (Neuronal 

reads contributed between 2 to 36% of reads, astrocytes between 22 to 76%, oligodendrocytes between 6 to 62% and microglia 

between 1 to 5%). Each chimeric library was quantified and the cellular distribution estimated using digital deconvolution. These 

estimates were compare to prior distribution. 
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Neuron Astrocyte Oligodendrocyte Microglia

2.31 51.7 43.5 2.49

10 72 15.2 2.81

10.1 44.7 42.9 2.31

18.9 65.9 12.4 2.85

18.9 41.6 37 2.53

25.4 57.6 14.5 2.49

31.6 33.2 33.3 1.9

35.9 46 15.6 2.51

20.3 22.2 55.8 1.75

17.2 34.6 46.2 2.01

33.6 43.1 20.7 2.52

15.6 47.8 34.1 2.53

24.2 56.7 16.5 2.59

19.2 65.5 12.3 2.99

9.81 66.7 20.6 2.95

12.9 76.4 8.1 2.59

18.2 72.2 6.86 2.8

23.3 62.7 11.2 2.87

25 57.3 15.1 2.56

18.2 61.6 17.3 2.94

23.7 49.2 24.6 2.44

20.3 45.5 31.8 2.5

14.7 37.8 45.4 2.13

9.77 26.3 62.2 1.67

17.7 29.9 51.4 1.01

23.8 55.4 19.4 1.38

17.5 41.9 39 1.67

24.7 60.9 12.3 2.01

15 51.2 31.4 2.47

20.1 64.8 12.3 2.71

12.7 48.3 34.9 4.09

21.3 60.6 13.5 4.57

M
ic

r
o
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a

Table 2.8 Simulated chimeric tissue cell-type composition. Percentages of reads 

contributed to the synthetic chimeric libraries.

For each target cell type the distribution was pre-defined to cover a broad range of 

biological viable proportions (highlighted in bold).
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I also tested whether the deconvolution results were dominated by the expression of any 

specific marker gene and ascertained the robustness of the inferred cellular population 

structure to any possibly altered expression of marker genes. To do so, I performed the 

deconvolution analysis discarding each of the marker genes one at a time and evaluated 

how these distributions differed in comparison to the full gene reference panel.  

2.3.7 Statistical Analysis  

Transcriptome PCA and covariate analysis 

Number of reads gene quantification results from Salmon were normalized with 

DeSeq2’s VarianceStabilizingTransformation function after removing genes with total 

reads count less than 10,000. First 10 principle components were extracted from PCA, 

and single and stepwise covariate analysis using linear model were performed to 

investigate what covariates would affect data quality and downstream analysis. RNA 

quality (RIN and DV200), post-mortem index (PMI), sequencing pooling, sex, age at 

death, and brain tissue origin were included in either single covariate and stepwise 

covariate analysis. The results showed RNA quality measurements RIN and DV200, and 

age at death are the most important confounding factors that impact the analysis. 

Covariate correlation was performed to examine any correlation among the factors to 

avoid including highly correlated covariates that lead to over correction of the model, for 

example, RIN and DV200 are associated with quality but they are highly correlated as 

well. Since RIN and DV200 are highly correlated, using RIN only is recommended 

because other publicly ascertained datasets only have RIN measurements. (Figure 2.17). 

Later in Chapter 3, I will replace RIN for transcript integrity number (TIN), which will 

be inferred directly from RNA-Seq data. Notice that ribosomal RNA contents are 
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negatively correlated with uniquely mapped reads, because those rRNA will be mapped 

to multiple locations due to its highly conserved and similar sequences.  Besides, 

uniquely mapped reads also anti-correlated with incorrect strand reads, percentage of 

reads that mapped to multiple loci, and median 5’ to 3’ bias. The neuronal and astrocyte 

proportion I inferred from the RNA-Seq data are also highly negatively correlated. 

Figure 2.17 Covariate correlation. Major covariates of RNA-Seq and inferred cell type 

compositions from deconvolution were correlated to avoid including highly correlated 

covariates in downstream analysis. 
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 Transcriptome-wise PCA showed seven subjects are very different from the rest 

and they appeared as outlier on PC1 vs PC2 plot (Figure 2.18). iPSC samples were 

excluded from this analysis and analyzed separately in another study[143]. Among the 

seven outliers, 60007 and 83774 also have high median 5’ to 3’ bias. The top 30 genes 

that contributed the most to PC1 and top 30 to PC2 were extracted and plotted as a 

heatmap to show the dramatic difference between these outlier subjects and the rest of the 

samples (Figure 2.19). Notice that the left most 5 subjects are the outliers on 

transcriptome-wise PCA, but the other two outliers 83774 and 60007 do not have an 

obvious clustering pattern in the heatmap, suggesting that high median 5’ to 3’ bias also 

contribute variances observed in PC1 and PC2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Transcriptome-wise principle component analysis. 

Subject transcriptome-wise PCA were plotted using PC1 and PC2 with 

outliers labeled with subject ID.  
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Figure 2.19 Top 60 Genes for PC1 and PC2 heatmap. The left most 5 subjects are the outliers on transcriptome-wise PCA, and they are 

clustered as a separate group in the top 30 genes contributing the most variance to PC1 and PC2. The other two outliers 83774 and 60007 also 

have high median 5’ to 3’ bias that do not have an obvious clustering pattern in the graph. 
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Cell type proportions and disease status association analysis 

I employed linear regression models to test the association between cell-type 

proportions and disease status (R Foundation for Statistical Computing, ver.3.3.3). 

Stepwise discriminant analysis (stepAIC function of R package MASS, version 7.3-45) 

was used to determine significant covariates, and correct for confounding effects. I 

included RNA integrity number (RIN), batch, age at death and post-mortem interval 

(PMI) as covariates for the Mayo Clinic analyses. For Mount Sinai Brain Bank analyses, 

I corrected for RIN, PMI, race, batch and age at death. I also used linear-mixed models to 

perform multiple-region association analysis, employing random slopes and random 

intercepts grouping by observations and by donors[253], and correcting for the same 

covariates previously described. 

To analyze the DIAN and Knight-ADRC studies I applied linear-mixed models 

(function lmer and Anova, R packages lme4 ver.1.1 and car ver.2.1, respectively), 

clustering at family level to ascertain the effect of the neuropathological status in the cell 

proportion, and corrected for RIN and PMI.  For late-onset specific analyses I also 

corrected for age at death. Cellular composition shown as proportions were plotted using 

R package ggplot2 (ver 2.2.1) 

2.4 Results 

2.4.1 Study design 

To infer cellular composition from RNA-Seq, I firstly assembled a reference 

panel to model the transcriptomic signature of neurons, astrocytes, oligodendrocytes and 

microglia. The panel was created by analyzing expression data from purified cell lines. I 
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evaluated alternative digital deconvolution methods and selected the best performing for 

my primary analyses. I tested the digital deconvolution accuracy on induced pluripotent 

stem cell (iPSC) derived neurons/microglia cells and neuronal Translating Ribosome 

Affinity Purification followed by RNA-Seq (TRAP-seq; Figure 2.20). Finally, I verified 

its accuracy by creating artificial admixture with pre-defined cellular proportions.  

 

 

 

 

 

Figure 2.20 Study design. Development of the brain cell-type transcriptomic reference panel 

(left column): the expression signatures of key cell types of the brain were curated by compiling 

publicly available RNA-Seq data from neurons, astrocytes, oligodendrocytes and microglia. The 

panel was curated iteratively to retain only those samples that showed the most faithful 

expression signature, while evaluating alternative digital deconvolution methods. The accuracy of 

digital deconvolution to estimate brain cellular proportion was validated using additional cell-

type specific samples, and also by generating chimeric libraries. To study cellular population 

structure in AD (right column), I accessed publicly available datasets from the Advanced 

Medicines Partnership-AD knowledge portal (AMP-AD), including Mayo Clinic and Mount 

Sinai Brain Bank datasets. In addition, we generated RNA-Seq from participants of the Knight-

ADRC and The Dominantly Inherited Alzheimer (DIAN) studies. These three studies generated 

RNA-Seq data from pathological aging brains, Alzheimer’s disease cases, and neuropath-free 

controls for a total of six cerebral cortex regions and cerebellum.  I quantified the gene expression 

for all of the samples included in these studies using the same RNA-Seq processing pipeline. 

Using digital deconvolution methods, I estimated the brain cellular proportions of the samples 

and compared the proportion between AD cases and controls.  I study the cell structure of brains 

carriers of Mendelian pathological mutations and variants that confer high-risk to AD. Anterior 

prefrontal cortex – APC; superior temporal gyrus – STG; parahippocampal gyrus – PHG; inferior 

frontal gyrus – IFG; Mount Sinai Brain Bank – MSBB; Alzheimer’s disease – AD; pathological 

aging – PA. 
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Once the deconvolution approach was optimized, I calculated the cell proportion 

in AD cases and controls from the different brain regions of Mayo and MSBB datasets. 

The RNA-Seq data for the Mayo Clinic study (N = 191)[9] and Mount Sinai (MSSM) 

Brain Bank (MSBB; N = 300)[3] are deposited in the Advanced Medicines Partnership-

AD (AMP-AD) knowledge portal (Synapse ID: syn5550404 and syn3157743; Table 

2.1). The Mayo study includes RNA-Seq from the temporal cortex and cerebellum for 

AD affected and non-demented controls, in addition to pathological aging participants 

(Figure 2.20). The MSBB also profiled four additional cerebral cortex areas: anterior 

prefrontal cortex - APC, superior temporal gyrus - STG, parahippocampal gyrus – PHG, 

and inferior frontal gyrus – IFG; Table 2.1; Figure 2.20). I restricted the case-control 

analysis to subjects with definite AD and autopsy confirmed controls. In addition, we 

generated RNA-Seq from parietal lobe for participants of the Knight-ADRC (84 late-

onset cases, carriers of genetic risk factors and 16 controls; Table 2.2) and The 

Dominantly Inherited Alzheimer Network (DIAN; 19 carriers of mutations in APP, 

PSEN1, PSEN2) (Table 2.1; Figure 2.20). I employed the same pipeline to process all of 

the samples in order to avoid any bias. Furthermore, RNA-Seq from the Knight-ADRC 

and DIAN studies allowed us to compare the cell composition from ADAD vs LOAD 

brains, and similarly to test for differences in brain of controls, sporadic AD who do not 

carry any known high-risk variant, carriers of high-risk variants in TREM2 (N = 20), 

PLD3 (N = 33), and APOE 4 allele.  
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2.4.2 Development of a reference panel to estimate brain cellular 

population structure  

Due to limited availability of brain cell-type specific transcriptomic data, I 

compiled reference samples from different sources, including single-population RNA-

Seq from mice and human (immunopan-purified oligodendrocytes, neurons, astrocytes 

and microglia and iPSC-derived neurons and astrocytes).  

I selected 17 well accepted genes that tag brain cell types based on literature 

reviews[41, 131, 291] . A visual inspection of the expression of these marker genes in the 

samples I compiled suggested a divergent transcriptomic profile among the cell types 

(Figure 2.15a). The PCA showed that their expression was sufficient to cluster samples 

of neurons, astrocytes, oligodendrocytes and microglia with their respective cell types, 

regardless of the species of the reference samples (Figure 2.14b; Table 2.6). I observed 

that first principal component (PC) captured the expression profile of astrocytes; as 

shown by the significant association of the expression of astrocyte marker genes with (p 

< 8.05×10-03). The second PC captured the expression of genes whose expression is 

characteristic to oligodendrocytes (p < 2.52×10-02). The third PC was negatively 

associated with neuronal genes (p < 1.11×10-05) and positively with microglia (p < 

1.42×10-02). Overall, the principal component analysis (Figure 2.14b) indicated that these 

genes can effectively cluster samples by their cell-type.  

Given the technical and biological heterogeneity of the samples I compiled for 

reference panel, I carried out an optimization phase to identify those samples that showed 

the most faithful expression profile to represent their respective cell types (See 

Methods). From the leave-one-out cross-validation results, I noticed that not all of the 
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cell-type specific samples were predicted as expected (defined with a correct prediction 

proportion higher than 80%). Samples failed this criteria were due to various reasons, for 

example, the expression profile of immunopan-purified astrocytes collected from 

mice[291], human fetal[291] or human sclerotic hippocampal[291]  brains were reported 

with altered expression[38, 291] that differed to an extent that could not be accurately 

ascertained by deconvolution methods. Similarly, neuronal proportion inferred from 

iPSC-derived neurons from schizophrenic donors[38] and iPSC-derived neurons 

collected at early stages of differentiation (< 100 days; Synapse ID: syn3607401) were 

also lower than 80%. These samples did not cluster with their expected cell types in the 

marker gene PCA either, and coincidently the leave-one-out cross-validation indicated 

that these samples had an expression signature that differed from the other samples of the 

same cell type.  

To evaluate the performance of reference panel performance and test out different 

deconvolution algorithms, I employed and compared six digital deconvolution methods 

implemented in the CellMix package (ver 1.6) to infer cellular composition from 

reference samples RNA-Seq data, including qprog[108], cs-qprog, DSA[293], 

ssFrobenius[103], meanProfile[157], deconf[221]. The deconvolution performance of 

reference panel was evaluated by following a leave-one-out cross-validation procedure to 

compare the predicted cellular composition with its expected cellular identity of each 

cell-type specific sample. The accuracy of this comparison was quantified using the root-

mean-squared error (RMSE) calculation. A semi-supervised method adapted from non-

negative matrix factorization[103] (ssNMF – named ssFrobenius in CellMix) generated 

the most accurate predictions; and I verified that similar results were obtained by the 
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method population-specific expression analysis[157] (PSEA – named meanProfile in 

CellMix).  

I ascertained the effect that sequencing depth has in the accuracy of 

deconvolution.  I generated low-coverage versions (Picard DownsampleSam ver 2.8.2) of 

the samples that included a reduced number of randomly sampled reads (400,000 reads 

per sample), quantified the gene expression, inferred their cellular population 

proportions, and compared the distribution estimates with their full-depth libraries 

sequencing (more than 30 million reads per sample). I observed that the deconvolution 

was robust to the sequencing coverage, as shown by a correlation r2=0.98 (p < 2.2×10-16; 

Figure 2.21).  My final reference panel (Table 2.6; Table 2.7) had a very high 

confidence to predict cell types with a mean predicted accuracy = 95.2%; s.d. = 4.3, and a 

root-mean-square error (RMSE) = 0.06 (Table 2.9). 
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Figure 2.21 Comparison of cell proportions estimated from full-depth and down-

sampled RNA-Seq data. Each sample of the reference panel sample was down-sampled 

(400,000 reads) and cellular population structure inferred following leave-one-out 

procedure. Cell-type proportions of the samples inferred using the full-depth RNA-Seq 

data are presented along the X-axis, and along the Y-axis the counterparts inferred using 

shallow RNA-Seq. 
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Algorithm Overall Neuron Astrocyte Oligodendrocyte Microglia

ssNMF
a 0.064 0.054 0.055 0.028 0.017

PSEA
b 0.089 0.08 0.052 0.058 0.025

DSA
c 0.465 0.32 0.328 0.291 0.295

Table 2.9 Evaluation of deconvolution accuracy. Overall and cell-type specific root-mean-squared error (RMSE) 

for reference panel, calculated using the leave-one-out approach for three deconvolution algorithms implemented in 

CellMix package.

a 
ssNMF: semi-supervised learning non-negative matrix factorization. 

b 
PSEA: population-specific expression analysis (also named meanProfile in CellMix implementation). 

c 
DSA: Digital sorting algorithm.
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2.4.3 Optimization, validation and accuracy estimation of the reference 

panel and digital deconvolution method 

 Once I identified the optimal approach to perform digital deconvolution from 

brain RNA-Seq, I benchmarked it by using three sets of independent pure cell 

populations and simulated chimeric libraries. 

I firstly validated the accuracy to predict neuronal composition by generating 

RNA-Seq for eight iPSC-derived cortical neurons (see Methods). I observed an accurate 

prediction in these independent cell lines (mean neuronal proportion = 94.8% and s.d. = 

1.1%; Figure 2.22a).  I also ascertained the cellular composition of mRNA extracted 

from the barrel cortex neurons isolated by Translating Ribosome Affinity Purification 

(TRAP) in 24 mice. TRAP is a method that captures cell-type specific mRNA translation 

by purifying tagged ribosomal subunit and capturing the mRNA it bound to[122]. I 

observed an average of neuronal proportion = 96.7% and s.d. = 1.2% (Figure 2.22b). 

Similarly, I assessed the RNA-Seq data generated for iPSC-derived microglia (N = 10) 

deposited in the AMP-AD portal (Synapse ID: syn7203233) and inferred their cellular 

population structure and observed a mean microglia proportion = 86.6% and s.d. = 7.1% 

(Figure 2.22c).
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Figure 2.22 Cellular population structure of cell-type specific samples. Cell-type proportions shown as stacked 

percentage (red: astrocytes; green: microglia; blue: neuron; purple: oligodendrocyte). a) iPSC derived cortical neurons 

(N = 8). b) mouse barrel cortex neurons isolated by Translating Ribosome Affinity Purification (TRAP) procedure (N = 

24). c) iPSC derived microglia (N = 10). 
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To evaluate the accuracy of digital deconvolution for measuring cell-type 

proportion from cell-type admixtures, I simulated RNA-Seq libraries by pooling reads 

from individual cell types into well-defined proportions. I combined randomly sampled 

reads from neurons, astrocytes, oligodendrocytes and microglia to create chimeric 

libraries that mimic bulk RNA-Seq from brain, but with a range of pre-defined cell-type 

distributions (Figure 2.16).  I then quantified the gene expression for the chimeric 

libraries and inferred the cell-type distribution (employing for the reference panel 

samples that did not contribute reads to the chimeric libraries). This process was repeated 

23,040 times, choosing distinct human samples to represent each cell type and varying 

the proportions in 32 alternative distributions (See methods and Table 2.8). The overall 

error (RMSE) compared to known proportions = 0.08.  

Finally, I evaluated whether any gene included in the reference panel was 

dominating the inference of cell proportions. I re-calculated the cell-type distributions of 

the chimeric libraries, but dropping each of the genes from the reference panel one at a 

time. I observed a negligible difference between the cellular population structure inferred 

using the full reference and the gene-dropped panels (average RMSE = 0.022, s.d. < 

0.01). In this way, I verified that the proportions inferred using the reference panel are not 

driven by the expression of a single gene. This reassured us the inference should be 

robust to any bias introduced by the potential association of a single gene included in the 

reference panel with a particular trait.  
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2.4.4 Deconvolution of bulk RNA-Seq of non-demented and AD brains 

shows a characteristic signature for neurodegeneration 

Pathologically, AD is associated with neuronal death and gliosis specifically in 

the cerebral cortex. I evaluated whether I could exploit deconvolution methods using my 

reference panel to detect altered cellular population structure from the bulk RNA-Seq, 

and whether this corresponded to known pathological alterations.  

I initially analyzed the RNA-Seq from the Mayo Clinic Brain Bank that includes 

bulk RNA-Seq from the temporal cortex (TC) and cerebellum (CB) for 191 

participants[9] (Table 2.1). In the TC, I observed a significant higher astrocyte relative 

proportion (β = 0.23; p = 5.01×10-09; Table 2.10; Figure 2.25; Table 2.11) in AD brains 

compared to controls brains. I also found a significant lower relative proportion of 

neurons (β = -0.17; p = 1.58×10-07; Table 2.10; Figure 2.25; Table 2.11) and 

oligodendrocytes (β = -0.07; p = 1.8×10-02; Table 2.10; Figure 2.23; Table 2.11). As 

expected, given the absence of pathology, I did not observe a significant difference in the 

cell-type composition in the CB (Table 2.10). 
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Brain Regions Sample Size

AD vs Control N Effect P-value Effect P-value Effect P-value Effect P-value

  Cerebellum 119 -0.03 2.74×10
-01 0.05 8.65×10

-02 -0.02 1.07×10
-01

-3.19×10
-04

9.19×10
-01

  Temporal Cortex 119 -0.17 1.58×10
-07 0.23 5.01×10

-09 -0.07 1.8×10
-02

-2.03×10
-03

5.48×10
-01

AD vs Control

  Anterior Prefrontal Cortex 184 -0.04 8.14×10
-04 0.06 8.11×10

-05 -0.01 3.36×10
-02

-3.18×10
-03

1.12×10
-02

  Superior Temporal Gyrus 167 -0.08 3.49×10
-07 0.1 1.45×10

-07 -0.01 5.8×10
-02

-3.17×10
-03

5.78×10
-02

  Parahippocampal Gyrus 160 -0.11 1.35×10
-08 0.13 5.48×10

-10 -0.02 1.79×10
-03

-3.18×10
-03

1.35×10
-01

  Inferior Frontal Gyrus 159 -0.04 3.12×10
-03 0.06 3.58×10

-04 -0.01 4.39×10
-02

-3.98×10
-03

1.64×10
-02

  Anterior Prefrontal Cortex 184 -0.02 9.38×10
-04 0.02  2.07×10

-04
-3.43×10

-03
 1.25×10

-01
-1.46×10

-03
 4.95×10

-03

  Superior Temporal Gyrus 167 -0.03  1.87×10
-06 0.04 3.33×10

-07 -0.01   2.1×10
-02

-1.02×10
-03

 1.49×10
-01

  Parahippocampal Gyrus 160 -0.04  8.56×10
-06 0.04  2.85×10

-06 -0.01  8.7×10
-02

-1.94×10
-03

 2.53×10
-02

  Inferior Frontal Gyrus 159 -0.02  8.29×10
-05 0.03 1.4×10

-05
-4.64×10

-03
 6.7×10

-02
-1.46×10

-03
 3.11×10

-02

Braak Staging

  Anterior Prefrontal Cortex 173 -0.01  1.21×10
-02 0.01  1.27×10

-03
-3.09×10

-03 
2.77×10

-02
-7.04×10

-04 
3.12×10

-02

  Superior Temporal Gyrus 158 -0.02  2.22×10
-07 0.02  2.77×10

-07
-2.91×10

-03
 1.17×10

-01
-5.47×10

-04
 1.97×10

-01

  Parahippocampal Gyrus 147 -0.02  1.83×10
-06 0.03  9.6×10

-08 -0.01 1.49×10
-03

-3.71×10
-04

 4.97×10
-01

  Inferior Frontal Gyrus 152 -0.01  1.01×10
-02 0.01 8.56×10

-04
-3.55×10

-03
 2.37×10

-02
-1.01×10

-03
 1.74×10

-02

Mean Amyloid Plaques

  Anterior Prefrontal Cortex 184 -1.88×10
-03

 3.6×10
-03

2.82×10
-03

 1.03×10
-04

-7.99×10
-04

 2.13×10
-03

-1.46×10
-04 

1.72×10
-02

  Superior Temporal Gyrus 167 -4.2×10
-03

 7.73×10
-08 0.01  4.63×10

-08
-6.08×10

-04
 9.01×10

-02
-2.04×10

-04 
1.5×10

-02

  Parahippocampal Gyrus 160 -4.96×10
-03

 5.05×10
-09 0.01  1.26×10

-10
-9.99×10

-04
 1.85×10

-03
-2.1×10

-04
 2.58×10

-02

  Inferior Frontal Gyrus 159 -2.58×10
-03

 3.82×10
-04

3.53×10
-03

 1.96×10
-05

-7.41×10
-04

 1.51×10
-02

-2.04×10
-04

 1.26×10
-02

Table 2.10  Comparison of the cellular population structure (AD vs. neuropath-free controls) from the brains in the Mayo Clinic and Mount Sinai Brain Bank.

The cell-type proportions from AD cases and control were inferred from bulk RNA-seq using the ssNMF method. Effects of AD and associations with additional clinical and pathological 

phenotypes in cell-type distributions were estimated using linear regression model.
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The distribution of microglia was similar in the TC and CB from AD and control 

brains (Table 2.10; Figure 2.23). The proportion of microglia was lower than any other 

cell types. The Mayo dataset also includes brains from individuals with pathological 

aging (PA; Table 2.1); which is neuropathologically defined by amyloid β (Aβ) senile 

plaque deposits but little or no neurofibrillary tau pathology[9, 192]. I observed a 

significant lower relative proportion of microglia in PA brains compared to AD in both 

TC and CB (Table 2.12; Figure 2.24)[169]. Therefore, I speculated that the lack of 

changes in the AD microglial population was neither due to low statistical power nor the 

inability of my method to estimate the microglial proportions, but reflected unaltered 

neuropathological observations in AD brains. 

 

Figure 2.23 Microglia and oligodendrocyte proportions inferred from 

RNA-Seq of Mayo Clinic and Mount Sinai Brain Bank (MSBB) studies. 

Mean microglial (green) and oligodendrocyte (purple) proportion for AD cases 

and neuropath-free controls (bars indicate the standard deviation). The 

numbers of subjects are indicated below x-axis. 



 84 

Figure 2.24 Cellular population structure for Alzheimer’s disease (AD) and Pathological Aging (PA) subjects included in the Mayo 

Clinic study. Columns height represent the mean proportions. The numbers of subjects for each group is reported below x-axis. 
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I also analyzed data from the MSBB, which contains bulk RNA-Seq for four 

additional cerebral cortex areas (APC, STG, PHG, IFG). Replicating my findings from 

the Mayo dataset I observed a significant lower relative proportion in neurons and 

increase in astrocytes in all four areas (Table 2.10; Figure 2.25; and Table 2.11). The 

strongest effect size was detected in the parahippocampal gyrus and superior temporal 

gyrus (p < 3.49×10-07) (Table 2.10; Table 2.13). Neuropathological studies have 

described that the parahippocampal gyrus in one of the first brain areas in which AD 

pathology occurs[33, 78, 267]. I also observed a significant and strong correlation 

between neuronal and astrocyte relative proportions and last ascertained clinical status 

(Clinical Dementia Rating - CDR), and number of amyloid plaques and Braak staging 

(Table 2.10; Figure 2.25; Figure 2.26).  
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Figure 2.25 Cell-type distributions of the samples included in the Mayo Clinic and Mount 

Sinai Brain Bank. Mean neuronal (blue) and astrocytic proportion (red) for a) Alzheimer’s 

disease affected brains (AD) and controls (bars indicate standard deviations). The numbers of 

subjects for each group are shown below the x-axis. Distribution for additional clinical and 

pathological phenotypes reported for the Mount Sinai Brain Bank (MSBB): b) clinical dementia 

rating scores (CDR) and c) Braak and Braak staging.  d) Brain cell-type proportions (x-axis) 

plotted against the mean number of amyloid plaque (values greater than 0; y-axis). Standard 

errors were depicted in shaded area with LOESS smooth curve fitted to cell-type proportions 

derived from deconvolution. (** P< 0.01; *** P< 1.0×10-3; and **** P< 1.0×10-4). 
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Figure 2.26 Neurons and astrocytes distributions for the brains included in the Mount 

Sinai Brain Bank stratified by CDR and Braak staging. Neuron (blue) and astrocyte (red) 

proportions for the plotted against a) CDR. b) Braak Staging.   
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Brain Regions Sample Size

Mayo N Effect P-value Effect P-value Effect P-value Effect P-value

   Cerebellum 119 -0.04  1.05×10
-01 0.06  2.09×10

-02 -0.02  1.53×10
-01

8.79×10
-04 

6.53×10
-01

   Temporal Cortex 119 -0.17  7.1×10
-08 0.23  8.43×10

-09 -0.07  3.1×10
-02

3.91×10
-04

 8.67×10
-01

Mount Sinai Brain Bank

   Anterior Prefrontal Cortex 184 -0.04  1.75×10
-03 0.06  1.02×10

-04 -0.01  2.68×10
-02

-1.81×10
-03

 2.76×10
-02

   Superior Temporal Gyrus 167 -0.07  2.57×10
-06 0.09  1.06×10

-06 -0.01  8.55×10
-02

-1.77×10
-03

 1.32×10
-01

   Parahippocampal Gyrus 160 -0.1  2.37×10
-08 0.13  2.66×10

-10 -0.02  2.74×10
-03

-1.72×10
-03

 2.44×10
-01

   Inferior Frontal Gyrus 159 -0.04  4.07×10
-03 0.06 5.96×10

-04 -0.01  1.15×10
-01

-2.81×10
-03

 1.84×10
-02

Table 2.11 Comparison of the cellular proportions estimated using the method PSEA in AD and control brains from the Mayo and Mount Sinai Brain Bank.  

MicrogliaOligodendrocyteAstrocyteNeuron

Sample Size

PA vs AD N Effect P-value Effect P-value Effect P-value Effect P-value

   Cerebellum 75 0.05 6.66×10
-02 -0.06 3.83×10

-02 0.02 1.11×10
-01 -0.01 2.29×10

-04

   Temporal Cortex 76 0.19 2.51×10
-06 -0.21 1.02×10

-06 0.03 5.57×10
-02 -0.01 5.05×10

-04

PA vs Control

   Cerebellum 94 0.02 5.38×10
-01 -0.04 1.77×10

-01 0.02 1.7×10
-01

4.65×10
-03

1.73×10
-01

   Temporal Cortex 91 -0.05 1.91×10
-01 -0.03 4.58×10

-01 0.07 2.75×10
-02

5.39×10
-03

1.53×10
-01

Table 2.12 Cell-type proportions comparison of subjects diagnosed with Pathological Aging. The cell-type proportions inferred from RNA-seq data using 

the ssNMF method. Distribution in Pathological Aging (PA) brains, AD cases and neuropath-free controls are compared using linear regression model.

MicrogliaOligodendrocyteAstrocyteNeuron
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2.4.5 The cellular population structure differs between ADAD vs LOAD 

While the loss of neurons is a common feature of AD, it is not clear whether the 

mechanism holds true across different forms of AD or AD cases carrying different 

genetic risk variants. Therefore, I investigated whether AD with distinct etiologies 

showed different cellular compositions. We generated RNA-Seq data from the parietal 

lobe of participants enrolled in Knight-ADRC (84 LOAD, 3 ADAD, and 16 neuropath-

free controls) and DIAN (19 ADAD) studies (Table 2.1; Table 2.2). I selected the 

LOAD and ADAD participants to match for CDR at death, brain weight and sex 

distributions (See Table 2.2). 

Using digital deconvolution, I determined the cellular composition for these 

brains. I observed a significant lower relative proportion of neurons (β = -0.02, p = 

2.66×10-02) and significant higher relative proportion of astrocyte in AD (β = 0.03, p = 

MSBB regions APC STG PHG IFG

APC
a - 7.79×10

-04
9.02×10

-03
<2.22×10

-16

STG
b

4.89×10
-01 - 9.35×10

-01
2.12×10

-11

PHG
c

9.90×10
-01

7.06×10
-01 - 8.53×10

-13

IFG
d

1.28×10
-10

2.23×10
-06

8.86×10
-08 -

d
 IFG - Inferior Frontal Gyrus.

Table 2.13 Effect of AD in the neuronal and astrocytic proportions in distinct cerebral 

cortex areas. Comparison of the effect that AD has in the cell-type distribution in the four 

cerebral cortex areas ascertained in the Mount Sinai Study (ANCOVA). We report p-values for 

the pairwise comparison (upper triangle for neuron and lower triangle for astrocyte). 

Lower Half - Astrocyte

Upper Half - Neuron

a
 APC - Anterior Prefrontal Cortex. 

b
 STG - Superior Temporal Gyrus. 

c
 PHG - Parahippocampal Gyrus. 
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5.48×10-03) for the combined LOAD and ADAD brains compared to controls (Table 

2.14; Figure 2.27; Table 2.15), consistent with my findings in the Mayo and MSBB 

datasets. Similarly, the joint analysis of the brains from Knight-ADRC and DIAN showed 

a significant association between the neuronal and astrocyte relative proportions and 

neuropathological measures (Braak staging: β = -0.03, p = 8.51×10-06 for neurons and β = 

0.03, p = 3.83×10-06 for astrocytes; Table 2.14; Figure 2.27b) as well as for clinical 

measures (CDR: β = -0.02, p = 2.66×10-02 for neurons and β = 0.03 and p = 5.48×10-03 

for astrocytes; Table 2.14; Figure 2.27c). I did not observe a significant difference in the 

compositions of microglia or oligodendrocytes (Table 2.14; Fig S8). 
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Disease Status Sample Size

AD Status N Effect P-value Effect P-value Effect P-value Effect P-value

   AD
a
 vs Control 122 -0.11 5.52×10

-04 0.14 2.48×10
-05 -0.03 6.5×10

-02
-2.64×10

-03
2.49×10

-01

   ADAD vs Control 38 -0.19 3.94×10
-07 0.24 1.57×10

-10 -0.04 8.5×10
-03 -0.01 7.77×10

-05

   LOAD vs Control 100 -0.09 5.67×10
-03 0.12 3.34×10

-04 -0.02 1.06×10
-01

-1.70×10
-03

4.57×10
-01

   ADAD vs LOAD

      Braak matched 42 -0.08 1.03×10
-02 0.11 9.26×10

-04 -0.03 7.1×10
-02

-1.46×10
-03

7.01×10
-01

      Braak corrected 91 -0.09 4.71×10
-03 0.11 5.24×10

-04 -0.02 1.77×10
-01

-2.41×10
-03

4.25×10
-01

      CDR corrected 94 -0.12 2.11×10
-03 0.13 6.29×10

-04 -0.02 3.8×10
-01

-3.11×10
-03

2.41×10
-01

Clinical Dementia Rating

   AD
a
 and Controls 110 -0.02  2.66×10

-02 0.03  5.48×10
-03 -0.01  2×10

-01
-4.63×10

-04 
4.77×10

-01

   ADAD and Controls 26 -0.08  4.12×10
-04 0.11  1.78×10

-07 0.01   4.03×10
-03

-1.55×10
-03

 1.75×10
-08

   LOAD and Controls 100 -0.02  3.22×10
-02 0.03  7.01 ×10

-03 -0.01 1.81×10
-01

-4.64×10
-04

 5.11 ×10
-01

Braak Staging

   AD
a
 and Controls 106 -0.03  8.51×10

-06 0.03  3.83×10
-06

-4.24×10
-03

 2.04×10
-01

-2.52×10
-04

 6.81×10
-01

   ADAD and Controls 33 -0.05  2.37×10
-05 0.06  2.45×10

-05 -0.01  2.29×10
-01

-7.2×10
-04

 4.89×10
-01

   LOAD and Controls 88 -0.03  7.41×10
-04 0.03  4.63×10

-04
-3.72×10

-03
 3.29×10

-01
-1.66×10

-04
 7.86×10

-01

The cellular population structure was inferred using the ssNMF method. Effects and p-values for the association with disease status, clinical dementia 

rating and Braak staging using generalized mixed models. We identified similar trends with approximately the same significance levels. 

Table 2.14 Cellular population structure altered in the parietal lobe from AD brains in the DIAN study and Knight-ADRC brain bank. 

MicrogliaOligodendrocyteAstrocyteNeuron

a
 AD includes both autosomal dominant AD (ADAD) and late-onset AD (LOAD). 
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 Disease Status Sample Size

N Effect P-value Effect P-value Effect P-value Effect P-value

AD
a
 vs Control 122 -0.1 1.41×10

-03 0.12 7×10
-05 -0.02 1.97×10

-01
-1.84×10

-03
2.4×10

-01

ADAD
b
 vs Control 38 -0.18 2.35×10

-06 0.22 3.03×10
-10 -0.05 3.47×10

-02
-3.77×10

-03
1.56×10

-04

LOAD
c
 vs Control 100 -0.08 1.16×10

-02 0.1 6.82×10
-04 -0.02 2.5×10

-01
-1.12×10

-03
4.91×10

-01

ADAD vs LOAD 106 -0.09 9.47×10
-04 0.12 1.1×10

-05 -0.03 6.23×10
-02

-1.14×10
-04

9.38×10
-01

b
 ADAD: autosomal dominant AD, carriers of pathogenic mutation in APP , PSEN1  or PSEN2 . 

c
 LOAD: late-onset AD patients not carrying any autosomal dominant mutation.

Table 2.15 Comparison of the cellular proportions estimated using the method PSEA in AD and control brains from the DIAN and 

Knight-ADRC

MicrogliaOligodendrocyteAstrocyteNeuron

a
 AD Includes all of the AD affected subjects from the Knight-ADRC and DIAN studies. 
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Figure 2.27 Neuron and astrocyte distributions from the DIAN and Knight-ADRC brains. a) Mean neuronal 

(blue) and astrocytic (red) proportions for carriers of pathogenic mutations in APP, PSEN1 or PSEN2 (ADAD), late-

onset AD (LOAD) and neuropath-free controls (bars indicate standard deviations). Neuronal and astrocytic 

proportions plotted against b) Braak Staging; c) by Clinical Dementia Rating. d) Cell-type distributions for carriers of 

AD genetic risk factors. Lines indicate significance levels (*P< 0.05; ** P< 0.01; *** P< 1.0×10-3; **** P< 1.0×10-4). 
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Next, I compared the cell proportion of LOAD vs ADAD and found that the cell 

composition differs between them. I firstly selected the LOAD brains (N = 25) to match 

the Braak staging distribution of ADAD brains (N = 17). The ADAD brains showed a 

significant lower neuronal proportion compared to LOAD brains (β = -0.08; p = 1.03×10-

02; Table 2.14), and increased relative astrocyte proportion (β = 0.11; p = 9.26×10-04; 

Table 2.14). Then, I analyzed the entire Knight-ADRC LOAD brains, by extending the 

model to correct for Braak stages. I also observed significant lower relative neuronal 

proportion (β = -0.09; p = 4.71×10-03; Table 2.14; Figure 2.27a; Table 2.15) and 

increased relative astrocyte proportion (β = 0.11; p = 5.24×10-04; Table 2.14; Figure 

2.27a; Table 2.15 in ADAD brains compared to LOAD. I observed the same cellular 

differences when I corrected for CDR at death (β = -0.12; p = 2.11×10-03 for neurons and 

β = 0.13; p = 6.29×10-04 for astrocytes; Table 2.14; Figure 2.27bc).  In summary, my 

results indicate that ADAD individuals present a higher neuronal death even in the same 

stage of the disease, suggesting that in ADAD neuronal death play a more important role 

in pathogenesis than sporadic AD, in which other factors such as inflammation or 

immune response may be involved. 

2.4.6 Specific genetic variants confer a distinctive cell composition 

profile 

A variety of genetic variants increase risk of LOAD; however, it is unclear if the 

cellular mechanisms are the same across these distinct risk factors. Therefore, I tested the 

hypothesis that distinct genetic causes of LOAD have characteristic cellular population 

signatures. 
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I initially ascertained the effect of APOE ε4 on the cell-type composition. I 

observed a significant lower relative proportion of neurons (β = -0.06 for each of the ε4 

alleles; p = 9.91×10-03) and increase of relative proportion of astrocytes (β = 0.10; p = 

4.15×10-02) from the TC included in the Mayo Clinic dataset (Table 2.20; Figure 2.28a; 

Figure 2.29a). This finding was replicated when I performed a multi-region analysis of 

the MSBB dataset (β = -0.04; p = 2.60×10-03 and β = 0.05; p = 1.31×10-03 for neurons and 

astrocytes respectively; Table 2.16; Figure 2.28a; Table 2.20; Figure 2.29a). Given the 

strong risk conferred by the APOE ε4 allele[56], I studied its effects on the cell-type 

composition by restricting my analysis to AD brains. I observed a significant association 

in the multi-area analysis of the MSBB dataset (β = -0.03 p = 4.01×10-02; Table 2.16; 

Figure 2.28b; Table 2.21; Figure 2.29b) and also a significant increase in relative 

proportion of astrocytes (β = 0.03; p = 1.23×10-02; Table 2.16; Figure 2.28b; Table 

2.21; Figure 2.29b). I also observed a significant decrease in relative proportion of 

neurons (β = -0.06; p = 2.11×10-02; Table 2.16; Figure 2.28c) when I analyzed the 

LOAD and control brains from the Knight-ADRC. When I restricted the analysis to AD 

brains from the Knight-ADRC and compared the APOE ε4 carriers (N = 46) to non-

carriers (N = 41) I also observed decreased relative neuronal proportion (β = -0.06; p = 

2.69×10-02; Table 2.16; Figure 2.28d). I extended the models to correct for the Braak 

stages, and observed a significant association for the relative proportion of neurons with 

the APOE ε4 allele in the Knight-ADRC dataset (β = -0.06; p = 3.66×10-02; Table 2.16), 

and a significant association for the relative proportion of astrocytes in the MSBB (β = 

0.04; p = 4.89×10-02; Table 2.16). Furthermore, I performed a meta-analysis to combine 

the evidence of both studies and observed a significant association of the relative 
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neuronal proportion with APOE ε4 allele (p=1.86×10-02) and marginally significant 

association for the relative astrocytic relative proportion (p=0.09). 

 

 

 

 

 

 

 

 

 

 

Figure 2.28 Effect of the APOE ε4 allele and TREM2 coding variants on the cellular 

population structure. Mean neuronal (blue) and astrocytic (red) proportions for a) AD cases and 

controls in the Knight-ADRC brains categorized by APOE ε4 carriers vs. non-carriers and b) AD 

cases of Knight-ADRC brain bank (bars indicate standard deviations). c) AD cases and controls 

in the Mayo Clinic and MSBB d) AD cases in the Mayo Clinic and MSBB. e) Neuronal (blue) 

and astrocyte (red) distributions for samples included in the Mount Sinai brain bank stratified by 

TREM2 genetic status. APC: Anterior Prefrontal Cortex; STG: Superior Temporal Gyrus; PHG: 

Parahippocampal Gyrus; IFG: Inferior Frontal Gyrus; (n.s. P > 0.05; * P < 0.05; **** P < 1.0×10-

4) 
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Figure 2.29 Neurons and astrocytes distributions for samples included in the Mayo Clinic and Mount Sinai Brain Bank (MSBB) 

stratified by APOE ε4 allele. Neuronal (blue) and astrocyte (red) proportions.  a) AD Cases and controls. b) Restricted to AD cases 
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Variant Carriers Sample Size

Knight-ADRC N Effect P-value Effect P-value Effect P-value Effect P-value

   PLD3  vs Control 49 -0.1 1.6×10
-04 0.13 2.84×10

-03 -0.03 6.17×10
-02

7.05×10
-04

7.89×10
-01

   TREM2  vs Control 36 -0.07 7.93×10
-02 0.11 1.05×10

-02 -0.03 4.9×10
-02

1.65×10
-03

5.84×10
-01

   Sporadic AD vs Control 45 -0.11 5.45×10
-03 0.13 2.95×10

-04 -0.02 4.55×10
-01

-3.48×10
-03

1.13×10
-01

   APOE ε4+ vs APOEε4- LOAD cases & controls100 -0.06 2.11×10
-02 0.05 5.35×10

-02 0.01 3.72×10
-01

-8.09×10
-04

6.31×10
-01

   APOE ε4+ vs APOEε4-  LOAD cases only 84 -0.06 2.69×10
-02 0.03 2×10

-01 0.03 1.4×10
-02

-8.31×10
-04

6.21×10
-01

       CDR corrected 84 -0.06 2.78×10
-02 0.03 2.05×10

-01 0.03 1.16×10
-02

-1.05×10
-03

5.37×10
-01

       Braak corrected 73 -0.06 3.66×10
-02 0.03 3.72×10

-01 0.03 4.51×10
-03

-1.14×10
-03

5.93×10
-01

Mount Sinai Brain Bank - Multi-region

   AD TREM2  carriers vs Control 301 -0.03 3.57×10
-01 0.03 3.19×10

-01
-2.08×10

-03
7.87×10

-01
-2.68×10

-03
8.67×10

-02

   AD non-carriers TREM2  vs Control 882 -0.07 1.91×10
-08 0.08 1.25×10

-08
-3.36×10

-03
4.79×10

-01
-2.89×10

-04
7.97×10

-01

   AD TREM2  vs AD non-TREM2 673 0.05 1.98×10
-02 -0.05 1.58×10

-02
2.12×10

-03
7.76×10

-01
-2.13×10

-03
1.74×10

-01

       CDR corrected 673 0.04 5.83×10
-02 -0.04 4.46×10

-02
1.68×10

-03
8.19×10

-01
-1.92×10

-03
2.22×10

-01

       Braak corrected 642 0.05 1.3×10
-02 -0.05 2.7×10

-02
-1.82×10

-03
8.13×10

-01
-2.66×10

-03
1.28×10

-01

       Mean plaque counts corrected 673 0.05 2×10
-02 -0.05 1.59×10

-02
1.73×10

-03
8.15×10

-01
-2.2×10

-03
1.5×10

-01

   APOEε4 counts all samples 556 -0.04 2.6×10
-03 0.05 1.31×10

-03 -0.01 4.47×10
-02

-3.58×10
-04

6.53×10
-01

   APOE ε4 counts AD cases 225 -0.03 4.01×10
-02 0.03 4.23×10

-02
-4.52×10

-03
3.73×10

-01
-5.13×10

-04
6.78×10

-01

       CDR corrected 225 -0.03 2.02×10
-02 0.03 2.03×10

-02
-4.86×10

-03
3.19×10

-01
-4.91×10

-04
6.93×10

-01

       Braak corrected 198 -0.03 7.35×10
-02 0.04 4.89×10

-02 -0.01 8.54×10
-02

-1.08×10
-03

4.12×10
-01

Table 2.16 Gene specific cellular proportion analysis for Knight-ADRC and Mount Sinai Brain Bank studies 

MicrogliaOligodendrocyteAstrocyteNeuron
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Next, I analyzed the cellular composition in PLD3 carriers (N = 33). PLD3 carriers 

exhibited significantly lower relative proportion of neurons compared to controls (β = -0.10; p = 

1.60×10-04; Figure 2.27d) and a significant higher relative proportion of astrocytes (β = 0.13; p = 

2.84×10-03; Table 2.16; Figure 2.27d).  Sporadic AD non-carrier cases also exhibited 

significantly lower relative proportion of neurons compared to controls (β = -0.11; p = 5.45×10-

03) and significant higher relative proportion of astrocytes (β = 0.13; p = 2.95×10-04; Table 2.16; 

Figure 2.27d). The cell proportion between sporadic AD non-carriers and PLD3 carriers did not 

show any significantly difference (p > 0.05). 

Finally, I performed similar analyses with TREM2 carriers. TREM2 is involved in the 

immune response and its role in amyloid-β deposition or clearance remain controversial[263]. 

My analysis on the Knight-ADRC data showed significantly higher relative astrocytic proportion 

in AD affected TREM2 carriers (N = 20) compared to controls (β = 0.11; p = 1.05×10-02; Table 

2.16; Figure 2.27d). Despite TREM2 carriers presented lower neuron relative proportion 

compared to controls, this difference was not statistically significant (p>0.05; Table 2.16; 

Figure 2.27d). I analyzed whether the TREM2 carriers provided sufficient power to detect a 

significant association. My empirical estimates showed that TREM2 sample size provides 96% of 

power to detect an association with an effect size comparable to that observed for sporadic AD (β 

= -0.11). I also investigated the cellular proportion of the eleven TREM2 carriers in the MSBB 

dataset. The multi-region analysis showed TREM2 carriers do not show a significant difference 

in relative neuronal proportion compared to controls (p > 0.05; Table 2.16; Figure 2.28e), 

whereas in the AD TREM2 non-carriers the relative neuronal and astrocytic proportions are 

significantly different from controls (β = -0.07; p = 1.91×10-08 and β = 0.08; p = 1.25×10-08 

respectively; Table 2.16; Figure 2.28e).  



 101 

In fact, my analyses indicate that TREM2 carriers have a unique cellular brain 

composition distinct than the other AD cases. TREM2 brains showed significantly higher relative 

neuronal proportion (β = 0.05; p = 1.98×10-02) and significantly lower relative astrocyte 

proportion than the AD non-carries (β = -0.05; p = 1.58×10-02; Table 2.16). The distribution of 

CDR, mean number of amyloid plaques and Braak staging do not differ between strata. 

Nonetheless, I verified that the cellular proportions were still significant after correcting for each 

of those variables (Table 2.16). These results suggested that the mechanism that lead to disease 

in TREM2 carriers is less neuron-centric than in the general AD population. 

2.5 Discussion 

I have developed, optimized and validated a digital deconvolution approach to infer cell 

composition from bulk brain gene expression that integrates publicly available cell-type specific 

expression data while addressing the heterogeneity of the phenotypic differences of samples and 

technical characteristics of transcriptome ascertainment. I acknowledge that the accuracy of this 

platform might be affected by the phenotypic diversity of the reference panel or the disease-

induced dysregulation of genes it includes. However, the deconvolution approach proved to be 

robust to the genes included in the reference panel, as I demonstrated that the proportions it 

inferred are not driven by the expression of any single gene. This platform produced reliable cell 

proportion estimates, as was shown by the evaluation of independent datasets of iPSC-derived 

neurons and microglia, mice cortical neurons (Figure 2.22) and simulated chimeric libraries. 

I used this approach to deconvolve studies that include large number of 

neuropathologically defined AD and control brains with their transcriptome ascertained in 

distinct brain regions and observed consistently significant lower relative neuronal proportion 

and increased relative astrocyte proportions in the cerebral cortex suggesting neuronal loss and 
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astrocytosis. Compatible with other studies, I also identified that the altered cellular proportion is 

also significantly associated with decline in cognition and Braak staging[239]. In contrast, I did 

not identify a significant difference in the cellular population structure in the cerebellum, a 

region not affected in AD (Table 2.10; Figure 2.25a).  

We generated RNA-Seq data from brains carrying pathogenic mutations in APP, PSEN1, 

PSEN2, which cause alterations in Aβ processing and lead to ADAD, and also generated RNA-

Seq from brains of LOAD and neuropath-free controls. I observed altered cell composition in 

both ADAD and LOAD compared to controls. However, I identified that ADAD brains have a 

different cell-type composition than disease-stage-matched LOAD, as the ADAD has a 

significantly lower relative neuronal proportion and more pronounced astrocytosis. Given the 

specific cellular population structure of the TREM2 carriers, I compared the neuronal and 

astrocytic relative proportion of ADAD to that of LOAD non-carriers of variants in TREM2 and 

observed significant differences (β = -0.09 and p = 6.89×10-03 for neurons and β = 0.10; p = 

1.49×10-03 for astrocytes). This indicates that the difference of the relative proportion between 

ADAD and LOAD are not driven by TREM2 carrier brains. Based on my results, I would 

hypothesize that this change in Aβ processing of ADAD would lead to more direct to neuronal 

death than the pathological processes of LOAD. Similarly, decreased neuronal and increased 

astrocyte relative proportions were significantly associated with APOEε4 allele. It has been 

reported APOE ε4 allele increase the risk for AD by affecting APP metabolism or Aβ 

clearance[44, 151], suggesting a direct link between APP metabolism and neuronal death. 

In contrast, the analysis of the Knight-ADRC brains showed that the neuronal relative 

proportion decrease is less pronounced in TREM2 carriers than in other LOAD cases. I replicated 

this finding in a multi-area analysis from the MSBB dataset. These results may implicate that 
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TREM2 risk variants lead to a cascade of pathological events that differ from those occurring in 

sporadic AD cases, which is also consistent with the known biology of TREM2. Further 

longitudinal neuroimaging analysis are required to validate my findings. TREM2 is involved in 

AD pathology through microglia mediated pathways, implicated on altered immune response and 

inflammation[54]. Recent studies in TREM2 knock-out animals showed that fewer microglia 

cells were found surrounding Aβ plaques with impaired microgliosis[275]. Furthermore, TREM2 

deficiency was reported to attenuate tauopathy against brain atrophy[168]. I found no significant 

difference in the proportion of microglia between AD cases and controls. However, I found 

significantly decreased microglia in brains exhibiting pathological aging (Table 2.12; Figure 

2.24), proving that these studies are sufficiently powered to identify significant differences. In 

any case, I cannot rule out the possibility of a change in the activation stage of microglia in these 

individuals.  Overall, these results suggest that TREM2 affects AD risk through a slightly 

different mechanism to that of ADAD or LOAD in general. Therefore, other pathogenic 

mechanisms should contribute to disease.  I believe that a detailed modeling of immune response 

cells, reflecting the alternative microglia activation states, will generate more accurate profiles to 

elucidate the immune cell distribution in AD.  

2.6 Conclusions 

There is a large interest in the scientific community to use brain expression studies to try 

to identity novel pathogenic mechanism in AD and to identify novel therapeutic targets. These 

efforts are generating a large amount of bulk RNA-Seq data, as single-cell RNA (scRNA-Seq) 

from human brain tissue in large sample size is not feasible. Single-cell sorting needs to be 

performed with fresh tissue[115], which restrains the analysis of highly characterized fresh-

frozen brains collected by AD research centers. My results indicate that digital deconvolution 
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methods can accurately infer relative cell distributions from brain bulk RNA-Seq data, but I 

recognize the importance of obtaining traditional neuropathological measures to validate the 

results I observed. Having this approach validated for AD can have an important impact in the 

community,  because digital deconvolution analyses 1) can reveal distinct cellular composition 

patterns underlying different disease etiologies; 2) can provide additional insights about the 

overall pathologic mechanisms underlying different mutations carriers for variants as in genes 

such as TREM2, APOE, APP, PSEN1 and PSEN2; 3) can correct the effect that altered cell 

composition and genetic statuses have in addition to downstream transcriptomic analyses and 

lead to novel and informative results; 4) can help the analysis of highly informative frozen brains 

collected over the years. 

In conclusion, my study provides a reliable approach to enhance our understanding of the 

fundamental cellular mechanisms involved in AD and enable the analysis of large bulk RNA-Seq 

data that may lead to novel discoveries and insights into neurodegeneration. 
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3.1 Abstract 

Background: In previous studies, I observed decreased neuronal and increased astrocyte 

proportions in AD cases in parietal brain cortex by using a deconvolution method for bulk RNA-

Seq. These findings suggested that genetic risk factors associated with AD etiology have a 

specific effect in the cellular composition of AD brains. The goal of this study is to investigate if 

there are genetic determinants for brain cell compositions. 

Methods: Using cell type composition inferred from transcriptome as a disease status proxy, I 

performed cell type association analysis to identify novel loci related to cellular population 

changes in disease cohort. We imputed and merged genotyping data from seven studies in total 

of 1,669 samples and derived major CNS cell type proportions from cortical RNA-Seq data. I 

also inferred RNA transcript integrity number (TIN) to account for RNA quality variances. The 

model I performed in the analysis was: normalized neuronal proportion ~ SNP + Age + Gender + 

PC1 + PC2 + median TIN.  

Results: A variant rs1990621 located in the TMEM106B gene region was significantly 

associated with neuronal proportion (p=6.40×10-07) and replicated in an independent dataset. The 

association passed genome-wide multiple test correction in the multi-tissue meta-analysis 

(p=9.42×10-09) and joint analysis (p=7.66×10-10). This variant is in high LD with rs1990622 (r2 = 

0.98) which was previously identified as a protective variant for FTD with TDP-43 inclusion. 

Further analyses indicated that this variant is associated with increased neuronal proportion in 

participants with neurodegenerative disorders, not only in AD cohort but also in cognitive 

normal elderly cohort. However, this effect was not observed in a younger schizophrenia cohort 

with a mean age of death < 65. The second most significant loci for neuron proportion was 
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APOE, which suggested that using neuronal proportion as an informative endophenotype could 

help identify loci associated with neurodegeneration. 

Conclusion: This result suggested a common pathway involving TMEM106B shared by aging 

groups in the present or absence of neurodegenerative pathology may contribute to cognitive 

preservation and neuronal protection. 

3.2 Introduction 

3.2.1 Alzheimer’s disease in the context of multi-cell type interactions  

Although neuronal loss and synapse dysfunction are the preceding events of cognitive 

deficits in Alzheimer’s disease (AD), neurons do not work or survive by themselves. These 

delicate organelles require supports through intimate collaborations within themselves and with 

other cell types[125]. The microenvironment of cellular crosstalk, interaction, balance, and 

circuits maintained by neurons, astrocytes, microglia, oligodendrocytes, and other vascular cells 

are essential for the brain to carry out functions and fight against insults.  

AD associated risk factors identified across the genome also point to the involvements of 

multi-cell types apart from neurons[125, 161]. APOE4 is related to lipid metabolism and mostly 

expressed in astrocyte and microglia[56]. Other lipid metabolism related risk genes are ABCA7 

identified in all cell types[130, 161], CLU in astrocyte and oligodendrocyte precursor cells[119, 

160, 161], and SORL1 in astrocyte[161]. Research interests in the roles of inflammatory response 

to toxic stimuli or microbial infection have been escalating recently, and AD risk genes 

associated with immune response including TREM2[114, 144, 246], PLCG2[246], ABI3[246], 

CR1[160, 161], CD33[130, 161], HLA-DRB5–HLA-DRB1[161], and INPP5D[161] are mostly 

expressed in microglia and macrophages. BIN1 expressed in microglia, oligodendrocyte, and 
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neurons[161], and PICALM expressed in microglia and endothelial cells[119, 161] are associated 

with endocytosis.  

 In a normal functional brain, astrocytes, microglia, and oligodendrocytes provide trophic 

supports to neurons and various cell type specific functions. Astrocytes confer multiple functions 

to fulfill neurons’ metabolic needs[250] including but not limited to providing substrates for 

oxidative phosphorylation[210], exerting regulation of excitatory CNS neurotransmitter 

glutamate[76, 93], and serving as bidirectional communication nodes that talk to both neurons 

and blood vessels and modulate their activities in an arrangement of functional entities named 

neurovascular units[227, 244, 260]. Microglia surveil in the extracellular space and look for 

pathogens or debris to engulf through phagocytosis. Oligodendrocyte provides insulation to 

neurons by wrapping around the axons with myelin sheath. However, in an AD diseased brain, 

these supporting cells may become double-edged swords that play beneficial and/or harmful 

roles as disease progresses. Amyloid-β accumulation and clearance are the central events of the 

amyloid cascade hypothesis. Both astrocyte and microglia have been involved in response to the 

toxic stimuli of amyloid plaques. During the early stage, microglia[124, 126, 127] and 

astrocytes[126, 209, 225] accumulate around plaques to phagocytose or degrade those in a 

protective manner. However, as disease progresses, the chronic and prolonged activation of 

microglia and astrocytes will be provoked into a damaging pro-inflammatory state and a vicious 

circle that exacerbate pathology in a harmful manner. Evidence suggested that increased 

inflammatory cytokine secretion in microglia, and increased production of complement cascade 

components, and impaired glutamate regulation (unregulated glutamate activity can cause 

neuronal excitatory cell death)[76] may contribute to synaptic loss which ultimately leads to 

cognitive deficits. Disrupted neuronal plasticity due to myelin loss and dysfunctional 
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neurovascular units further exacerbate the dreadful situation and destroy the harmony of the 

multi-cell type microenvironment.  

3.2.2 Cell type composition inferred from bulk RNA-Seq deconvolution 

Apart from disturbed homeostatic processes and impaired circuits integrity, cell type 

composition or proportion is also altered. Brains affected by AD exhibits neuronal loss, 

oligodendrocyte loss, astrocytosis, and microgliosis. However, the specific effects that 

pathological mutations and risk variants have on brain cellular composition are often ignored. To 

investigate the changes of cerebral cortex cell-type population structure and account for the 

associated confounding effects in downstream analysis, I developed an in-silico deconvolution 

method to infer cellular composition from RNA-Seq data, which has been documented in my 

previous publication[172], and explained in depth in Chapter 2. In summary, I firstly assembled 

a reference panel to model the transcriptomic signature of neurons, astrocytes, oligodendrocytes 

and microglia. The panel was created by analyzing expression data from purified cell lines. I 

evaluated various digital deconvolution methods and selected the best performing ones for my 

primary analyses. I tested the digital deconvolution accuracy on induced pluripotent stem cell 

(iPSC) derived neurons and microglia, and neurons derived from Translating Ribosome Affinity 

Purification followed by RNA-Seq. Finally, I verified its accuracy with simulated admixture with 

pre-defined cellular proportions.  

Once the deconvolution approach was optimized, I calculated the cell proportion in AD 

cases and controls from different brain regions of LOAD and ADAD datasets. I found that 

neuronal and astrocyte relative proportions differ between healthy and diseased brains, and also 

differ among AD cases that carry different genetic risk variants. Brain carriers of pathogenic 

mutations in APP, PSEN1 or PSEN2 presented lower neuronal and higher astrocytes relative 
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proportions compared to sporadic AD.  Similarly, APOE ε4 carriers also showed decreased 

neuronal and increased astrocyte relative proportions compared to AD non-carriers.  In contrast, 

carriers of variants in TREM2 risk showed a lower degree of neuronal loss than matched AD 

cases in multiple independent studies. These findings suggest that different genetic risk factors 

associated with AD etiology may have gene specific effects in the cellular composition of AD 

brains. 

3.2.3 Use cell type composition in cell type QTL (cQTL) to identify novel loci 

for AD risk 

In a recently published study named PsychENCODE[272], a very similar deconvolution 

approach as reported in my previous study[172] was taken to infer cell type composition from 

RNA-Seq data predominantly drawn from psychiatric disorder cohorts. From the cell fractions 

inferred from bulk RNA-Seq data, they found that cell type composition differences can account 

for more than 88% of bulk tissue expression variation observed across the population with a ±4% 

variance on a per-subject level. Using cell type compositions as quantitative traits, the authors 

identified a non-coding variant closed to the FZD9 gene that is associated with both FZD9 gene 

expression and the proportion of excitatory layer 3 neurons[272]. Interestingly, deletion variants 

found previously upstream of FZD9 were associated with cell composition changes in Williams 

syndrome[45], a developmental disorder exhibits mild to moderate intellectual disabilities with 

learning deficits and cardiovascular problems. This observation re-emphasized the importance of 

incorporating cell type composition into RNA-Seq analysis pipeline even in psychiatric disorder 

cohorts without dramatic changes in cellular composition, not mention the necessity of such 

practice in neurodegeneration disorders that have significant changes in cell type composition. It 

also demonstrated the great potential of using relative abundance of specific cell types in 



 111 

identifying novel variants and genes implicated in disease. However, it is unclear if this finding 

is only applicable to psychiatry-relate traits or it is a more general finding. 

In this study, I utilized cell-type proportions inferred from my deconvolution 

method[172] to perform cell type QTL analysis in a dataset enriched for AD cases in search for 

potential new loci that are associated with neurodegeneration disorders. We imputed and merged 

genotyping or whole genome sequencing data from seven studies - five centered on 

neurodegeneration (N = 1,125), one schizophrenia cohort (N = 414), and GTEx multiple tissue 

controls (N = 130). From cortical RNA-Seq data, I derived cell fractions of four major CNS cell 

types, including neuron, astrocyte, microglia, and oligodendrocyte. Using normalized neuronal 

proportion as quantitative trait, I identified a variant rs1990621 located in the TMEM106B gene 

region significantly associated with neuronal proportion variation in all cohorts except 

schizophrenia subjects. This variant is in high LD with rs1990622 (r2 = 0.98), which was 

previously identified as a protective variant in FTD cohorts[266]. Variants in this region have 

also been found to be associated with AD with TDP-43 pathology[229], and downregulation of 

TMEM106B is observed in AD brains[234] . In conclusion, I have identified a variant associated 

with neuronal proportion with potential protective effect in neurodegeneration disorders.  

3.3 Methods 

3.3.1 Study participants 

The participants were sourced from seven studies with a total sample size of 1,669 

(Table 3.1). Among those, five studies are mainly focused on neurodegenerative disorders 

including Alzheimer’s disease (N = 681), frontotemporal dementia (N = 11), progressive 

supranuclear palsy (N = 82), pathological aging (N = 29), Parkinson Disease (N = 1), as well as 

cognitive normal individuals (N = 540). These samples come from the Mayo, MSSM, Knight 
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ADRC, DIAN, and ROSMAP studies as described in table 3.1. To compare with the 

neurodegenerative disorders, I also included schizophrenia (N = 210) and bipolar disorders (N = 

34) participants from the CommonMind study (Table 3.1). Additionally, two studies, MSSM and 

GTEx, contain multi-tissue data that include some participants contribute more than one tissue 

(Table 3.1).  

3.3.2 Standard protocol approvals, registrations and patient consents 

The protocol of DIAN and Knight-ADRC studies have been approved by the review 

board of Washington University in St. Louis. The protocol of Mayo dataset was approved by the 

Mayo Clinic Institutional Review Board (IRB).  All neuropsychological, diagnostic and autopsy 

protocols of MSSM dataset were approved by the Mount Sinai and JJ Peters VA Medical Center 

Institutional Review Boards. The religious orders study and the memory and aging project of 

ROSMAP was approved by the IRB of Rush University Medical Center. The NIH Common 

Fund’s GTEx program protocol was reviewed by Chesapeake Research Review Inc., Roswell 

Park Cancer Institute’s Office of Research Subject Protection, and the institutional review board 

of the University of Pennsylvania. Within CommonMind consortium, the MSSM sample 

protocol was approved by Icahn School of Medicine at Mount Sinai IRB; the Pitt sample 

protocol was approved by the University of Pittsburgh’s Committee for the Oversight of 

Research involving the Dead and IRB for Biomedical Research; the Penn sample protocol was 

approved by the Committee on Studies Involving Human Beings of the University of 

Pennsylvania. All participants were recruited with informed consent for research use.
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Dataset Brain Region Library Type Read Length mRNA Enrichment Sequencer Mean Coverage DNA type Reference

Bennett 2012;

Bennett 2012

Mayo TCX Paired end 101 ploy-A selection HiSeq 2000 158.31 ± 34.04 Genotype Allen 2016

MSSM BM10 BM22 BM36 BM44 Single end 100 rRNA depletion HiSeq 2500 35.96 ± 10.04 WGS Wang 2018

Knight-ADRC PAR Paired end 150 rRNA depletion HiSeq 4000 137.87 ± 21.81 Genotype Li 2018

DIAN PAR Paired end 150 rRNA depletion HiSeq 4000 149.82 ± 19.68 Genotype Li 2018

GTEx 2013;

Battle 2017

CommonMind BM9 Paired end 100 rRNA depletion HiSeq 2500 86 ± 21.12 Genotype Fromer 2016

Paired endBM24 CTX FCXGTEx WGS48.28 ± 13.2HiSeq 2000ploy-A selection76

Replication

Discovery

Table 3.2 General information of seven studies evolved in the analysis.  TCX: temporal cortex; PAR: parietal cortex; CTX: cortex; FCX: frontal cortex; DLPFC: dorsal lateral 

prefrontal cortex. BM9: dorsal lateral prefrontal cortex; BM10: Anterior prefrontal cortex; BM22: superior temporal gyrus; BM24: ventral anterior cingulate cortex; BM36: 

parahippocampal gyrus; BM44: inferior frontal gyrus. Mean coverage unit is million.

ROSMAP DLPFC Paired end 101 ploy-A selection HiSeq 2000 99.2 ± 29.29 WGS

N Region Age % Male RIN TIN Control AD FTD PSP PA PD SCZ BP OTH

ROSMAP 523 1 86.6 ± 4.59 35.4 7.07 ± 0.99 73.2 ± 5.13 114 338 0 0 0 0 0 0 71

Mayo 260 1 80.4 ± 8.37 48.1 8.16 ± 0.903 77.4 ± 5.94 69 80 0 82 29 0 0 0 0

MSSM 219 4 84 ± 7.32 35.6 6.42 ± 1.77 76.4 ± 2.52 49 170 0 0 0 0 0 0 0

Knight ADRC 108 1 83.1 ± 12 42.6 6.44 ± 1.2 79.4 ± 1.91 13 77 11 0 0 1 0 0 6

DIAN 15 1 50.9 ± 7.08 73.3 5.55 ± 1.09 78.9 ± 0.99 0 15 0 0 0 0 0 0 0

GTEx 130 3 58.2 ± 9.91 67.7 6.92 ± 0.846 73.8 ± 2.97 125 1 0 0 0 0 0 0 4

CommonMind  414 1 64.6 ± 18 62.3 7.67 ± 0.899 50 ± 7.21 170 0 0 0 0 0 210 34 0

Replication Total 1,146 426 343 11 82 29 1 210 34 10

Merged Total 1,669 540 681 11 82 29 1 210 34 81

Table 3.1 Demographic information for cohorts included in the study. AD: Alzheimer’s Disease; FTD: frontal temporal dementia; PSP:  progressive supranuclear palsy; PA: pathological 

aging; PD: Parkinson’s Disease; SCZ: schizophrenia; BP: bipolar disease; OTH: other unknown dementia or no diagnosis information.  

Discovery

Replication
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3.3.3 Data collection and generation 

Cortical tissues from various locations of post-mortal brains were collected (Table 3.2). 

RNA was extracted from lysed tissues and prepared into libraries of template molecules ready 

for subsequent next-generation sequencing steps. Ribosomal RNAs constitute 80%-90% of total 

RNAs, which are not the targets of this study. To focus on mRNA quantification usually 

researchers would either remove excessive rRNAs or enrich for mRNAs during RNA-Seq library 

preparation. In this study, DIAN[172], Knight ADRC[172], MSSM[274], and CommonMind[95] 

took a rRNA depletion approach to removed ribosomal RNA from total RNAs to retain a higher 

mRNA content.  Whereas, Mayo[9], ROSMAP[27, 28], and GTEx[6, 24] took a poly-A 

enrichment approach to enrich mRNAs from total RNAs. Genotype information were also 

collected and sequenced correspondingly. RNA-Seq paired with genotype data for each 

participant were either sequenced at Washington University for DIAN and Knight-ADRC studies 

or downloaded from public database for all the other studies. Please see Table 3.2 and each 

study reference(s) for more data collection and generation specifications.  

3.3.4 Data QC and preprocessing 

Genetic Data 

Stringent quality control (QC) steps were applied to each genotyping array or sequence 

data. The minimum call rate for single nucleotide polymorphisms (SNPs) and individuals was 

98% and autosomal SNPs not in Hardy-Weinberg equilibrium (p-value < 1×10-06) were 

excluded. X-chromosome SNPs were analyzed to verify gender identification. Unanticipated 

duplicates and cryptic relatedness (Pihat ≥ 0.25) among samples were tested by pairwise 

genome-wide estimates of proportion identity-by-descent. EIGENSTRAT[215] was used to 

calculate principal components. The 1000 Genomes Project Phase 3 data (October 2014), 
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SHAPEIT v2.r837[67], and IMPUTE2 v2.3.2[134] were used for phasing and imputation. 

Individual genotypes imputed with probability < 0.90 were set to missing and imputed genotypes 

with probability ≥0.90 were analyzed as fully observed. Genotyped and imputed variants with 

MAF < 0.02 or IMPUTE2 information score < 0.30 were excluded. WGS data quality is 

censored by filtering out reads with sequencing depth DP < 6 and quality GQ < 20 followed by 

similar QC approaches as described above for genotyping data. After the QC, all studies 

including imputed genotype and WGS data was merged into a binary file using Plink for 

downstream analysis. PCA and IBD analyses were performed on the merged binary files using 

Plink to keep European ancestry and unrelated participants (Figure 3.1 and Figure 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Genomic PCA analysis. Genotype data PCA analysis was performed to select European 

ancestry subjects with PC1 < -0.002 and PC2 < 0.008 with red dotted cut-off lines. HapMap_CEU: 

HapMap Utah residents with Northern and Western European ancestry; HapMap_JPT: HapMap 

Japanese in Tokyo, Japan; HapMap_YRI: HapMap Yoruba in Ibadan, Nigeria; MayoADGS: Mayo 

Clinic study participants; MSBB: MSSM study participants; GTEX: GTEx study participants; 

DIAN: DIAN study participants; MAP: Knight-ADRC participants; NIALOAD: Knight-ADRC 

participants; CMC: CommonMind participants; ROSMAP: ROSMAP participants. 
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Expression Data 

FastQC was applied to RNA-Seq data to examine various aspects of sequencing 

quality[231]. Outlier samples with high rRNA contents or low sequencing depth were removed 

from the pool. The remaining samples were aligned to human GRCh37 primary assembly using 

Star with 2-Pass Basic mode (ver 2.5.4b)[74]. Alignment metrics were ascertained by applying 

Picard CollectRnaSeqMetrics[4] including reads bias, coverage, ribosomal contents, coding 

bases, and etc. Following which, transcript integrity number (TIN) for each transcript was 

calculated on aligned bam files using RSeQC tin.py[273] (ver 2.6.5).  RNA-Seq coding gene and 

transcript expression was quantified using Salmon transcript expression quantification (ver 0.7.2) 

with GENCODE Homo sapiens GRCh37.75 reference genome[208].  

Figure 3.2 Genomic IBD analysis. IBD analysis was performed to select unrelated 

subjects with Z0 > 0.8 and Z1 < 0.2 with red dotted cut-off lines. When there are related 

individuals, one individual will be dropped from the related pair. 

 



 117 

Four major central nerve system cell type proportions were inferred from RNA-Seq gene 

expression quantification output as documented in my previous deconvolution study[172]. To 

briefly explain the deconvolution process, I firstly assembled a reference panel to model the 

transcriptomic signature of neurons, astrocytes, oligodendrocytes and microglia from purified 

single cell tissue sources respectively. Using the reference panel and the method population-

specific expression analysis[157] (PSEA, also named meanProfile in CellMix 

implementation[102]), I calculated four cell type proportions for each subject bulk RNA-Seq 

data. For each brain tissue collection site of each study, outlier values for each cell type 

proportion were removed. Mean values for each cell type of each tissue in each study were 

subtracted from the deconvolution results to center all the distributions to zero mean (Figure 

3.3). Phenotype information from all studies were merged and unified to the same coding 

paradigm to enable downstream joint analysis; for example, males are all coded as 1 and females 

are 2.
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Figure 3.3 Major CNS cell type proportions derived from RNA-Seq datasets with each row representing each tissue of each study. A) raw 

cell type proportions inferred from the data with vertical bars indicating quantiles within each tissue and each cell type.  B) cell type proportions 

were normalized by subtracting the mean from each tissue deconvolution result after removing outliers. 
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3.3.5 Data analysis 

For the discovery phase, ROSMAP dataset was analyzed with linear regression model 

employed in Plink[217] using normalized neuronal proportion to run quantitative trait analysis. 

Age, sex, PC1, PC2, and median TIN were used as covariates to account for potential genetic, 

phenotypic or technical heterogeneity. TIN is calculated directly from post-sequencing results 

that captures RNA degradation by measuring mRNA integrity directly[273]. Results were 

depicted as Manhattan plots using R (ver 3.4.3) qqman package[261] (ver 0.1.4).  

For the replication phase, all the other studies except ROSMAP were combined and 

prepressed to run meta-tissue QTL analysis because MSSM and GTEx contain samples with 

multiple cortical tissues. Meta-Tissue software installation and data preprocessing were 

conducted following a four-step instruction documented in the developer website: 

http://genetics.cs.ucla.edu/metatissue/install.html.  Meta-tissue[253] processing pipeline calls 

two main functions, firstly MetaTissueMM[253] and then followed by Metasoft[117].  

MetaTissueMM applies a mixed model to account for the heterogeneity of multiple tissue QTL 

effects. Metasoft performs the meta-analysis while proving a more accurate random effect p-

value for multiple tissue analysis and a m-value based on Bayesian inference to indicate how 

likely a locus is a QTL in each tissue. Similarly, results were depicted as Manhattan plots and 

visually examined.  

For the final merging phase, both discovery and replication studies were combined to 

maximize sample size. Apart from meta-tissue analysis by each tissue of each study, a split by 

disease status analysis was also performed in the final merging phase. Samples from each tissue 

of each study were also split into disease categories. Resultant subcategory with less than 20 

http://genetics.cs.ucla.edu/metatissue/install.html
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subjects were removed from the analysis to avoid false results due to too small sample size. 

Similar data preparation and analysis pipeline were enforced as documented above.  

QTL analysis results were uploaded to Fuma (v1.3.3d)[276] to annotation significant 

SNPs (p-value < 10-06) with GWAScatalog (e91_r2018-02-06) and ANNOVAR (updated 2017-

07-17). Gene-based analysis was also performed by Magma (v1.06)[63] implemented in Fuma.  

3.3.6 Data availability 

Mayo: https://www.synapse.org/#!Synapse:syn5550404 

MSSM: https://www.synapse.org/#!Synapse:syn3157743 

ROSMAP: https://www.synapse.org/#!Synapse:syn3219045 

CommonMind: https://www.synapse.org/#!Synapse:syn2759792 

GTEx: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v7.p2 

Knight-ADRC: https://www.synapse.org/#!Synapse:syn12181323 

According to the data request terms, DIAN data are available upon request: http://dian.wustl.edu 

 

3.4 Results 

3.4.1 Study design 

The ROSMAP study containing 523 subjects will be the discovery dataset, and the other 

six studies are collapsed into replication dataset with 1,146 subjects. Altogether, I have 

assembled a set of cortical RNA-Seq data comprised of 1,669 participants predominantly 

focused on neurodegenerative disorders from seven sources (Figure 3.4, Table 3.1). 

Collectively, Mayo, MSSM, Knight ADRC, and ROSMAP studies contributed 664 sporadic AD 

cases. Apart from sporadic AD, 15 subjects from DIAN study and 2 from Knight-ADRC also 

https://www.synapse.org/#!Synapse:syn5550404
https://www.synapse.org/#!Synapse:syn3157743
https://www.synapse.org/#!Synapse:syn3219045
https://www.synapse.org/#!Synapse:syn2759792
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v7.p2
https://www.synapse.org/#!Synapse:syn12181323
http://dian.wustl.edu/
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harbor PSEN1, PSEN2, and APP mutations that exhibit familial AD inheritance pattern. Other 

neurodegenerative disorders, including progressive supranuclear palsy (PSP), pathological aging 

(PA), frontal temporal dementia (FTD), and Parkinson’s Disease (PD), are mainly drawn from 

Mayo and Knight ADRC datasets. Other psychiatric disorders including schizophrenia and 

bipolar disorders are contributed by the CommonMind study. Besides, 540 control subjects 

cleared of cognitive dementia or neuropsychiatric symptoms were also included. MSSM and 

GTEx also included multiple tissue data, which were collected from multiple regions of the same 

subjects that allow us to perform region specific comparison within the same cohort.  

Discovery analysis was performed in ROSMAP study. In the replication phase, all the 

other studies were merged to replicate signals identified from the discovery ROSMAP set. 

Because GTEx and MSSM contain multiple cortical regions collected from the same subjects, I 

also applied meta-tissue software[253] specifically designed for multi-tissue QTL analysis to 

perform a mixed model analysis with random effects that account for correlated measurements 

from multi-tissue individuals. To attain the largest available sample size for this study, the 

discovery and replication sets were merged to perform the merged multi-tissue QTL analysis in a 

search for additional signals hidden in previously separated discovery or replication analysis due 

to lack of power. After merged analysis, the cohorts were split into four major disease status 

groups (AD, control, schizophrenia, other non-AD neurodegenerative disorders) to explore how 

different disease strata could impact the results.  
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Figure 3.4 Study design. RNA-Seq and paired genotype or WGS data were 

accessed and preprocessed for downstream analysis. Genotype data was censored 

based on my quality control criteria and imputed as needed. WGS and imputed 

genotype were merged and followed by PCA and IBD procedures to select 

unrelated European ancestry subjects. RNA-Seq data was quality checked with 

FastQC and aligned to human GRCh37 primary assembly with Star, from which 

TIN was inferred with RSeQC to account for RNA integrity variances that I later 

incorporated into the analysis. Gene expression were quantified from unaligned 

RNA-Seq with psedo-aligner Salmon for deconvolution procedure. Cell type 

composition comprised of four major CNS cell type proportions were inferred by 

performing deconvolution procedure on gene expression quantification results. 

Using cell type proportions as quantitative traits, I identified loci in TMEM106B 

gene region associated with neuronal proportion in my assembled dataset.  
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3.4.2 TMEM106B variants associated with neuronal proportion 

During discovery phase, ROSMAP dataset (N = 484 after removing outliers from total 

number of 523 subjects) was used to perform cell type proportion QTL analysis. Using 

normalized neuronal proportion as a quantitative trait, the QTL analysis identified more than 10 

peaks that passed genome wide suggestive threshold (<1.0×10-05, Figure 3.5AB, Table 3.3). 

However, only one signal rs1990621 (chr7: 12283873) were replicated with p-value = 7.41×10-04 

in the replication dataset (N = 1,052) combining all the other datasets except ROSMAP (Figure 

3.5CD). When the discovery and replication datasets were merged to attained a larger sample 

size (N = 1,536), rs1990621 major allele C is negatively associated with neuronal proportion 

with p-value = 9.42×10-09 (Figure 3.6AB, Figure 3.7AC), which means the minor allele G is 

associated with increased neuronal proportion in my assembled datasets focusing on 

neurodegenerative disorders. 

 

 

Dataset Brain Region Ref Allele Sample Size Beta SE P-value

Discovery DLPFC C 484 -0.3 0.06 6.40×10
-07

Replication Multiple C 1,052 -0.13 0.04 7.41×10
-04

Merged meta-tissue Multiple C 1,536 -0.16 0.05 9.42×10
-09

 

Table 3.3 rs1990621 (chr7:12283873) major allele C is significantly associated with decreased neuronal 

proportions. Therefore, G allele (MAF = 0.4658) is significantly associated with increased neuronal proportions. 
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Figure 3.5 Discovery and replication phases Manhattan and QQ plots. Loci located in chromosome 7 were 

associated with neuronal proportion in ROSMAP discovery dataset and replicated in replication dataset. A) Discovery 

set Manhattan plot showed seven peaks associated with neuronal proportion at suggestive threshold. The peak located 

in chromosome 7 was labeled, which is for rs1990621 with p-value = 6.4×10-07. B) QQ plot of the discovery phase 

analysis. C) Replication set Manhattan plot showed that the peak located in chromosome 7 replicated the signal 

identified during discovery phase with p-value = 7.41×10-04. D) QQ plot of the replication phase analysis. 
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Figure 3.6 SNP-based and gene-based meta-analysis. rs1990621 located in chromosome 7 TMEM106B gene region was 

significantly associated with neuronal proportion in cortical RNA-Seq dataset. A) Manhattan plot showed SNP-based genome-

wide significant hit located in chromosome 7 with other suggestive SNP hits labeled. B) QQ plot of the SNP-based analysis. C) 

Manhattan plot showed gene-based genome-wide significant hit located in chromosome 7 with other suggestive gene hits labeled. 

D) QQ plot of the gene-based analysis. 
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Figure 3.7 Meta-Tissue analysis results of rs1990621. A) Forest plot showed p-value and confidence interval for 

rs1990621 for each tissue site of each dataset that included in the Meta-Tissue analysis. Summary random effect was 

depicted at the bottom as RE Summary. B) PM-Plot of rs1990621 while combining both p-value (y axis) and m-value 

(x axis). Red dot indicates that the variant is predicted to have an effect in that particular dataset, blue dot means that 

the variant is predicted to not have an effect, and green dot represents ambiguous prediction. C) Forest plot p-value 

and confidence interval for rs1990621 for discovery, replication, and merged datasets. D) Forest plot p-value and 

confidence interval for rs1990621 when splitting the merged dataset into four main disease categories. 
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Noticeably, in both replication and merged analyses, multi-tissue data were involved that 

provided additional power but also posed challenges to the analysis, the same issue faced by the 

GTEx study[24, 55]. Compared to a tissue-by-tissue approach, multiple tissues collected from 

the same subject may help identify QTL by aggregating evidence from multiple tissues, which is 

similar to a meta-analysis of combining each study. However, one violation of such approach is 

that the tissues collected from the same subject are presumably highly correlated since they 

shared the same genetic architecture. Thus, it violates the assumption of independency for 

carrying out a standard meta-analysis[253]. Another challenge of the multi-tissue QTL is the 

heterogeneity of the effects, which means a variant may have different effects on different 

tissues. To resolve these issues, I applied the Meta-Tissue analytic pipeline[253] 

(http://genetics.cs.ucla.edu/metatissue/) specifically designed for multi-tissue QTL, the same 

approach that GTEx took to analyze their multi-tissue data. As shown in Figure 3.7A, Meta-

Tissue analysis results of rs1990621 for the merged analysis were displayed as a forest plot with 

95% confidence interval and p-value labeled for each tissue of each study. Among them, MSSM 

and GTEx are multi-tissue studies while the others are single-tissue studies. Meta-Tissue used a 

linear mixed model to capture the multi-tissue correlation within MSSM and GTEx respectively. 

Regarding the effect heterogeneity, Meta-Tissue calculated a m-value[117] to predict if a variant 

has an effect in a tissue. M-value is similar to the posterior probability of association based on 

the Bayes factor[117] but with differences specifically designed for detecting whether an effect 

is present in a study included in a meta-analysis. Figure 3.7B is a PM-Plot that integrates 

evidences from both frequentist (p-value) and Bayesian (m-value) sides to interpret the 

heterogeneity of multi-tissue QTL effects.  Variant rs1990621 in ROSMAP and Mayo studies 

have m-values greater than 0.9, are predicted to have an effect and color coded with red. In CMC 

http://genetics.cs.ucla.edu/metatissue/)


 128 

study, the m-value is less than 0.1, so it is predicted to not to have an effect and color coded with 

blue. All the other studies with m-value between 0.1 and 0.9 are predicted with ambiguous effect 

and color coded with green. Based on the forest plot and PM-Plot, the variant does have effect 

heterogeneity across different tissues and studies. In this case, random-effect model will be more 

suitable to account for effect heterogeneity. Therefore, summary random effect and p-value were 

reported for the analysis. 

Apart from multi-tissue QTL, a single-tissue joint analysis was also performed. In this 

case, one tissue region was drawn from the multi-tissue data to avoid violating the independency 

assumption. Specifically, BM36 and frontal cortex tissue were selected to represent MSSM and 

GTEx study respectively. Study sites were coded as dummy variables to account for potential 

batch effects. In this joint analysis, the variant rs1990621 is also the top hit with p-value = 

7.66×10-10.  

3.4.3 Neuronal protective effect of TMEM106B variants observed in 

neurodegenerative disorders and normal aging participants 

To explore the effect in different disease categories, the merged dataset was stratified 

based on disease:  AD, other non-AD neurodegenerative disorders, schizophrenia and control. 

Signification associations between rs1990621 and neuronal proportion were observed in AD (p-

value = 1.95×10-07), other non-AD neurodegenerative (p-value = 8.19×10-04), and cognitive 

normal control (p-value = 2.94×10-02) cohorts, but not in schizophrenic cohort (p-value = 

9.32×10-01, Table 3.4, Figure 3.7D). The effect of the variant was more prominent in 

neurodegenerative cohorts and aging controls with mean age of death greater than 65 years old. 

However, it was absent from younger cohorts such as GTEx controls and CommonMind 
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schizophrenia participants. Thus, this variant seems to be associated with a neuronal protection 

mechanism shared by any aging process in the present or absence of neuropathology.    

 

3.4.4 Functional annotation of rs1990621 

The variant rs1990621 is located in the TMEM106B gene region where other variants in 

high LD linkage are also located and labeled in Figure 3.8A. Although the CADD score and 

RegulomeDB score for this variant are not remarkably high to suggest any functional 

consequences (Figure 3.8BC), this variant is in high LD with rs1990622 (r2 = 0.98), a 

TMEM106B variant previous identified to be associated with FTD risk[266], particularly in 

granulin precursor (GRN) mutation carriers[57, 92]. TMEM106B is expressed in neurons and 

microglia, with highest protein expression detected in the late endosome/lysosome compartments 

of neurons[36, 163, 237, 248]. A nonsynonymous variant rs3173615, which is also in high LD 

with rs1990621 (r2 = 0.98), located in the exon 6 of TMEM106B (the dark blue dot in Figure 

3.8B) produces two protein isoforms (p.T185S) that affect TMEM106B protein level through 

protein degradation mechanism[36, 49, 200]. 

Disease Brain Region Ref Allele Sample Size Beta SE P-value

AD Multiple C 639 -0.26 0.07 1.95×10
-07

Control Multiple C 476 -0.14 0.06 2.94×10
-02

SCZ BM9 C 189 -0.01 0.09 9.32×10
-01

Other TCX C 103 -0.45 0.14 8.19×10
-04

Table 3.4 rs1990621 (chr7:12283873) major allele C is significantly associated with decreased neuronal 

proportions in AD, Control, and other non-AD neurodegenerative disorders. SCZ: schizophrenia; other: 

other non-AD neurodegenerative disorders, including progressive supranuclear palsy and pathological 

aging. BM9: dorsal lateral prefrontal cortex. TCX: temporal cortex.
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Figure 3.8 Variant rs1990621 functional annotation and local plot. A) Local plot showed the zoom-in view of the hit in chromosome 7 with 

the top lead SNP rs1990621 labeled with dark purple. Nearby SNPs were also mainly located in the TMEM106B gene region and color coded with 

LD r2 thresholds. B) Bottom panel showed combined CADD score, RegulomeDB score, and Chromatin state of the region shown in the top panel. 

C) Regulome DB and chromatin state explanation. 
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3.4.5 The impact of other neurodegenerative risk loci on neuronal proportion 

To investigate what other AD or FTD variants might have an effect in neuronal 

proportion QTL analysis, I extracted results for 38 SNPs examined in two large scale genome 

wide association studies, AD focused (Lambert et al.[161]) and FTD focused (Ferrari et al.[87]) 

studies. Among those, only variants located in TMEM106B and APOE gene regions passed 

genome wide significant or suggestive threshold. Both rs1990622 (Figure 3.9A) and rs2075650 

(Figure 3.9B) were found to be associated with FTD reported in Ferrari et al., which were 

associated with neuronal proportion in this study (Table 3.5). The top signals in APOE region 

are rs283815, rs769449, and rs429358 with p-value < 1.22×10-05. Note that rs429358 is one of 

the two SNPs that determine APOE isoforms. Remember that APOE 4 alleles, coded by 

rs429358(C) and rs7412(C), confers the largest effect for AD risk. I observed that the C allele of 

rs429358 was associated with decreased neuronal proportion, but no association observed 

between rs7412 and neuronal proportion.  

In a gene-based analysis of my neuronal proportion QTL, TMEM106B (p-value = 

2.96×10-08) is the only gene that passed genome-wide significant threshold followed by APOE 

(p-value = 3.2×10-05), the most important gene for sporadic AD risk (Figure 3.6CD). Previous 

GWAS for AD risk performed with the International Genomics of Alzheimer’s Project (IGAP) 

data stratified by APOE genotype showed that AD risk is significantly influenced by the 

interaction between APOE and TMEM106B[146]. Together with my observation of cellular 

composition QTL, these results suggest a potential interaction of TMEM106B and APOE may 

play a role in affecting AD risk/vulnerability and cellular composition balance between neurons 

and astrocytes, and the endosome and lysosome compartments might be the location that the 

interaction takes place.
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SNP CHR BP Gene Minor Major MAF SNP proxy Effect (Major) p-value OR (Minor) p-value OR (Minor) p-value OR (Minor) p-value

rs6656401 1 207,692,049 CR1 A G 0.1573 - 0.09 5.59×10-02 1.18 5.7×10-24 - - - -

rs730482 2 127,894,484 BIN1 T A 0.3265 rs6733839 0.03 3.73×10-01 1.22 6.9 × 10−44 - - - -

rs35349669 2 234,068,476 INPP5D T C 0.4256 - 2.33×10-03 9.80×10-01 1.08 3.2×10-08 - - - -

rs190982 5 88,223,420 MEF2C G A 0.3531 - -3.08×10
-04

5.88×10
-01

0.93 3.2×10
-08

- - - -

rs1980493 6 32,363,215 BTNL2 G A 0.1443 - 0.02 7.83×10
-01

- - 0.775 1.57×10
-08

- -

rs3129871 6 32,406,342 HLA-DRA A C 0.3736 - 0.04 3.72×10-01 - - 0.961 3.43×10-01 - -

rs3129882 6 32,409,530 HLA-DRA G A 0.4353 - 0.06 1.04×10-01 - - 1.086 3.36×10-02 - -

rs9268856 6 32,429,719 DRB5 A C 0.27 - 0.02 8.12×10-01 - - 0.809 5.51×10-09 - -

rs9268877 6 32,431,147 DRB5 A G 0.4268 - 0.05 1.91×10-01 - - 1.204 1.05×10-08 - -

rs9271192 6 32,578,530 HLA-DRB5–HLA-DRB1 C A 0.2677 - 0.04 4.31×10-01 1.11 2.9×10-12 - - - -

rs10948363 6 47,487,762 CD2AP G A 0.2488 - 0.01 8.62×10
-01

1.1 5.2×10
-11

- - - -

rs1020004 7 12,255,778 TMEM106B G A 0.315 - -0.1 1.35×10
-03

- - 1.03 4.59×10
-01

0.6 5.00×10
−11

rs6966915 7 12,265,988 TMEM106B A G 0.4609 - -0.16 1.24×10
-08

- - 1.07 1.21×10
-01

0.61 1.63×10
−11

rs1990622 7 12,283,787 TMEM106B G A 0.4673 - -0.16 1.44×10-08 - - 1.08 7.88×10-02 0.61 1.08×10−11

rs2718058 7 37,841,534 NME8 G A 0.3861 - -3.76×10-04 9.99×10-01 0.93 4.8×10-09 - - - -

rs1476679 7 100,004,446 ZCWPW1 G A 0.2655 - 0.02 7.71×10-01 0.91 5.6×10-10 - - - -

rs11771145 7 143,110,762 EPHA1 A G 0.3708 - 0 9.67×10-01 0.9 1.1×10-13 - - - -

rs28834970 8 27,195,121 PTK2B C T 0.3318 - 0.07 6.38×10-02 1.1 7.4×10-14 - - - -

rs1532277 8 27,466,181 CLU T C 0.3618 rs9331896 -1.42×10
-03

9.92×10
-01

0.86 2.8×10
-25

- - - -

rs3849942 9 27,543,281 C9orf72/MOB3B T C 0.2253 - -0.01 8.94×10
-01

- - 1.166 4.38×10
-04

- -

rs10838725 11 47,557,871 CELF1 C T 0.2748 - 0.07 8.60×10-02 1.08 1.1×10-08 - - - -

rs7124974 11 59,906,972 MS4A6A T G 0.3645 rs983392 0.05 2.05×10-01 0.9 6.1 × 10−16 - - - -

rs10792832 11 85,867,875 PICALM A G 0.34 - -0.01 4.50×10-01 0.87 9.3×10-26 - - - -

rs2380093 11 87,803,455 RAB38 T C 0.1323 rs1386330 -0.03 4.87×10-01 - - 1.05 3.35×10-01 - -

rs10128715 11 87,872,076 RAB38/CTSC A G 0.1217 rs74977128 -0.03 7.29×10-01 - - 1.815 3.06×10-08 - -

rs302668 11 87,876,911 RAB38 C T 0.3077 - 0.08 4.57×10
-02

- - 0.814 2.44×10
-07

- -

rs302665 11 87,879,627 RAB38 G A 0.2464 rs302652 0.07 3.65×10
-02

- - 0.73 2.02×10
-08

- -

rs7106306 11 87,929,167 RAB38/CTSC G C 0.1146 rs16913634 -0.07 1.85×10
-01

- - 0.964 0.71 - -

rs11218343 11 121,435,587 SORL1 C T 0.04487 - -0.12 1.35×10-01 0.77 9.7×10-15 - - - -

rs17125944 14 53,400,629 FERMT2 G A 0.08421 - 0.1 1.71×10-01 1.14 7.9×10-09 - - - -

rs10498633 14 92,926,952 SLC24A4-RIN3 A C 0.2128 - -0.01 8.32×10-01 0.91 5.5×10-09 - - - -

rs242557 17 44,019,712 MAPT A G 0.3558 - -0.01 8.89×10
-01

- - 0.853 4.82×10
-03

- -

rs8070723 17 44,081,064 MAPT G A 0.2077 - -0.02 7.48×10
-01

- - 1.201 2.80×10
-04

- -

rs1460595 18 29,045,257 DSG2 A G 0.03763 rs8093731 0.05 3.81×10
-01

0.73 1.0 × 10
-04

- - - -

rs4147929 19 1,063,443 ABCA7 A G 0.159 - -0.04 4.78×10
-01

1.15 1.1×10
-15

- - - -

rs2075650 19 45,395,619 TOMM40/APOE G A 0.1407 - 0.2 2.11×10
-04

- - 1.304 8.81×10
-07

- -

rs3865444 19 51,727,962 CD33 A C 0.2871 - -0.05 2.02×10
-01

0.94 3.0×10
-06

- - - -

rs7274581 20 55,018,260 CASS4 G A 0.1045 - -0.02 3.01×10
-01

0.88 2.5×10
-08

- - - -

cQTL AD risk FTD risk

Table 3.5 Neuronal proportion cQTL p-values were reported for variants previously identified in AD risk (by Lambert et al.), FTD risk (by Ferrari et al.), and FTD-TDP risk (by Van Deerlin et al.) studies.

FTD-TDP risk
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Figure 3.9 TMEM106B and TOMM40/APOE regions local plot. A) Local plot showed the zoom-in view of the hit in chromosome 7 with target 

SNP rs1990622 labeled with dark purple, and the top leading SNP is rs1990621. Nearby SNPs were also mainly located in the TMEM106B gene 

region and color coded with LD r2 thresholds. B) Local plot showed the zoom-in view of the hit in chromosome 19 with target SNP rs2075650 

labeled with dark purple, and the top three leading SNPs are rs283815, rs769449, and rs429358. Nearby SNPs were also mainly located in the 

TOMM40/APOE gene region and color coded with LD r2 thresholds. One gene omitted in this region is SNRPD2.  
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3.5 Discussions  

The common variant rs1990622 in TMEM106B was first identified to be associated with 

FTD with TDP-43 inclusions[266]. Hyper-phosphorylated and ubiquitinated TDP-43 is the 

major pathological protein for FTD and ALS[198], which is also present in a broader range of 

neurodegenerative disorders, including AD[10], Lewy body disease[196], and hippocampal 

sclerosis[10].  Recent study also suggested distinct TDP-43 types present in non-FTD brains, 

typical TDP-43 α-type and newly characterized β-type[145]. TDP-43 α-type is the typical form 

conventionally observed in temporal, frontal and brainstem regions. TDP-43 β-type is 

characterized by its close adjacency to neurofibrillary tangles, which is predominantly observed 

in limbic system, including amygdala, entorhinal cortex, and subiculum of the hippocampus. 

These findings suggested that pathologic TDP-43 protein that closely associated with 

TMEM106B variants might be the common pathologic substrate linking these neurodegenerative 

disorders.  Multiple lines of evidence have merged and shown that protective variants in 

TMEM106B are associated with attenuated cognitive deficits or better cognitive performance in 

ALS[268], hippocampal sclerosis[191], presymptomatic FTD[214], and aging groups with 

various neuropathological burden[280] or in the absence of known brain disease[222]. My study 

identified a protective variant rs1990621 of TMEM106B is associated with increased neuronal 

proportion in participants with neurodegenerative disorders and normal aging in non-demented 

controls.  However, this effect is not observed in a younger schizophrenia cohort with a mean 

age of death less than 65 years old. This result suggested a common pathway involving 

TMEM106B shared by aging groups in the present or absence of neurodegenerative pathology 

that may contribute to cognitive preservation and neuronal protection.  
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My study has demonstrated that a protective variant rs1990621 identified in TMEM106B 

gene region may exert neuronal protection function in aging groups. A protein coding variant 

rs3173615 in high LD with rs1990621 (r2 = 0.98) produces two protein isoforms (p.T185S). The 

S185 allele is protective and the protein carrying this amino acid is degraded faster than the risk 

variant T185. Thus, the risk allele of this coding variant leads to increased TMEM106B protein 

level[36, 49, 200]. TMEM106B overexpression results in enlarged lysosomes and lysosomal 

dysfunction[36, 295]. It has also been shown that TMEM106B may interact with PGRN (the 

precursor protein for granulin) in lysosome[200]. Although rs3173615 is not included in my 

genomic data, it is in complete linkage disequilibrium with rs1990621 and rs1990622. It is worth 

pointing out that the minor allele of rs1990622, which has a protective effect in FTD, is in-phase 

with the minor allele of rs1990621, which is associated with increased neuronal proportion in my 

analysis. Despite the fact that my dataset is focused on neurodegeneration, I only have 11 

verified FTD cases suggesting that TMEM106B might have a general neuronal protection role in 

neurodegeneration apart from FTD.  

This observation suggested that a potential involvement of TMEM106B in the 

endosome/lysosome pathway may play a role in neurodegenerative disorder risk or vulnerability. 

Neuronal survival requires continuous lysosomal turnover of cellular contents through 

endocytosis and autophagy[202]. Impaired lysosomal function reduces lysosomal degradative 

efficiency, which leads to abnormal build-up of toxic components in the cell. Impaired lysosomal 

system has been found to be associated with a broad range of neurodegenerative disorders, 

including AD[201], Parkinson disease[12, 233, 278], Huntington disease[90, 271], FTD[167], 

ALS[90], Niemann-Pick disease type C[154, 204], Creutzfeldt-Jakob disease[166], Charcot-

Marie Tooth disease type 2B[243], Neuronal ceroid lipofuscinoses (Batten disease)[155, 156], 
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autosomal dominant hereditary spastic paraplegia[220], Chediak-Higashi syndrome[159], 

inclusion body myositis[14], and osteopetrosis[141]. Considering the extensive involvements of 

lysosomal/endosomal compartments in neurodegenerative disorders, it has been proposed that a 

long and chronic process of abnormal metabolic changes during aging has led to the 

accumulation of toxic materials[202]. When lifespan increases especially in the sporadic forms 

of neurodegenerative disorders, failures to degrade these waste products break the proteostasis 

and the balance maintained by the multicellular interactions, and trigger subsequent chain 

reactions that lead to neuronal death and outbreaks of various neurodegenerative disorders due to 

different genetic susceptibilities and other disease etiologies. Although each neurodegenerative 

disorder has its own characteristic proteopathy, the boundaries of protein pathology distribution 

are never clear-cut across different disorders. In fact, copathology or nonspecific pathology of 

proteopathy have been observed in most autopsies of neurodegenerative disorders, such as TDP-

43 discussed above, Lewy body, α-synuclein[82], and etc. My observation of lysosomal gene 

TMEM106B associated with neuronal proportion in aging cohorts suggests that the lysosomal 

pathway might be involved in the common mechanism underlying a broad range of 

neurodegenerative disorders or aging process in general that contribute to neuronal cell death.  

My study has demonstrated the great potential of using cell type composition as 

quantitative traits to identify QTLs associated with the changes in cell fractions. This approach is 

more powerful for disorders that involve considerably changes in cellular composition, for 

example, neurodegenerative disorders, and normal conditions during developmental or aging 

processes. The development of recent single cell studies will greatly increase the resolution in 

advancing our knowledge of cellular population changes. More detailed fine mapping of cellular 

composition from single cell studies together with machine learning algorithms, bulk RNA-Seq 
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deconvolution will be more accurately capturing cellular fraction changes in the samples, such as 

different types of neurons or different states of astrocytes or microglia. Regarding scalability, 

this single cell powered bulk deconvolution approach is preferable for carrying out such cell type 

composition QTL analysis, because due to the high cost of performing single cell studies, bulk 

RNA-Seq is more financially feasible to scale up, and with larger sample sizes more hidden 

signals will be unrevealed with increased statistical power. 

To conclude, I have identified a protective variant rs1990621 in TMEM106B associated 

with increased neuronal proportion through bulk RNA-Seq deconvolution and cell type 

proportion QTL analysis. This observation also replicated previous findings of the protective 

variant rs1990622 in FTD risk, which is in high LD with rs19990621[266]. Besides, I also 

observed the C allele of rs429358 (codetermine APOE 4 isoform with rs7412 C allele) 

associated with decreased neuronal proportion as it was hypothesized. It suggested potential 

involvements of both APOE and TMEM106B in neuronal protection mechanisms underlying 

neurodegenerative and normal aging processes, and supported previous observation of 

interactions between these two genes[146] in AD cohort. I speculate that TMEM106B related 

lysosomal changes might be involved in the common pathway underlying neuronal death and 

astrocytosis in neurodegenerative disorders and normal aging cohorts. With larger sample size 

and higher deconvolution resolution, this approach will reveal more biologically relevant and 

novel loci associated with changes in cellular composition that are important for understanding 

both disease etiology and healthy aging. 
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Chapter 4: System biology approaches 

revealed transcriptomic profiles of TREM2 
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4.1 Abstract 

Background:  Using network analysis approaches, previous studies had revealed several hub 

gene or pathways that were verified or later identified as key players in disease etiology 

underlying AD. In sporadic AD, previous studies from the lab have identified MS4A gene cluster 

significantly associated with soluble TREM2 level in CSF. However, from GWAS result it was 

unclear which MS4A gene is the key regulator of TREM2. In autosomal dominant AD, mutations 

in the APP, PSEN1 and PSEN2 genes and lead to familial early onset AD. However, the 

downstream pathogenic events triggered by these risk and pathogenic variants are still not fully 

understood. By employing an integrative network approach, I aim to more accurately identify 

which gene is the key regulator of TREM2 in sporadic AD and the downstream genes and 

pathways altered by PSEN1 mutation in autosomal dominant AD.  

Methods: To determine which one of the MS4A genes are implicated in TREM2 biology, I 

employed alternative approaches to explore gene regulatory networks from RNA-Seq data. To 

identify causal genes under the genomic locus identified by the CSF TREM2 GWAS, I 

combined weighted correlation network analysis (WGCNA) method to identify a module that 

includes TREM2 co-expressed genes. Then I used Bayesian network inference to learn causality. 

To study the downstream effects of Mendelian mutations in PSEN1 associated with Autosomal 

Dominant Alzheimer’s disease, I applied a seed-based approach to study the genes that are 

significantly co-expressed with PSEN1, and constructed gene networks using WGCNA. This 

analysis includes both PSEN1 mutation carriers, non-carriers and nenuropathological-free 

controls. The network was annotated with gene differential expression, cell type information, and 

functional pathway analysis.  
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Results: My analysis indicated that MS4A4A and MS4A6A are in TREM2 module, and inferred 

that MS4A4A is the key regulator of TREM2. For the downstream events of the Mendelian gene 

PSEN1, I identified 47 genes only present in control cohort that were potentially disrupted in 

PSEN1 mutation carriers; I also found 13 genes only present in PSEN1 mutation carriers but not 

in control cohort that are potentially acquired as downstream transcriptional events altered by 

PSEN1 mutations. Among them, I highlighted the genes LMNA, DOCK1, and DYNC1LI2 and 

discussed them in detail, that were previously associated with Alzheimer’s Disease. 

Conclusions: My study demonstrated the potential of using both system-based and seed-based 

network approaches in replicating and discovering AD related genes and their interactions. In 

sporadic AD cohort, I identified MS4A4A might be a key regulator for TREM2. In autosomal 

dominant AD cohort, I identified total of 60 genes that are lost or acquired in the PSEN1 

associated pathways.  
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4.2 Introduction 

4.2.1 From polygenic to omnigenic - a network interpretation 

To tackle disease etiology, one important theme for diseases with genetic components is 

to figure out how genetic variants explain phenotypic variability. A monogenic theory inspired 

by Gregor Mendel’s work states that one disease could be explained by one mutated gene 

following a Mendelian inheritance pattern. Examples are familial early onset neurodegenerative 

disorders such as autosomal dominant AD, which can be explained by rare mutations in one 

single gene that results in high disease penetrance. However, diseases with complex traits, for 

example late onset sporadic AD, do not follow this pattern. GWAS performed in sporadic AD 

studies have identified dozens of variants across the genome, and many of those are common 

variants with low to medium effects (Figure 1.2)[148]. This pattern is more similar to 

quantitative genetics inspired by Ronald Aylmer Fisher’s infinitesimal model that a quantitative 

trait is influences by an infinitely large number of genes.  Accumulations of large number of 

common variants within multiple genes explain much of the heritability. These polygenic effects 

together with complex interactions with the environment are often observed in diseases with 

complex traits. Based on empirical evidences, the polygenic model has later been expanded to an 

“omnigenic” model for complex traits[31]. They proposed that core genes may have strong and 

direct effects on disease risk, but they only account for a small portion of total heritability. Any 

variants that have disease relevant tissue specific effects may contribute nontrivial effects on 

disease risk. The variants may exert their effects on core genes through highly interconnected 

gene regulatory network such that the collection of the small effects together explain the missing 

heritability[31]. 
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4.2.2 Network analysis as a powerful tool  

Network biology[21, 22, 269] has demonstrated great success in understanding biological 

systems and identifying disease related factors. With large scale data collection and advancement 

in computational powers, various types of networks have been proposed to capture the 

interactions among different elements (zoom-in view) and to gain a systematic view of the 

topological and dynamical properties of a biological system (zoom-out view).  On a gene level, 

gene regulations can be depicted as gene regulatory networks as mentioned above in the 

omnigenic model. The modular and hierarchical organization of gene regulatory networks 

captures the information flow from regulators to their binding sites. On an RNA level, microarray 

and RNA-Seq technologies have enabled generations of transcriptome-wide gene co-expression 

networks to understand associations among transcripts and gene expression synchronicity. On a 

protein level, yeast two-hybrid screens are able to identify protein-protein interactions in 

vivo[89]. On a cellular level, brain neural networks generated from tracer injections have 

captured the topology of neural signaling highways underlying cognitive functions[85].  On a 

system level, networks generated from functional connectivity MRI facilitate understanding of 

how different parts of the brain segregated into functional modules and communicating 

intrinsically without explicit task being performed[213]. On a disease level, human disease 

interactome has been proposed to identify shared pathways among known or unknown 

comorbidities that shed lights on drug repurposing[50, 183]. On a population level, social 

networks could help identify key features of infectious diseases, such as risks for acquisition and 

effective interventions, through learning social aspects of disease transmission.  
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While offering the capability of modeling any type of biological interactions at different 

levels, network analyses provide a unique and powerful approach that can combine elements or 

layers from different modalities and produce integrated models to study interactions among 

multiple networks. One example of an integrative network analysis of combining obesity and 

social network showed that the social ties among friends have a larger effect on obesity risk than 

genetic risk factors (Figure 4.1)[19, 52].  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Network medicine from obesity to the "diseasome". 

Reproduced with permission from Barabasi[19]. Copyright 

Massachusetts Medical Society. 
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4.2.3 Basic concepts in gene co-expression networks 

In biological systems, networks are defined as a collection of biological elements and 

interactions among them. In the context of a gene co-expression network, nodes are genes and 

edges are relations between the expression of a pair of genes, such as Pearson’s correlation. If the 

network is unweighted, an edge means the correlation between a gene pair is above a hard cut-

off, and there will be no edge if the correlation is below the cutoff. If the network is weighted, 

the edge represents weighted magnitude of correlation between a gene pair. In an undirected 

network, such as results from WGCNA, there is no directionality in the connection between two 

nodes. In a directed network, such as directed acyclic network generated from Bayesian network 

inference or structural equation modeling (SEM), information flow will be depicted as directed 

arrow pointing from parent node to child node. This chapter focuses on static and deterministic 

networks that capture network structural topology from a single RNA-Seq snapshot when RNAs 

are extracted from the biological system. Dynamic and stochastic networks can be generated 

with temporal data and data with biological noises. Causal network can also be generated with 

intervention data.  

Regarding the global topology of a network, three common types of networks are showed 

in Figure 4.2. Two important metrics to describe network property are degree distribution and 

adjacency matrix. Degree is the number of edges a node has with other nodes (denoted as k), and 

degree distribution is the probability distribution of these degrees over the whole network 

denoted as p(k). Adjacency matrix is used to represent whether a pair of nodes are connected. It 

is a matrix with 0 and 1; value 1 represents the nodes are connected and adjacent to each other, 

and 0 represents that the nodes are unconnected.  Undirected graph adjacency matrix is 

symmetrical and directed graph adjacency matrix is unsymmetrical. In a random network, the 
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degree distribution p(k) follow a Poisson distribution, and connected nodes are randomly 

distributed in the adjacency matrix. Network path is another important metric, which measures 

how many steps required to connect two nodes in the network, and minimal number of steps is 

called the shortest path length. One important property of a random network is that the shortest 

path length is much smaller than a regular network. Many theoretic and functional works in 

network science are based on random network, however, it has two limitations – first, it does not 

have local clustering structure with its randomly distributed connections depicted in adjacency 

matrix; second, the degree distribution of nodes following a Poisson distribution do not account 

for the formation of hubs that mostly observed in real world networks. To resolve the first 

limitation of lacking local clustering, a Watts-Strogatz model has been proposed to generate 

graphs with small-world property by rewiring edges from a regular lattice network with random 

probabilities[277]. This random rewiring process created long-range connections with small path 

length like a random graph while retaining high local clustering properties of a regular network. 

Thus, the degree distribution of small world network is similar to a random network but with 

high local clustering property shown in adjacency matrix. Later a scale free model is proposed 

based on empirical evidence of real world networks including World Wide Web and citation 

patterns in science[20]. This model explained the hubs observed in many real-world networks 

that a random network model does not explain. They found that large scale complex networks 

exhibit a high degree of self-organizing phenomena that networks expand by adding new vertices 

to already well established highly connected vertices, which explained how hub nodes emerged 

from chaos. In a scale-free network, the degree distribution of nodes decays as a power law. This 

feature holds true in any scales of the network – hence the name “scale-free” network. Rigorous 
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modeling is required to examine the power law distribution of empirical data to determine if a 

network fulfills the criteria[53].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.3 Small-world network generated from Watts-Strogatz 

model.  Image from Watts et al.[277] with permission. 

Figure 4.2 Random, small-world, and scale-free network properties. 

A) random network with 73 connections among 20 nodes assigned 

randomly; B) Small-world network with high local clustering and short 

average path lengths with ‘hub and spoke’ architecture; C) scale-free 

network with ‘hub and spoke’ architecture maintained at multiple spatial 

scales. Image reproduced from Stobb et al.[251] with permission.  
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4.2.4 Network analysis in Alzheimer’s disease 

Gene co-expression network analysis in late-onset AD cohorts had revealed several hub 

gene or pathways that were verified or later identified as key players in disease etiology[184, 

287]. For example, a system based approach using WGCNA had been applied to microarray data 

derived from prefrontal cortex tissues collected from LOAD patients and 173 non-demented 

healthy controls. They identified an immune response related module, which contains an 

important AD risk gene TREM2. Rare variants in TREM2 have been found to be associated with 

sporadic AD risk with moderate effect[114, 144, 148]. The rare TREM2 variant p.R47H 

(rs75932628) carriers exhibit increased AD risk by a range from 1.7-fold to 3.4-fold[112, 212]. 

In the TREM2 module identified from network analysis, Zhang et al. focused on 

TYROBP(DAP12) gene which was identified as an adapter protein for TREM2[30] (Figure 4.4).  

 

 

 

 

 

 

Figure 4.4 TREM2 module 

identified in LOAD cohorts. 

A module enriched for 

immune function and 

pathways contains TREM2, 

TYROBP, and MS4A gene 

clusters. Image from Zhang et 

al.[287] with permission. 
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Our lab has recently identified that the MS4A gene cluster is a key regulator of soluble 

TREM2 in CSF[70]. Using GWAS of a large number of subjects (N = 813) we identified a locus 

in chromosome 7 that shows significant association with CSF TREM2 levels (rs1582763; p=1.15 

×10-15), and replicated in an independent dataset (N = 580). Several members of MS4A gene 

cluster, MS4A4A and MS4A6A are tagged by this signal, which makes difficult the identification 

of the causal MS4A gene affecting CSF TREM2 levels. I envision that transcriptomic data would 

provide additional orthogonal evidence. To identify the relationship between TREM2 and MS4A 

gene cluster, I performed a system-based approach on sporadic AD cohort and focused on the 

module containing TREM2 in the first part of this chapter.  

In the second part of this chapter, I focused on the study of the transcriptomics 

downstream analyses of genetic mutations causal of autosome dominant AD (ADAD). Mutations 

in the amyloid-beta precursor protein (APP) and presenilin genes (PSEN1 and PSEN2)[43] 

cause ADAD which is typically associated with Mendelian inheritance pattern and early-onset 

(30 ~ 50 years old) disease symptoms. Although the disease phenotype may be a consequence of 

an abnormality in a single effector gene product particularly in the Mendelian form of AD, given 

the highly-interactive functional crosstalk within biological organism and the complex disease 

etiology of AD, this dysregulation by a single gene may intertwine with various pathological 

processes and altered downstream events that interact in a complex network. To investigate the 

etiological heterogeneity of AD, I performed a seed-based network analysis in an ADAD cohort, 

carriers of PSEN1 gene mutation, to identify altered downstream transcriptional events triggered 

by this ADAD gene.  By annotating the network with differential gene expression, cell type 

information, and functional pathway analysis, I identified some target genes and related 
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pathways that were either disrupted or emerged in PSEN1 mutation carriers through network 

analysis. 

4.3 Methods 

4.3.1 Samples  

TREM2 Study 

I accessed (AMP-AD portal synapse ID = 3157743) RNA-Seq data from 219 AD and 

non-demented control brains from Mount Sinai School of Medicine (MSSM) ascertained from 

four cortical regions: anterior prefrontal cortex (APC), inferior frontal gyrus (IFG), superior 

temporal gyrus (STG), and parahippocampal gyrus (PHG) (Table 4.1). Data retrieval and 

collection of MSSM, Knight-ADRC, and DIAN have been documented in detail in Chapter 2. 

 

PSEN1 Study 

RNA-Seq was generated for 15 PSEN1 carrier brains from The Dominantly Inherited 

Alzheimer Network (DIAN) and 14 non-demented controls from The Charles F. and Joanne 

Knight Alzheimer's Disease Research Center (Knight ADRC)[153]. We identified three 

additional participants from the Knight-ADRC study with PSEN1 (p.A79V, p.I143T, p.S170F) 

mutations (Table 4.2).   

I accessed (AMP-AD portal synapse ID = 3157743) RNA-Seq data from 67 non-

demented control brains from Mount Sinai School of Medicine (MSSM) ascertained from four 

N Age % Male RIN TIN Control AD

MSSM 219 84 ± 7.32 35.6 6.42 ± 1.77 76.4 ± 2.52 49 170

Table 4.1 TREM2-MS4A  Study Demographic
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cortical regions: anterior prefrontal cortex (APC), inferior frontal gyrus (IFG), superior temporal 

gyrus (STG), and parahippocampal gyrus (PHG). 

GEO replication data was accessed from GSE39420, which is collected from 14 patients 

(7 sporadic EOADs and 7 monogenic familial ADs with PSEN1 mutation) and 7 neurologically 

healthy controls. Samples were hybridized in a Human Gene 1.1 microarray from 

Affymetrix[13].  

 

4.3.2 Data processing and quality control 

TREM2 Study 

Data QC and preprocessing of MSSM dataset have been documented in Chapter 2.3.2. 

MSSM cases and controls gene expressions were derived from Star alignment to human 

GRCh37 primary assembly and quantification using --quantMode TranscriptomeSAM. Because 

low expressed genes tend to reflect noise and produce insignificant correlation, I removed genes 

with gene counts less than 4 in more than 75% subjects. To normalize gene expression respect to 

library size, regularized logarithm transformation was applied to raw counts of the gene 

expression using rlog function from DESeq2 R package. ComBat function was applied to the 

data to remove potential batch effect.  After which, a linear regression model was applied to 

regress out covariate on a per-gene basis. Covariates factors included in the model are PC1, PC2, 

N Age % Male % ApoE4+ Control PSEN1 EOAD

MSSM 67 80.1 ± 8.39 44.8 10.4 67 0 0

Knight-ADRC 17 82.3 ± 18.5 35.3 17.6 14 3 0

DIAN 15 49.1 ± 7.14 66.7 14.3 0 15 0

GEO 21 55.6± 7.65 76.2 14.3 7 7 7

Table 4.2 PSEN1  Study Demographic
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PC3 inferred from genomic PCA analysis to account for ethnic stratification; sex, age at death, 

post-mortem index, RIN to account for general demographics and RNA-Seq tissue pre-

sequencing quality; and RNA-Seq post-sequencing metrics such as ribosomal contents, mapped 

reads number (uniquely mapped and multi-mappers that mapped to multiple loci) to account for 

alignment performances. The residuals from the linear regression were used as inputs to infer 

gene expression correlation. Apart from gene expression values, cognitive performance 

measurement CDR and Tau pathology load measurement Braak staging values were also added 

for computing correlation, from which I could infer what genes are closely correlated with these 

clinical and pathological traits. Besides, cellular composition inferred from the dataset as 

documented in Chapter 2 deconvolution procedure were also added to later correlation 

computing and network construction. Cell type information inferred from the data using 

deconvolution method were also added as nodes. For each region, the top third most variable 

genes were selected. A joint set of the top genes from all four regions accounted for a fifth of the 

whole transcriptome genes. The top fifth most variable genes together with CDR, Braak staging, 

and cell type proportion were selected to run multi-tissue correlation for later network 

construction.  

PSEN1 Study 

Data QC and preprocessing of MSSM, Knight-ADRC, and DIAN have been documented 

in Chapter 2.3.2. For the RNA-Seq data from MSSM gene expression were performed similarly 

as the TREM2-MS4A study as described above, the only difference is that only non-demented 

controls from MSSM were used to construct the network to avoid the confounding factors from 

dramatic neuronal loss or astrocytosis in ADAD as I observed and documented in Chapter 2. 
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For microarray data from GSE39420, probes were mapped to corresponding genes, and 

each gene expression value was derived from averaging probe expression values for each gene. 

Each gene expression level was adjusted for subject sex, age at death, and post-mortem interval 

hours by fitting a linear regression model and the residuals were derived for use in downstream 

analyses. These covariate adjustment procedures were performed for control, FAD-PSEN1, and 

EOAD separately.  

4.3.3 Repeated measures correlation 

I accessed RNA-Seq data MSSM ascertained from four cortical regions: APC, IFG, STG, 

and PHG. Because there is more than one tissue collected from the same subject, the assumption 

of independent observations when applying standard correlation methods is violated. To 

aggregate data collected from multiple tissues in MSSM, I integrated the measures from these 

four brain regions by running repeated measures correlation tool (rmcorr R package)[18] to 

calculate repeated measures correlation (rmcorr) of the MSSM controls, which is a statistical 

technique to determine the overall within-individual relationship among paired measures 

assessed on two or more occasions. 

4.3.4 Network construction 

TREM2 study system-wide network construction 

 With a system-wide approach, Weighted Gene Co-Expression Network Analysis 

(WGCNA)[164] was applied to the transcriptome rmcorr matrix derived from MSSM AD cases 

and control subjects. WGCNA enforces the connectivity to exhibit a power-law distribution. This 

power-law distribution renders a scale-free topology to the network, which will be applied to the 

top fifth most variable genes across all four regions. Both dynamic tree cutting and static tree 
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cutting with signed networks and minimum module size 200 were used, but it has been shown 

that the dynamic tree cutting and signed network might be more biologically relevant compared 

to static tree cut and unsigned network[289]. Raising the correlation to a power will help reduce 

the noise of the correlations in the adjacency matrix. To select the appropriate power value, 

pickSoftThreshold function[288] from the WGCNA package was applied to the rmcorr matrix to 

select the power when the network most resemble a scale-free graph while keeping the highest 

network connectivity.  

TREM2 study Bayesian network construction 

To infer probabilistic relationships between the nodes in a network module, Bayesian 

network analysis was applied to the module derived from the system-wide WGCNA results that 

contains TREM2 gene. Normalized and covariate adjusted gene expression matrix from 

parahippocampal region of MSSM dataset was used, and only genes in the same module with 

TREM2 were included in the Bayesian network construction. Using the discretize function from 

bnlearn R package[193], the continuous gene expression data were transformed into quantiles for 

later network structure and parameter learning. To infer or measure the degree of confidence of 

arc strength of Baysian network, 200 nonparametric bootstrap iterations were applied to the data 

to estimate the relative frequency (strength) of every possible arc[94] using the boot.strength 

function implemented in bnlearn package. Arcs with strength more than 0.38 and probability of 

direction more than 0.5 were kept, and final network was derived from averaging across 200 

bootstraps. The network was plotted using graphviz.plot function with highlighted v-structure 

arcs. Genes related to AD risk and genes related to top pathway results (adjusted p-value less 

than 0.01) were color coded respectively.  
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PSEN1 study seed-based network construction 

Using a seed-based approach, I pre-selected genes that are co-expressed with PSEN1 to 

build a co-expression network. The genes that are correlated with PSEN1 expression are 

potentially linked to AD pathology by assuming ‘guilt-by-association’. In this seed-based 

approach, I used PSEN1 gene as a bait to expand to genes that co-expressed/correlated with 

PSEN1 in PSEN1 variant carriers and/or healthy controls. 

To build upon the MSSM controls co-expression network, I first selected genes that are 

significantly correlated with PSEN1 in the MSSM control rmcorr results at correlation p-value < 

0.05.  Then the genes from parietal PSEN1 carriers and healthy control subjects that overlapped 

with the significant correlated gene in MSSM controls were selected following the two criteria: 

(1) The gene correlation with gene PSEN1 in parietal dataset has to fall into the 95% confident 

intervals of rmcorr results of the MSSM controls; (2) The correlation direction in parietal dataset 

has to be congruent with the direction of the MSSM controls rmcorr correlation. 

4.3.5 Network robustness evaluation 

By applying a bootstrapped version of WGCNA (rWGCNA)[100], it will reduce 

potential bias introduced by outlier samples. I performed 50 iterations of network construction 

with randomly selected 66.66% of the total samples. The resulting 50 networks will be merged 

into one large, final consensus network. The robustness of the networks was evaluated by 

comparing those to the final consensus network.  
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4.3.6 Network functional annotation 

Differential gene expression analysis using DESeq2 R package, and various pathway 

analysis and gene enrichment analysis were applied to annotation the genes in the network, such 

as Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology Enrichment Analysis 

(GO term), and PANTHER implemented in Enrichr online interactive tool[47, 158]. Cell type 

composition derived from deconvolution, CDR, and Braak staging were labeled in the network 

to examine cell-type specific enriched modules and modules related to cognitive and 

pathological measurements. To annotate the genes, the list of interested genes were queried with 

FUMA’s GENE2FUNC online tools[276] to investigate tissue specificity, reported GWAS 

catalog genes, TF targets, microRNA targets, and etc.  

Differential gene expression and correlation analyses were repeated in the independent 

PSEN1 dataset (GSE39420) collected from 14 patients (7 EOAD and 7 FAD-PSEN1) and 7 

neurologically healthy controls.  

4.4 Results 

4.4.1 Study design 

TREM2 Study  

For the TREM2 study, both AD sporadic cases (N = 170) and cognitive normal controls 

(N = 49) were included to build the network (Table 4.1). Tissues from four brain regions 

(Figure 4.5) were collected and followed by RNA-Seq data generation. The same extensive QC 

and quantification processes were applied as documented in Chapter 2. Repeated measure 

correlation was applied to gene expression quantification results from four regions to derive a 

gene expression correlation matrix. With a system-based approach, top 1/5 most variable genes 
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across the four regions were used to construct networks with scale free topology using WGCNA. 

The module containing TREM2 gene was further analyzed with Bayesian network inference and 

functionally annotated with pathway analysis.  

PSEN1 Study 

As discussed in Chapter 2, I observed brain carriers of pathogenic mutations in APP, 

PSEN1 or PSEN2 presented lower neurons and higher astrocytes relative proportions compared 

to sporadic AD and controls. With such extensive neurodegeneration, I concerned that the 

network built with PSEN1 mutation carriers would be confounded by the destructive 

consequence of neurodegeneration. To investigate early transcriptional events trigged by 

pathogenic mutations in PSEN1, I built the network with cognitive normal controls and genes 

correlated with PSEN1 using a seed-based approach.  First, I selected genes that are correlated 

with PSEN1 in both cognitive normal controls and PSEN1 mutation carriers. Then I built a 

network based on correlations of these selected genes in controls across four different brain 

regions in MSSM to capture a control network topology. Then nodes were annotated in regard to 

its correlation with PSEN1 in either controls or PSEN1 mutation carriers to infer their functional 

roles in early disease progression. I hypothesized that network modules enriched with genes 

correlated with PSEN1 in mutation carriers could be involved in early transcriptome changes in 

PSEN1 mutation carriers.    
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Figure 4.5 Study design. For TREM2 study, network was constructed from MSSM AD sporadic 

cases and controls. For PSEN1 study, network topology was built from MSSM control participants 

and functional modules were annotated in related to PSEN1 variant carriers and healthy controls. 
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4.4.2 MS4A gene clusters are associated with TREM2 in AD sporadic and 

control network analysis 

TREM2 Study WGCNA network construction 

The 20% of most variable genes from four regions of AD sporadic cases and controls 

were selected to construct the network using WGCNA. The network connection or topology was 

built upon gene co-expression patterns. Genes that are connected in a co-expression network are 

correlated or synchronized in their expression pattern[97, 223]. In a gene expression correlation 

matrix, any pair of genes would yield a non-zero value, which means any gene pair could be 

correlated to some extent and perfect independency does not exist. Thus, the challenge is how to 

determine the threshold at which two genes are considered as co-expressed. An intuitive way to 

solve this problem is to select a value as a hard cut-off. A binary value is assigned to each gene 

pair; it will be 1 if the gene pair correlation is above the threshold or 0 if it is below the 

threshold. This binary scenario may occur in certain biological systems such as neuron firing, but 

it does not fit gene expression patterns. Rather than this hard thresholding approach, the 

WGCNA researchers proposed a soft thresholding approach that assigns a weight to each gene 

pair to derive a weighted gene co-expression network. The network also bears a scale-free 

topology, which has been shown to be more biologically relevant by both theoretical and 

empirical evidences[288]. The property of scale-free network is defined as the probability of a 

node that is connected with k other node decays as a power law. This type of network contains a 

few hubs with high degree of connectivity compared to the vast majority of non-hub nodes with 

low connectivity. The network is highly resistant to attacks on non-hub nodes, but removing hub 

nodes will be deleterious or change the network topology dramatically. The hub nodes are 

essential for survival in biological systems proved by yeast protein network studies[118, 142].  
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To build a scale free network using WGCNA, taking my study as an example, the first 

step was to define gene co-expression similarity using repeated measure correlation derived from 

gene expression of four brain regions. Compared to all the other network analysis that use single 

region transcriptional data to build a region-specific network, this study integrated data from four 

brain regions to build a network representing the cerebral cortex. Repeated measure correlation 

was applied instead of Pearson correlation because the four cortical regions are not 

independently collected, thus the assumption of independent observations when applying 

standard correlation methods was violated. Then the similarity (correlation) matrix was 

transformed into an adjacency matrix with appropriate power parameters fitting the power 

adjacency function[288]:  

aij = power(sij, β) ≡ sij
β (Equation 4.1)  

 As discussed above, the scale-free network nodes follow the power law:  

p(k) ~ k-γ   (Equation 4.2) 

To define a scale-free topology criterion, R2 is the model fitting index of the linear model that 

regresses log(p(k)) on log(k) based on Equation 4.2, and higher R2 means a better model fit to 

the scale free topology. R2 increased as power increased (Figure 4.6A), thus higher power would 

yield a network more resembling scale free topology. However, there was also a tradeoff 

between scale free network resemblance and connectivity (Figure 4.6B), and too sparse 

networks forfeit too much connection information. In order to construct a network with scale-

free topology and reasonable connectivity, the first power value that passed R2 = 0.8 was picked 

to fulfill scale-free topology criterion while retaining high enough connections to investigate 
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nodes relationships. To detect modules in the co-expression network, the topological overlap 

dissimilarity was measured and a topological overlap matrix (TOM) was derived to reflect 

relative interconnectedness between two nodes. Based on TOM, hierarchical clustering and 

different tree-cutting approaches were applied to determine module boundaries and gene 

memberships[165]. Figure 4.7A showed different modules derived from dynamic tree cutting on 

hierarchical clustering of the transcriptome wide TOM matrix containing the top 20% most 

variable genes. The dynamic tree cutting is a top-down approach that interactively decomposes 

and combines cluster branches until the assignment of module becomes stable. One problem of 

this dynamic tree cutting method is that it may fail to assign some tree branches, although it was 

not an issue in my TREM2 study (Figure 4.7A). To resolve this potential problem, Figure 4.7B 

showed another module assignment of the same hierarchical clustering tree with a dynamic 

hybrid cutting method, which is a bottom-up approach that improves the detection of any 

unassigned branches. Noticeably, for the module I was interested in containing TREM2 gene 

(Figure 4.7AB labeled with star) the two tree cutting methods produced almost identical 

assignments with only 12 (out of 456) more genes in the hybrid tree cutting.  The TREM2 

modules derived from both methods showed almost identical gene memberships and network 

topology (Figure 4.7CD). TREM2 gene is expressed in microglia and involved in immune 

responses in AD. Not surprisingly AD risk related genes HLA-DRB1 and HLA-DRB5, which 

play central roles in immune system by presenting peptides derived from antigens, were also 

present in the same module with TREM2. Another sporadic AD risk gene in this module is 

DSG2, which is important for cell to cell adhesion functions, and its cytoplasmic domain anchors 

the cytoskeleton by interacting with plaque proteins in the desmosome-intermediate filament 

complex[60]. What really caught my attention is the microglial MS4A gene cluster that was 
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located in the same co-expression module with TREM2, because we have recently observed that 

common variants in the MS4A region were significantly associated with elevated CSF soluble 

TREM2 level (rs1582763; p-value = 1.15×10-15)[70]. 

 

 

Figure 4.6 TREM2 network soft thresholding. A) R2 is the scale-free model fitting index. Higher R2 

means a better model fit to the scale free topology. R2 was plotted for power values ranging from 1 to 20. 

A R2 = 0.8 cut-off line was plotted. B) However, there was also a tradeoff between scale free network 

resemblance and connectivity as the mean connectivity decreases as the power increases.  
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In the previous study of network analysis in LOAD using WGCNA, Zhang et al. 

identified an immune/microglia module from prefrontal cortex microarray data. In this module 

containing TREM2, TYROBP scored the highest based on both regulatory strength and 

differential expression, which is an adaptor protein of TREM2. Apart from these two genes, 

MS4A4A and MS4A6A were also located in the same module. Although I identified MS4A4A and 

MS4A6A in the same module in my analysis, I seemed to have missed an important finding from 

Figure 4.7 TREM2 network TOM clustering and gene module assignment. A) Dynamic tree cutting 

B) Dynamic hybrid cutting. C) TREM2 module derived from dynamic tree cutting. D) TREM2 module 

derived from dynamic hybrid cutting. The module contained TREM2 is starred. 
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Zhang et al., which is TYROBP. Apart from the fact that my data is generated from RNA-Seq 

that is different from their microarray data, my analysis also aggregated samples from non-

independent multiple tissues through repeated measures correlation. To recapitulate their finding 

and to understand why I missed TYROBP in my TREM2 module, I performed a robust WGCNA 

analysis on single tissue region from anterior prefrontal cortex (BM10), which is the same region 

where they identified the TREM2-TYROBP module. The robust WGCNA is a resampling version 

of a regular WGCNA that I randomly resampled two thirds of the total sample size for each 

iteration, and repeated the process for 50 iterations to assess module assignment robustness. In 

this analysis, I focused on four genes that are TREM2, MS4A4A, MS4A6A, and TYROBP. 

MS4A4A and MS4A6A are from the same MS4A gene cluster located nearby on chromosome 11. 

Their expression patterns are highly correlated so they are included in this robustness assessment 

as positive controls. In the full run with all available samples from BM10 (N = 181), MS4A4A, 

MS4A6A, and TYROBP were assigned into module 12, colored as tan module in Figure 4.8 

labeled with star. TREM2 was not assigned to any module in the full-size run. It worth 

mentioning that in the previous study, Zhang et al. also applied Bayesian network analysis and 

pathway analysis to further annotate the submodules from their TREM2-TYROBP network. In 

their pathway analysis, MS4A4A, MS4A6A, and TYROBP were segregated into the complement 

pathway, whereas TREM2 was assigned to a separate pathway named Fc receptor system. This 

observation suggested that compared to TREM2-TYROBP co-expression, there might be a 

stronger relationship within MS4A4A-MS4A6A-TYROBP co-expression pattern. My robust 

WGCNA results supported this hypothesis but more in-depth simulations with 1000 runs are 

required to further validate this hypothesis.
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Figure 4.8 Robust WGCNA of anterior prefrontal cortex. Top hierarchical tree is derived from full dataset with all the 

subjects. Two thirds of the total sample size were randomly sampled for each resampling run. One full size run and total of 50 

resampling runs with consensus module assignment were shown as color bars. The module contained TREM2 is starred.  
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TREM2 MS4A4A MS4A6A TYROBP TREM2 MS4A4A MS4A6A TYROBP

Full data set 0 12 12 12 5713 5770 5769 5808

Resampling 1 12 12 12 12 6741 6745 6744 6798

Resampling 2 37 0 0 0 2513 2558 2559 2486

Resampling 3 12 0 0 12 2569 2541 2540 2574

Resampling 4 0 12 12 12 1309 1354 1353 1450

Resampling 5 30 30 30 30 2538 2536 2535 2525

Resampling 6 0 12 12 27 2694 2766 2765 2645

Resampling 7 0 12 12 12 2028 1892 1950 1972

Resampling 8 0 12 12 12 1529 3569 3568 3583

Resampling 9 0 12 12 12 4876 5171 5177 5196

Resampling 10 0 26 26 26 766 6371 6370 6366

Resampling 11 0 12 12 25 2931 2829 2828 2583

Resampling 12 12 12 12 12 6498 6566 6565 6533

Resampling 13 0 0 12 12 4449 4421 4481 4490

Resampling 14 12 12 12 12 3593 3605 3604 3594

Resampling 15 32 32 32 12 1709 1695 1694 1731

Resampling 16 0 12 12 29 6272 6785 6787 6637

Resampling 17 0 12 12 12 657 4664 4663 4740

Resampling 18 12 12 12 12 2010 2108 2107 2034

Resampling 19 33 33 33 0 2559 2532 2529 2593

Resampling 20 12 12 12 12 4903 4918 4922 4924

Resampling 21 0 0 12 12 1688 1726 1849 1766

Resampling 22 0 0 0 12 3187 3452 3451 3553

Resampling 23 12 12 12 12 2681 2711 2710 2697

Resampling 24 0 12 12 12 5691 5959 5958 5892

Resampling 25 12 0 0 12 4642 4595 4589 4650

Resampling 26 28 28 28 27 2832 2803 2802 2892

Resampling 27 0 29 29 28 2055 2727 2726 2707

Resampling 28 0 0 0 12 1525 2750 2749 2709

Resampling 29 0 12 12 12 1361 1779 1778 1863

Resampling 30 0 12 12 12 1573 2146 2147 2183

Resampling 31 0 12 12 34 1982 2150 2149 2067

Resampling 32 0 12 12 12 1636 1655 1654 1701

Resampling 33 33 0 0 0 2853 2845 2844 2640

Resampling 34 12 12 12 12 6690 6647 6646 6728

Resampling 35 0 12 12 12 4430 4601 4599 4584

Resampling 36 12 0 0 12 6349 6302 6301 6440

Resampling 37 0 0 0 12 5409 5405 5404 5455

Resampling 38 0 25 25 12 2083 2216 2215 2262

Resampling 39 0 12 12 12 6470 6793 6792 6720

Resampling 40 12 12 12 12 6788 6798 6797 6844

Resampling 41 0 0 12 12 4116 4314 4448 4397

Resampling 42 0 12 12 12 6723 6739 6737 6655

Resampling 43 0 12 12 12 3958 4249 4248 4286

Resampling 44 0 12 12 12 5442 5892 5897 5914

Resampling 45 0 12 12 12 4219 4434 4438 4461

Resampling 46 0 0 0 12 3833 4361 4360 4297

Resampling 47 0 12 12 29 4060 4299 4298 4214

Resampling 48 33 0 0 12 6676 6669 6668 6742

Resampling 49 12 12 12 12 3809 3790 3803 3878

Resampling 50 12 12 12 12 4885 4861 4860 4917

Module Assignment Dendrogram Postion
RUN

Table 4.3 Robust WGCNA simulation of TREM2  module
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TREM2 Study Bayesian network construction 

To further infer the relationship between TREM2 and MS4A, Bayesian network inference 

was applied to the WGCNA module containing TREM2 gene. Bayesian network infers factorized 

probability distribution from gene expression, and incorporates it into directed acyclic graphical 

representation of the network. As shown in Figure 4.9, compared to undirected graphs from 

WGCNA, Bayesian network inference produces directed graphs with arrows pointing from 

parent nodes to child nodes. Directed acyclic graph has no directed cycles, which generates a 

topological ordering of nodes. The resultant network was produced from averaging across 200 

bootstraps with both connection strength and direction probability hard cutoffs. In the averaged 

final network, there are numerous singletons, doubletons, and small branches with less than 10 

nodes. The large central branch containing TREM2 was labeled with blue, and previously 

identified AD risk genes were labeled with red. It worth noticing that there was a gene regulatory 

cascade from MS4A6A to MS4A4A to TREM2, suggesting a potential regulatory effect of MS4A 

genes on TREM2. This observation has been supported by our recent in-vitro MS4A knockdown 

study using cultured macrophage[70]. We observed that the soluble TREM2 level in cell culture 

was decreased after MS4A4A knockdown but it does not respond to MS4A6A knockdown. The 

knockdown and Bayesian network results together suggest MS4A4A might be the direct regulator 

of TREM2.  

Pathway analysis was performed to further annotate the function of this TREM2 module, 

and top 8 functional pathways were labeled in the graph. The central large branch containing 

TREM2, MS4A genes, and HLA-DRB genes were involved in immune system related pathways, 

such as bacterial or parasitic infections, autoimmune disease systemic lupus erythematosus, toll-
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like receptors mediated pathogen recognition, phagocytosis and complement cascades. The 

second largest branch next to the blue branch was enriched with ribosomal pathway. Compared 

to the pathway analysis results from Zhang et al. TREM2 module, my top 8 functional pathways 

with many overlapped genes replicated 4 out of 5 pathways that they highlighted for their 

TREM2 network. 

Figure 4.9 TREM2-MS4A Gene Network. AD related and top eight pathways are color coded 

accordingly. The largest branch is color coded in blue. V-structures are labeled in bold. 
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4.4.3 Disrupted and acquired genes identified in network module of PSEN1 

mutation carriers  

PSEN1 study WGCNA network construction 

Similar to the TREM2 study, I accessed RNA-Seq data from four cortical regions of 

MSSM[3], and estimated the gene expression correlation combining all four areas using repeated 

measure correlation. There are two key methodological differences in the approach I employed 

to model PSEN1 network:  first, only non-demented controls were included to construct the 

network; second, instead of a system-based approach selecting most variable genes from the 

whole transcriptome, only genes correlated with PSEN1 expression pattern were included. The 

genes that are correlated with PSEN1 expression are potentially linked to AD pathology by 

assuming ‘guilt-by-association’. With this seed-based approach using PSEN1 as a bait, I pre-

selected genes that are co-expressed with PSEN1 gene in both PSEN1 mutation carriers (N = 18) 

and non-carrier non-demented controls (N = 14) to build a co-expression network (Figure 4.10). 

Collectively, total of 5,809 genes correlated with PSEN1 were selected from PSEN1 non-carriers 

(Figure 4.10A) and mutation carriers (Figure 4.10B) that were jointly overlapped with genes 

correlated with PSEN1 from MSSM non-demented control participants.  

 

Figure 4.10 PSEN1 

seeded network gene 

selection. Select genes 

from PSEN1 mutation 

carriers and non-carriers 

correlated with MSSM 

control PSEN1 gene 

expression.  
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 With similar soft thresholding power selection and hierarchical clustering tree cutting 

approaches, modules containing PSEN1 were produced for both dynamic tree cutting (Figure 

4.11AC) and dynamic hybrid cutting (Figure 4.11BD). Compared to the dynamic tree cutting 

module (Figure 4.11A), the dynamic hybrid cutting (Figure 4.11B) lost branches to the left of 

the module and gained branches to the right of the module labeled by arrow heads. Based on a 

human visual inspection of the hierarchical clustering tree, the gain of the right branches might 

be reasonable but the loss of the left branches seems to be spurious. However, the dynamic 

hybrid cutting subdivided the PSEN1 module and grouped the leftmost branches to the large 

module on the left of PSEN1 module (Figure 4.11B turquoise module), due to which the 

dynamic hybrid cutting PSEN1 module lost BACE1, BIN1, and oligodendrocyte proportion 

measures (Figure 4.11D) compared to dynamic tree cutting (Figure 4.11C). Based on queries of 

PSEN1 in Brain RNA-Seq database of human brain purified cell type specific expression 

analysis[291] (http://www.brainrnaseq.org/; Figure 4.12A) and our single nuclei RNA-Seq 

dataset[66] (http://ngi.pub/snuclRNA-seq/; Figure 4.12B), PSEN1 is mostly expressed in 

oligodendrocyte, which support dynamic tree cutting PSEN1 module assignment. 

http://www.brainrnaseq.org/
http://ngi.pub/snuclRNA-seq/
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Figure 4.11 PSEN1 network TOM clustering and gene module assignment. A) Dynamic 

tree cutting B) Dynamic hybrid cutting. C) PSEN1 module derived from dynamic tree 

cutting. D) PSEN1 module derived from dynamic hybrid cutting. The module contained 

PSEN1 is starred. 

 

Figure 4.12 PSEN1 is mostly expressed 

in oligodendrocyte. A) PSEN1 

expression in purified cell type specific 

expression analysis[291].  B) PSEN1 

expression in our single nuclei RNA-Seq 

dataset[66]. 
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With the dynamic tree cutting PSEN1 module, I performed differential correlation and 

differential expression analysis and functional annotation to identify genes that are altered in 

PSEN1 mutation carriers. The analysis was replicated in another independent PSEN1 mutation 

dataset. The genes were categorized into five groups and depicted as a Venn diagram[120] to 

show the overlaps among the groups (Figure 4.13). In group A, there were 268 genes that are 

significantly correlated with PSEN1 expression in Knight ADRC non-demented controls. In 

group B, there were 264 genes that are significantly correlated with PSEN1 expression in Knight 

ADRC PSEN1 mutation carriers. In group C, there were 269 genes differentially expressed 

significantly comparing Knight ADRC PSEN1 mutation carriers to non-demented controls. In 

group D, there were 25 genes that were differentially correlated with PSEN1 when comparing 

correlation derived from group A to group B[73]. In group E, there were 64 genes specifically 

replicated in GEO PSEN1 mutation carrier data (removing genes replicated in GEO PSEN1 non-

carrier early onset AD cohort). Genes from combinations of A + C, A + D, and A + C + D (total 

of 47 genes) were potentially disrupted genes that only exist in control cohort but disappeared in 

PSEN1 mutation carrier cohort. Genes from combinations of B + E, B + C + E, and B + C + D + 

E (total of 13 genes) were potentially emerged risk genes that were differentially correlated with 

PSEN1 and/or differentially expressed when comparing PSEN1 mutation carriers to non-carriers, 

and they were not correlated with PSEN1 in control cohort.  
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Pathway analysis were performed to the disrupted (N = 47) gene groups, emerged (N = 

13) gene groups, separately and combined. In the disrupted group, arrhythmogenic right 

ventricular cardiomyopathy (ARVC) pathway reached significance after multiple testing 

correction, which contains JUP, ITGB4, and LMNA. Interestingly, a missense mutation 

(p.Asp333Gly) in PSEN1 were previously reported in severe progressive dilated 

cardiomyopathy[170] suggesting a shared common pathway between heart disease and 

autosomal dominant AD were disrupted in PSEN1 mutation carriers. Among the three ARVC 

related genes, LMNA is particularly interesting because mutation in this gene alone could result 

in an extremely rare disease called Hutchinson-Gilford progeria syndrome (1 in 4 million 

Figure 4.13 PSEN1 module genes annotation. A) Genes correlated with PSEN1 expression in Knight 

ADRC non-demented controls. B) Genes significantly correlated with PSEN1 expression in Knight 

ADRC PSEN1 mutation carriers. C) Genes differentially expressed significantly comparing Knight 

ADRC PSEN1 mutation carriers to non-demented controls. D) Genes differentially correlated with 

PSEN1 when comparing correlation derived from group A to group B. E) Genes specifically replicated in 

GEO PSEN1 mutation carrier data.  
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newborns worldwide). Patients with this disease went through a rapid “premature aging” process 

with growth failure, fat and hair loss, age-looking skin, and death at average of 14.6 years largely 

due to cardiac disease or cerebrovascular disease[262]. Although due to very limited autopsy 

samples, no pathological signs related to dementia or Alzheimer’s disease was identified, this 

accelerated aging process manifested in this disease is intriguing because aging is the most 

important risk factor for AD. Previously in another independent study, we also observed a 

significant increase of LMNA expression in AD brain and significantly associated with plaque 

load[279]. Notice that Alzheimer’s disease presenilin pathway containing JUP and CD44 was 

also significant in the disrupted group pathway analysis. In the emerged group, ELMO1 and 

DOCK1 are related to shigellosis, bacterial invasion of epithelial cells, and integrin signaling 

pathway (Table 4.4). Interestingly, our group have identified a circular form of DOCK1 

(circDOCK1) was significantly up-regulated in ADAD cohort with predominantly PSEN1 

mutation carriers. DYNC1LI2 encodes light intermediate chain 2 of dynein protein, which is a 

family of cytoskeletal motor proteins. It is not surprised to see this gene is related to Huntington 

Disease pathway. When combing both disrupted and emerged groups, apart from ARVC, 

shigellosis also reached significance after multiple testing correction. Shigella, a type of Gram-

negative bacteria, could induce shigellosis after infection with symptoms including diarrhea, 

fever, and stomach cramps. The infection usually last for 5 to 7 days but there has been evidence 

suggesting Gram-negative bacterial molecules, such as lipopolysaccharide and E coli K99 pili 

protein, are associated with AD risk and colocalized with amyloid plaques[286]. Shigella 

infection related pathway might be involved as an emerged immune response to presenilin 

pathway disruption in PSEN1 mutation carriers or directly related to sporadic AD susceptibility.
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Type Source Term Overlap P-value Adjusted P-value Z-score Combined Score Genes

Arrhythmogenic right ventricular cardiomyopathy (ARVC)_Homo sapiens_hsa05412 3/74 7.01×10
-04

3.51×10
-02 -1.82 13.22 JUP;ITGB4;LMNA

Inositol phosphate metabolism_Homo sapiens_hsa00562 2/71 1.21×10
-02

1.16×10
-01 -1.92 8.47 ITPKB;PLCD1

Biosynthesis of amino acids_Homo sapiens_hsa01230 2/74 1.31×10
-02

1.16×10
-01 -1.71 7.40 CPS1;SHMT1

Hypertrophic cardiomyopathy (HCM)_Homo sapiens_hsa05410 2/83 1.63×10
-02

1.16×10
-01 -1.72 7.08 ITGB4;LMNA

Dilated cardiomyopathy_Homo sapiens_hsa05414 2/90 1.90×10
-02

1.16×10
-01 -1.72 6.80 ITGB4;LMNA

ECM-receptor interaction_Homo sapiens_hsa04512 2/82 1.59×10
-02

1.16×10
-01 -1.62 6.71 ITGB4;CD44

Phosphatidylinositol signaling system_Homo sapiens_hsa04070 2/98 2.23×10
-02

1.16×10
-01 -1.67 6.35 ITPKB;PLCD1

Carbon metabolism_Homo sapiens_hsa01200 2/113 2.90×10
-02

1.32×10
-01 -1.45 5.15 CPS1;SHMT1

Alzheimer disease-presenilin pathway_Homo sapiens_P00004 2/99 2.27×10
-02

6.24×10
-02 -1.28 4.86 JUP;CD44

Arginine biosynthesis_Homo sapiens_P02728 1/6 1.40×10
-02

6.24×10
-02 -0.91 3.88 CPS1

Shigellosis_Homo sapiens_hsa05131 2/65 7.93×10
-04

7.97×10
-03 -1.74 12.45 ELMO1;DOCK1

Bacterial invasion of epithelial cells_Homo sapiens_hsa05100 2/78 1.14×10
-03

7.97×10
-03 -1.76 11.94 ELMO1;DOCK1

Vasopressin-regulated water reabsorption_Homo sapiens_hsa04962 1/44 2.82×10
-02

1.32×10
-01 -1.90 6.78 DYNC1LI2

Integrin signalling pathway_Homo sapiens_P00034 2/156 4.46×10
-03

8.91×10
-03 -1.78 9.64 ELMO1;DOCK1

Huntington disease_Homo sapiens_P00029 1/124 7.77×10
-02

7.77×10
-02 -1.56 3.97 DYNC1LI2

Shigellosis_Homo sapiens_hsa05131 3/65 9.82×10
-04

4.36×10
-02 -1.74 12.07 ELMO1;DOCK1;CD44

Arrhythmogenic right ventricular cardiomyopathy (ARVC)_Homo sapiens_hsa05412 3/74 1.43×10
-03

4.36×10
-02 -1.79 11.70 JUP;ITGB4;LMNA

Inositol phosphate metabolism_Homo sapiens_hsa00562 2/71 1.93×10
-02

1.66×10
-01 -1.89 7.45 ITPKB;PLCD1

Biosynthesis of amino acids_Homo sapiens_hsa01230 2/74 2.08×10
-02

1.66×10
-01 -1.64 6.36 CPS1;SHMT1

Bacterial invasion of epithelial cells_Homo sapiens_hsa05100 2/78 2.30×10
-02

1.66×10
-01 -1.64 6.17 ELMO1;DOCK1

Hypertrophic cardiomyopathy (HCM)_Homo sapiens_hsa05410 2/83 2.58×10
-02

1.66×10
-01 -1.62 5.93 ITGB4;LMNA

ECM-receptor interaction_Homo sapiens_hsa04512 2/82 2.52×10
-02

1.66×10
-01 -1.53 5.63 ITGB4;CD44

Dilated cardiomyopathy_Homo sapiens_hsa05414 2/90 2.99×10
-02

1.66×10
-01 -1.59 5.59 ITGB4;LMNA

Phosphatidylinositol signaling system_Homo sapiens_hsa04070 2/98 3.50×10
-02

1.78×10
-01 -1.55 5.21 ITPKB;PLCD1

Carbon metabolism_Homo sapiens_hsa01200 2/113 4.53×10
-02

1.97×10
-01 -1.38 4.26 CPS1;SHMT1

Integrin signalling pathway_Homo sapiens_P00034 3/156 1.15×10
-02

7.15×10
-02 -1.78 7.95 ITGB4;ELMO1;DOCK1

Alzheimer disease-presenilin pathway_Homo sapiens_P00004 2/99 3.57×10
-02

8.56×10
-02 -1.18 3.93 JUP;CD44

Combined

KEGG

Panther

Table 4.4 PSEN1  module disrupted and emerged genes pathway analysis

Acquired

KEGG

Panther

Disrupted

KEGG

Pather
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4.5 Discussion 

To interrogate highly interconnected complex system, network approach not only 

provides a holistic view of the overall topology but also retains the resolution to the level of each 

pairwise relationship. With this powerful approach, I analyzed sporadic AD cohort using a 

system-based approach focusing on the TREM2 module. Using WGCNA, I reconfirmed the 

observation of MS4A4A and MS4A6A in the TREM2 module, and inferred that MS4A4A might 

be the kay regulator of TREM2 through Bayesian network analysis. This finding replicated 

previous network analysis that observed the same TREM2-MS4A pattern, and also provided a 

network explanation of our recent finding about the strong association between MS4A gene 

cluster and soluble TREM2 level in CSF. I then adapted the approach and applied to ADAD 

cohorts specially with PSEN1 mutation carriers. With tissues collected from multiple cortical 

regions in the context of non-demented controls, I constructed a healthy cortical network 

topology. The network nodes are comprised of genes that are significantly co-expressed with 

PSEN1 in both and PSEN1 mutation carriers and non-demented controls with no PSEN1 

mutation. With functional annotation of the network nodes, I identified 47 genes only present in 

control cohort that were potentially disrupted in PSEN1 mutation carriers; I also identified 13 

genes only present in PSEN1 mutation carriers but not in control cohort that were potentially 

emerged as downstream transcriptional events acquired into the PSEN1 network. In this list of 

genes, I highlighted three genes, LMNA, DOCK1, and DYNC1LI2, that are associated to AD in 

additional studies.  

LMNA encodes lamin protein[281], which is important for nucleoskeleton structure in 

providing mechanical support to nuclear envelope[61, 245]. Apart from the premature aging 
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syndrome mentioned above in Chapter 4.4.3, other disease phenotypes include muscular 

dystrophy, lipodystrophy, and cardiomyopathy. In relation to AD, it has been shown that lamin 

dysfunction has led to neuronal death in tauopathy in Drosophila, which is also conserved in 

human tauopathy[96]. In an interactome study that produced a comprehensive map of molecular 

interactions derived from yeast two-hybrid and literature curated interactions[42, 182], 

Alzheimer’s disease and heart disease are close neighbors in the network by sharing several 

proteins associated with both diseases. Apart from the missense mutation in PSEN1 that leads to 

heart disease as I discussed above in Chapter 4.4.3, co-occurrence of cardiovascular disease and 

AD in elderly suggested additive or synergistic effects on both sides[16].  

DOCK1 encodes a member of the dedicator of cytokinesis protein (Dock) family. 

DOCK3 has been found to be associated with AD[149]. This gene’s protein product was 

originally discovered in a yeast two-hybrid protein-protein interaction screening, which binds to 

presenilin so it was named as PBP (presenilin-binding protein) in the original paper[149]. We 

have recently inferred circular RNAs (circRNAs) from RNA-Seq data, which is a type of 

noncoding RNA that may be involved in AD through a circRNA-mediated “miRNA sponging 

systems”[175]. Although Dock1 does not bind to presenilin directly[149], circular form of 

DOCK1 transcript (circDOCK1) was found to be upregulated in both sporadic and autosomal 

dominant AD. These observations suggested a potential involvement of Dock family in AD 

pathology through the presenilin pathway. 

DYNC1LI2 encodes light intermediate chain of dynein, which is a motor protein that is 

required for retrograde axonal transport along microtubules[236, 264]. Dysfunction of this 

protein leads to disruption of endosomal and lysosomal pathway[257]. Mutations in dynein has 
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been found in several neurodegenerative diseases suggesting its essential role in neuronal 

survival, especially for motor neurons[48, 81, 188, 228]. In relation to AD, accumulation of 

amyloid precursor protein was observed in aged monkey (Macaca fascicularis) brains with 

dynein knockdown[152], and dynein-mediated endocytic dysfunction[256] with increased Rab 

GTPase level might be involved in this process[152].  

With more high-throughput omic data being generated, integrating data from different 

sources and dimensions will be a promising future direction for network analysis. Apart from 

multi-dimensional networks, generating hierarchical network (network of networks) could also 

be an interesting direction. By learning more from the science of complexity, we could gain 

more insights into the complex systems from gene regulation[123] to human brain[173].  To 

conclude, my study demonstrated the potential of using both system-based and seed-based 

network approaches in replicating and discovering AD related genes and their interactions. In 

sporadic AD cohort, I identified MS4A4A might be a key regulator for TREM2. In autosomal 

dominant AD cohort, I identified total of 60 genes that are disrupted or emerged as a 

consequence of PSEN1 mutation, in which I highlighted three genes with intriguing links to AD. 

Many of the remaining genes that are not discussed in detail in this chapter are also found to be 

associated with AD, such as ABCA2[176], GFAP[147], CXorf36[207], suggesting a great 

potential of using network analysis to generate working hypothesis. 
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Chapter 5: Conclusions and future directions 
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5.1 Dissertation work contributed to AD research 

In Chapter 2, a deconvolution pipeline for bulk RNA-Seq was developed to account for 

cell type specific effects in brain tissues. Due to disease pathology, cell type balance is disrupted 

in Alzheimer’s Disease (AD) brain, which is a key feature in neurodegeneration that has often 

been overlooked in transcriptome research. With deconvolution methods to better delineate cell 

population changes in disease condition, it would help interpret results and reveal transcriptional 

changes in a cell type specific manner.    

In Chapter 3, using cell type proportion as quantitative trait, a common pathway 

underlying aging brains has been identified in the presence or absence of neurodegenerative 

disease symptoms. A protective variant of TMEM106B, which was previously identified with a 

protective effect in FTD, was identified to be associated with neuronal proportion in aging 

brains, suggesting a common pathway underlying neuronal protection and cognitive reservation 

in elderly. This extended analysis yield from deconvolution results from Chapter 2 

demonstrated one promising application of deconvolution followed by cell type QTL analysis in 

identifying new genes or pathways underlying neurodegeneration or aging in general. 

In Chapter 4, using network analysis I replicated and reconfirmed the co-expression 

pattern between MS4A gene cluster and TREM2 in sporadic AD, from which further evidence 

was inferred from Bayesian network analysis to show that MS4A4A might be a potential 

regulator of TREM2 that is validated by in-vitro experiments. In Autosomal Dominant AD 

(ADAD) cohort, disrupted and acquired genes were identified from PSEN1 mutation carriers. 

Among the genes, previous identified AD related gene and pathways were revealed together with 
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novel findings. These results demonstrated the great potential of applying network approach in 

identifying disease associated genes and the interactions among them.  

5.2 Aging, proteinopathy, and neurodegeneration 

Apart from clinical criteria, diagnosis of neurodegenerative disorders heavily hinges on 

proteinopathies observed either from longitudinal brain imaging and Cerebrospinal fluid data and 

postmortems neuropathology. Although each disease has its own characteristic protein(s), 

pathological proteins from a different neurodegenerative disorder are also observed in patient 

autopsies. For example, AD is characterized by amyloid β and tauopathy; Parkinson’s Disease is 

characterized by alpha-synuclein; FTD is characterized by TDP-43 pathology. However, in AD 

post-mortem tissues alpha-synuclein and TDP-43 are often detected in. Similarly, amyloid β and 

tau are also present in PD. TDP-43 is not only identified in FTD brains, but it also presents in 

various neurodegenerative disorders, such as AD, ALS, hippocampal sclerosis as I have 

discussed in Chapter 3.5. Based on what I have learnt from the field and observations obtained 

from this dissertation work, a model is summarized and depicted in Figure 5.1.  

Initially, soluble protein substrates in their normal folding states are performing normal 

functions in the brains. However, due to triggering-events that could be genetic, lifestyle or 

environmental factors, such as microbial infection, traumatic brain injury, toxic metal exposure, 

and even lack of sleep, the normal protein substrates become insoluble through a mis-folding 

process and start to aggregate. Regarding the initial formation of protein aggregates, a seeding 

hypothesis has been proposed[139].  Taking amyloid formation as an example, an initial 

nucleation event generates a seed that later initiates the following pathogenic accumulation of 

amyloid β proteins in an exponential way of aggregation. Then this pathogenic aggregation starts 



 

 

181 

to propagate based on well-established prion observations that a diseased protein could convert a 

normal protein into a diseased state so that this process is able to propagate to other unaffected 

proteins. One study also demonstrated that the proteins with prion-like characteristics are also 

transmissible from patient to patient through injection of cadaveric pituitary-derived growth 

hormone[140] that induced AD pathology in patients without genetic risk factors.  

What type of mis-folded proteins are generated depends on the genetic background of the 

individual. For example, if one person carries mutations or risk variants in AD risk genes, such 

as APP, PSEN1, PSEN2, APOE, TREM2, this individual will be susceptible to amyloid β and tau 

aggregation. Carriers of PD risk variants, in genes such as PARK2, LRR2, PINK1, SNCA, will be 

susceptible to alpha-synuclein aggregation. And similarly, carriers of variants in in FTD risk 

genes, such as MAPT, GRN or C9orf72, will be susceptible to tau and TDP-43 aggregation. As it 

was discussed above, different categories of proteinopathies are not mutually exclusive in their 

distribution, which means alpha-synuclein protein aggregation could be observed in AD patients 

with amyloid β and tau pathologies. Thus, a patient as depicted in Figure 5.1 is clinically 

diagnosed with AD, but this individual also harbors multiple other proteinopathies that have not 

reached the threshold for clinical manifestation. This observation could be explained by an 

omnigenic model that apart from core pathways of AD risk genes, a collection of low-effect risk 

genes for other neurodegenerative disorders contribute non-trivial effects to the pathologic 

protein aggregation process. Apart from risk factors, there are also protective factors that could 

help ameliorate the damaging effect brought by toxic proteins that protect individuals with 

protein aggregation pathology but no cognitive deficits. 
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Figure 5.1 Proteinopathy model in neurodegenerative disorders. Triggered by various factors such as familial mutation, 

microbial infection, traumatic brain injury, toxic metal exposure, or general aging process, normal proteins may become different 

types of misfolded proteins based on a subject’s specific genetic or epigenetic architecture as shown in A) that form alpha-

synuclein, amyloid beta, or TDP-43 proteinopathies that belong to different neurodegenerative disease categories. B) Accumulated 

proteinopathies may lead to neuronal loss. C) As disease progresses, the subject may experience cognitive deficit with more 

accumulated proteinopathies. D) A patient diagnosed with AD may have alpha-synuclein and TDP-43 deposition apart from 

amyloid plaques that suggests neurodegeneration shall be considered as a continuous trait rather than distinctive disease categories. 
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5.3 Future directions in developing therapies for AD  

A prevalence study focusing on preclinical and clinical AD prevalence showed that there 

are eight times more people in pre-symptomatic phase than people in clinical phase[39]. People 

with preclinical AD have either amyloidosis or neurodegeneration or both, but have no clinical 

manifestation of symptoms. This data showed great promise for preventive therapies that by 

either slowing down disease progression or delaying onset, it will be possible to protect a large 

number of people from developing AD during their lifetime. Currently, more than half of the 

disease modifying therapies are focusing on anti-amyloid approach, including immunotherapy, 

BASE inhibitor, and anti-aggregation. However, there have no signs of any success so far in this 

path. One problem with some clinical trial designs are the patients recruited for the trials are 

usually in their middle or late stage of AD. As it has been shown above, during the long 

preclinical phase, especially in the sporadic form of neurodegenerative disorders, 

neuropathological and neurodegenerative changes have occurred long before any clinical 

symptoms. However, by the time of clinical manifestation, it is usually too late for any treatment 

due to the extensive brain damage. Clearance of aggregated proteins may not be effective to 

compensate cognitive deficit due to massive neuronal loss. If neuronal loss is not reversible in 

the current situation, early intervention, amyloid clearance or trigger-targeting therapies should 

be performed earlier during disease progression to target people still in their pre-symptomatic 

phases. Apart from the amyloid pathway, other potential pathways to target are the lysosomal 

and autophagy pathway to facilitate toxic protein degradation. In addition, targeting immune 

pathway could prevent vicious cycles of proinflammatory responses and boost immune resilience 

to infections. All these pre-clinical therapies heavily rely on achieving early diagnosis in the 

general population. To advance early diagnosis, the development of non-invasive and accurate 
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diagnosis tools is highly demanded to predict disease at early stages before symptom onset. We 

also need to advance our understanding of genetic and environmental triggers of AD to identify 

and better target susceptible cohorts. 

Given the complexity of neurodegenerative disorders, we also need to tailor therapies 

differently for people with different genetic backgrounds. This idea of precision medicine has 

gained success in other medical fields, for example cancer treatment, from which we can learn. 

With better understanding of AD etiology, test results shall be interpreted in the context of 

person specific genetic architecture. Studies with more diverse cohorts shall be supported to 

understand ethnic and sex differences, which should also be considered in evaluating drug 

responses, dosages and side effects during clinical trials. Last but not least, cognitive or motor 

function improvement therapies and health care facilities specially designed for people with 

dementia or motor deficits are also needed for patients with neurodegenerative disorders. 

Regarding recent interests in finding protective factors, neuronal protection therapies could 

prevent the major detrimental consequence. As documented in this dissertation work, using cell 

type compositions inferred from deconvolution as disease endophenotypes, I identified 

protective variants in TMEM106B gene that may have neuronal protection effect in general aging 

groups independent of disease status, which could help understand the relationship between 

aging and neuronal survival and be a potential target for neuronal protection therapies. 
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