65 research outputs found

    Shape derivatives of boundary integral operators in electromagnetic scattering

    Full text link
    We develop the shape derivative analysis of solutions to the problem of scattering of time-harmonic electromagnetic waves by a bounded penetrable obstacle. Since boundary integral equations are a classical tool to solve electromagnetic scattering problems, we study the shape differentiability properties of the standard electromagnetic boundary integral operators. Using Helmholtz decomposition, we can base their analysis on the study of scalar integral operators in standard Sobolev spaces, but we then have to study the G\^ateaux differentiability of surface differential operators. We prove that the electromagnetic boundary integral operators are infinitely differentiable without loss of regularity and that the solutions of the scattering problem are infinitely shape differentiable away from the boundary of the obstacle, whereas their derivatives lose regularity on the boundary. We also give a characterization of the first shape derivative as a solution of a new electromagnetic scattering problem

    Shape derivatives of boundary integral operators in electromagnetic scattering. Part I: Shape differentiability of pseudo-homogeneous boundary integral operators

    Full text link
    In this paper we study the shape differentiability properties of a class of boundary integral operators and of potentials with weakly singular pseudo-homogeneous kernels acting between classical Sobolev spaces, with respect to smooth deformations of the boundary. We prove that the boundary integral operators are infinitely differentiable without loss of regularity. The potential operators are infinitely shape differentiable away from the boundary, whereas their derivatives lose regularity near the boundary. We study the shape differentiability of surface differential operators. The shape differentiability properties of the usual strongly singular or hypersingular boundary integral operators of interest in acoustic, elastodynamic or electromagnetic potential theory can then be established by expressing them in terms of integral operators with weakly singular kernels and of surface differential operators

    Shape derivatives of boundary integral operators in electromagnetic scattering. Part II : Application to scattering by a homogeneous dielectric obstacle

    Full text link
    We develop the shape derivative analysis of solutions to the problem of scattering of time-harmonic electromagnetic waves by a bounded penetrable obstacle. Since boundary integral equations are a classical tool to solve electromagnetic scattering problems, we study the shape differentiability properties of the standard electromagnetic boundary integral operators. The latter are typically bounded on the space of tangential vector fields of mixed regularity TH\sp{-1/2}(\Div_{\Gamma},\Gamma). Using Helmholtz decomposition, we can base their analysis on the study of pseudo-differential integral operators in standard Sobolev spaces, but we then have to study the G\^ateaux differentiability of surface differential operators. We prove that the electromagnetic boundary integral operators are infinitely differentiable without loss of regularity. We also give a characterization of the first shape derivative of the solution of the dielectric scattering problem as a solution of a new electromagnetic scattering problem.Comment: arXiv admin note: substantial text overlap with arXiv:1002.154

    On the Kleinman-Martin integral equation method for electromagnetic scattering by a dielectric body

    Full text link
    The interface problem describing the scattering of time-harmonic electromagnetic waves by a dielectric body is often formulated as a pair of coupled boundary integral equations for the electric and magnetic current densities on the interface Γ\Gamma. In this paper, following an idea developed by Kleinman and Martin \cite{KlMa} for acoustic scattering problems, we consider methods for solving the dielectric scattering problem using a single integral equation over Γ\Gamma for a single unknown density. One knows that such boundary integral formulations of the Maxwell equations are not uniquely solvable when the exterior wave number is an eigenvalue of an associated interior Maxwell boundary value problem. We obtain four different families of integral equations for which we can show that by choosing some parameters in an appropriate way, they become uniquely solvable for all real frequencies. We analyze the well-posedness of the integral equations in the space of finite energy on smooth and non-smooth boundaries

    Fast iterative boundary element methods for high-frequency scattering problems in 3D elastodynamics

    Get PDF
    International audienceThe fast multipole method is an efficient technique to accelerate the solution of large scale 3D scattering problems with boundary integral equations. However, the fast multipole accelerated boundary element method (FM-BEM) is intrinsically based on an iterative solver. It has been shown that the number of iterations can significantly hinder the overall efficiency of the FM-BEM. The derivation of robust preconditioners for FM-BEM is now inevitable to increase the size of the problems that can be considered. The main constraint in the context of the FM-BEM is that the complete system is not assembled to reduce computational times and memory requirements. Analytic preconditioners offer a very interesting strategy by improving the spectral properties of the boundary integral equations ahead from the discretization. The main contribution of this paper is to combine an approximate adjoint Dirichlet to Neumann (DtN) map as an analytic preconditioner with a FM-BEM solver to treat Dirichlet exterior scattering problems in 3D elasticity. The approximations of the adjoint DtN map are derived using tools proposed in [40]. The resulting boundary integral equations are preconditioned Combined Field Integral Equations (CFIEs). We provide various numerical illustrations of the efficiency of the method for different smooth and non smooth geometries. In particular, the number of iterations is shown to be completely independent of the number of degrees of freedom and of the frequency for convex obstacles

    When topological derivatives met regularized Gauss-Newton iterations in holographic 3D imaging

    Get PDF
    We propose an automatic algorithm for 3D inverse electromagnetic scattering based on the combination of topological derivatives and regularized Gauss-Newton iterations. The algorithm is adapted to decoding digital holograms. A hologram is a two-dimensional light interference pattern that encodes information about three-dimensional shapes and their optical properties. The formation of the hologram is modeled using Maxwell theory for light scattering by particles. We then seek shapes optimizing error functionals which measure the deviation from the recorded holograms. Their topological derivatives provide initial guesses of the objects. Next, we correct these predictions by regularized Gauss-Newton techniques devised to solve the inverse holography problem. In contrast to standard Gauss-Newton methods, in our implementation the number of objects can be automatically updated during the iterative procedure by new topological derivative computations. We show that the combined use of topological derivative based optimization and iteratively regularized Gauss-Newton methods produces fast and accurate descriptions of the geometry of objects formed by multiple components with nanoscale resolution, even for a small number of detectors and non convex components aligned in the incidence direction

    Approximate local Dirichlet-to-Neumann map for three-dimensional time-harmonic elastic waves

    Get PDF
    International audienceIt has been proven that the knowledge of an accurate approximation of the Dirichlet-to-Neumann (DtN) map is useful for a large range of applications in wave scattering problems. We are concerned in this paper with the construction of an approximate local DtN operator for time-harmonic elastic waves. The main contributions are the following. First, we derive exact operators using Fourier analysis in the case of an elastic half-space. These results are then extended to a general three-dimensional smooth closed surface by using a local tangent plane approximation. Next, a regularization step improves the accuracy of the approximate DtN operators and a localization process is proposed. Finally, a first application is presented in the context of the On-Surface Radiation Conditions method. The efficiency of the approach is investigated for various obstacle geometries at high frequencies
    • …
    corecore