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We consider the solution to a transmission problem at a thin layer interface of thickness 
ε > 0 in a mechanical structure. We build a multi-scale expansion for that solution as 
ε → 0, which enables to replace the thin layer with an improved boundary condition and 
leads to optimal estimates for the remainders. This short note presents new results when 
a Dirichlet condition is imposed on the internal boundary of the thin layer and is the 
counterpart of F. Caubet, D. Kateb, F. Le Louër, J. Elast. 136 (1) (2019) 17–53, where the 
Neumann case was considered.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Cette note concerne un problème de transmission dans une structure mécanique contenant 
une couche d’épaisseur mince ε > 0. Nous construisons un développement asymptotique 
de la solution lorsque ε → 0 qui permet de remplacer la couche mince par une condition 
aux limites approchées et nous en déduisons des estimations d’erreurs optimales. Nous 
présentons de nouveaux résultats lorsqu’une condition de Dirichlet est imposée sur la 
frontière interne de la couche mince, tandis que le cas d’une condition de Neumann est 
étudié dans F. Caubet, D. Kateb, F. Le Louër, J. Elast. 136 (1) (2019) 17–53.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and problem settings

Let � be a Lipschitz bounded open set of Rd , where d ≥ 2 is an integer representing the dimension. We assume that the 
solid � consists of an isotropic material with a linear behavior. The boundary of � is such that ∂� =: �D ∪ �N , where �D
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and �N are two non-empty open sets of ∂� and |�D | > 0. We consider a nonempty inclusion ω ⊂⊂ � with analytic 
boundary ∂ω =: �. We denote by n the unit normal vector to ∂� and � directed outward to �\ω.

Let ε > 0 be small enough. We consider that � has an interior thin layer with thickness ε bordering ω defined by

ωε
i := {x + sn(x) | x ∈ � and 0 < s < ε}.

We recall that the normal vector n is directed inward the inclusion ω. We set ωε := ω\ωε
i and we denote its boundary by 

�ε . In the sequel, we use the lower index e for all quantities related to �\ω and the lower index i for all quantities related 
to ωε

i . These notations are illustrated in [2, Fig. 1].
We denote by Ae the Hooke’s law defined, for any symmetric matrix ξ , by

Ae ξ := 2μe ξ + λe Tr(ξ) Id,

where μe > 0 and λe > 0 are two positive constants that represent the Lamé coefficients in �\ω. The Hooke’s law associated 
with ωε

i is denoted by Ai with Lamé coefficients μi > 0 and λi > 0. Moreover, the stress vector relative to the material 
properties Ai on � is defined by

T i(u) := Aie(u)n, where e(u) := 1

2

(∇u + ᵀ∇u
)
,

and we define similarly T e the stress vector relative to the material properties Ae on either � or �N .
For a smooth bounded open set ω of Rd (d ≥ 2) with a boundary �, we denote by H s(ω) and Hs(�) the standard 

complex valued, Hilbert–Sobolev spaces of order s ∈R defined on ω and �, respectively (with the convention H0 = L2). The 
spaces of vector functions will be denoted by boldface letters, thus H s = (Hs)d . We introduce the following Sobolev space:

H 1
�D

(�\ω) := {v ∈ H 1(�\ω) ; v = 0 on �D}.
The dual space of H 1

�D
(�\ω) is denoted by H̃

−1
�D

(�\ω). Let f ∈ H̃
−1
�D

(�\ω) be some exterior forces and a load g ∈
H−1/2(�N ). We are concerned with the following transmission problem⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−div
(

Aee(uε
e )

) = f in �\ω
−div

(
Aie(uε

i )
) = 0 in ωε

i
uε

e = 0 on �D

T e(uε
e ) = g on �N

T i(uε
i ) = T e(uε

e ) on �

uε
i = uε

e on �

uε
i = 0 on �ε.

(1.1)

The solution to such a problem exists, is unique and belongs to H 1
�D∪�ε (�\ωε) thanks to the Lax–Milgram theorem and 

Korn’s inequality (see, e.g., [3, Theorem 6.3-4]).
To avoid instabilities in the numerical treatment of the transmission problem (1.1), we approximate the solution uε

e ∈
H 1

�D
(�\ω) by the solution vε[N] to some boundary value problems of the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−div

(
Aee(vε[N])

)
= f in �\ω

vε[N] = 0 on �D

T e(vε[N]) = g on �N

Bε
N

(
ε, vε[N], T e(vε[N])

) = 0 on �,

(1.2)

where ||uε
e − vε[N]||H 1(�\ω) = O (εN+1), for any N ∈ N , and the last equation of (1.2) is a so-called Generalized Impedance 

Boundary Condition (GIBC). This approximate condition is obtained by expanding the Navier equation in ωε
i in terms of ε

and surface derivatives on �. The transmission problems is then split into sequences of coupled boundary value problems 
in ωε

i (rescaled through a nondimensional variable) and in �\ω (which will constitute the GIBCs). Both the exterior and 
interior solutions are expanded as power series of the thickness ε, whose coefficients functions are obtained iteratively. The 
GIBC of order N ∈N is deduced from the boundary condition satisfied by the truncated series of the exterior field up to the 
index N . The method originates from [10] for d = 2 and leads to optimal error estimates. The results are now established 
for the Laplace, Helmholtz, and Maxwell equations, and more recently for the Lamé system when a Neumann condition is 
imposed on �ε (see [2] and references therein for a bibliographical overview). It is the purpose of this short note to address 
the case when a Dirichlet condition is considered on �ε . The coefficient functions and the GIBCs, for N = 0, 1, 2, are given 
in Proposition 2.1 and its proof. The expected optimal error estimates are stated in Theorem 3.1 and its proof for both the 
interior and exterior solutions.

Mechanical engineering applications of the proposed results include the modeling of delaminated elastic area with thin 
opening by Dirichlet and Neumann crack jumps [1,4] at multi-layered interfaces followed by the mathematical analysis of 
the associated inverse problem of delimination detection [1,8,9] for both the static and dynamic framework.
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2. Generalized impedance boundary conditions

The operator Bε
N is composed of curvature operators and/or surface differential operators and depends on the in-

terior Lamé parameters. Thus we use the classical surface differential operators: the tangential gradient ∇� defined in 
[7, pages 68–75] and the surface divergence div� defined as the trace of ∇� applied to vector functions. Moreover, R and 
H represent the curvature operator of � and its trace, respectively.

To determine the approximate boundary condition, we follow the procedure described in [5]. For any x ∈ � and s ≥ 0, 
we set u(x + sn(x)) =: ū(x, s) and we use the change of variables y = x + sn(x) = x + εSn(x), with S ∈ [0 , 1]. We set 
ū(x, s) = ū(x, εS) =: Uε(x, S). Firstly, we obtain the following asymptotic expansion when ε → 0:

div(Aie(u)) (x + εSn(x)) = 1

ε2

⎛
⎝	0∂

2
S +

∑
n≥1

εn	n

⎞
⎠Uε(x, S), (2.1)

where

	0 := (λi + 2μi)n ⊗ n + μi
(
Id − n ⊗ n

)
, (2.2)

and

	1Uε := 	1,1∂S Uε, with 	1,1Uε := μiHUε + (λi + μi)
(
n div� Uε + ∇�(Uε · n)

)
. (2.3)

Moreover, the traction trace operator is defined on �, i.e. for S = 0, by

T iU
ε := 1

ε
	0∂S Uε + λin div� Uε + μi[∇�Uε]n = 1

ε
	0∂S Uε + B0

t Uε.

Secondly, we set uε
e := ∑

n≥0
εnun

e in �\ω and uε
i (x, s) := Uε

i (x, S) = ∑
n≥0

εnUn
i (x, S) in � × [0, 1], with the convention U


i =
u


e = 0 for any integer 
 < 0. In the case of a Dirichlet interior boundary condition, the original transmission problem (1.1)
can then be rewritten as a couple of two boundary value problems for every coefficient functions (U


i , u


e):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2
S 	0U


i = −

∑

k=1
	kU
−k

i in � × (0,1)

∂S	0U

i = T e(u
−1

e ) − B0
t U
−1

i on � × {0}
	0U


i = 0 on � × {1},
and ⎧⎪⎪⎨

⎪⎪⎩
div

(
Aee(u


e)
) = δ0


 f in �\ω
u


e = 0 on �D

T e(u

e) = δ0


 g on �N

	0u

e = 	0U


i ( · ,0) on � ,

(2.4)

where δ j
i is the Kronecker delta. For 
 = 0, 1, 2, we solve iteratively the new systems to compute first U


i and then recover 

the boundary condition satisfied by u

e . The truncated fields are denoted by uε

e[N] :=
N∑

k=0
εkuk

e and Uε
i,[N] :=

N∑
k=0

εkUk
i . From 

these results, we deduce the GIBC satisfied by vε[N] , which is an approximation of uε
e,[N] up to O (εN+1). The results are 

stated in the following proposition.

Proposition 2.1. The GIBC, defined on �, modeling thin layer effects for N = 0, corresponds to the homogeneous Dirichlet condition. 
For N = 1, 2 it can be written in the form

ε T e vε[N] + Cε
N(vε[N]) = 0,

with

Cε
1(w) := 	0 w |�,

Cε
2(w) := 	0 w |� + 1

2ε (μiH+ (λi + μi)R+ (λi − μi)M) w |�,

where M represents the tangential Gunter derivative defined by [6, Chapter V, §1] Mw = [∇� w]n − n div� w .
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Proof. First, we obtain

	0U0
i = 0 , 	0U1

i ( · , S) = (S − 1)T eu0
e .

Using U1
i ( · , 0) = −	−1

0 T eu0
e = u1

e|� , we rewrite U1
e ( · , S) = −(S − 1)u1

e|� and we get

	0U2
i ( · , S) = S2−1

2 	1,1u1
e|� + (S − 1)

(
T eu1

e − B0
t u1

e|�
)

.

When S = 0, we simplify 	0u2
e|� = 	0U2

i ( · , 0) = −T eu1
e − 1

2 	1,1u1
e|� +B0

t u1
e|� and

1
2 	1,1 − B0

t = 1
2

(
μiH+ (λi + μi)R+ (λi − μi) ([∇� · ]n − n div�)

)
.

Then, substituting these results in (2.4), we get the following boundary conditions for uε
e[N] on �:

	0uε
e[0] = 	0u0

e = 0

	0uε
e[1] = 	0(u0

e + εu1
e ) = −εT eu0

e = −εT euε
e[1] + ε2T eu1

e

	0uε
e[2] = 	0(u0

e + εu1
e + ε2u2

e )

= − εT e(u0
e + εu1

e ) − 1
2ε2

(
μiH+ (λi + μi)R+ (λi − μi)M

)
u1

e

= − εT euε
e[2] − 1

2ε2
(
μiH+ (λi + μi)R+ (λi − μi)M

)
uε

e[2]

+ ε3T eu2
e + 1

2ε3
(
μiH+ (λi + μi)R+ (λi − μi)M

)
u2

e .

We observe that the truncated series up to the index N satisfy ε T euε
e[N] + Cε

N (uε
e[N]) = O (εN+1). Then we choose to ap-

proach the total exterior field uε
e by a new field vε[N] that satisfies ε T e vε[N] + Cε

N (vε[N]) = 0. �
Remark 2.2. Even if we provide the formula for N = 0, 1, 2 only, we guess that, for any N ∈N∗ , the impedance operator Cε

N
is a surface differential operator of order (N − 1) for the three components of the state. Although it differs a bit from the 
Laplace equation case, the procedure to prove optimal error estimates in H 1-norm presented in [10, Chapter 1] extends to 
the elastic case at any order N ∈N and is sketched in Section 3 for the sake of completeness.

For N = 1, 2, the associated weak variational formulations of the GIBC problems (1.2) with non-vanishing right-hand side 
εT e v + Cε

N (v) = h when h ∈ H− 1
2 (�) read: find v ∈ H 1

�D
(�\ω) satisfying

aε
N(v, w) = �(w), ∀w ∈ H 1

�D
(�\ω) (2.5)

where

aε
1(v, w) := λe

∫
�\ω

(div v) (div w) + 2μe

∫
�\ω

e(v) : e(w) + ε−1
∫
�

	0 v · w,

aε
2(v, w) := aε

1(v, w) + 1

2

∫
�

(μiH+ (λi + μi)R+ (λi − μi)M) v · w,

and

�(w) :=
∫

�\ω
f · w +

∫
�N

g · w + ε−1
∫
�

h · w.

The bilinear forms aε
N are symmetric and continuous on H 1

�D
(�\ω) × H 1

�D
(�\ω) (see [6, Chapter V, §1] for the properties 

of M). The coercivity of aε
1 is obvious since 	0 is a positive definite matrix.

3. Convergence analysis

Assuming the existence and uniqueness of the solution vε[N] to GIBC problems at any order N ∈ N , one can establish 
optimal error estimates between uε

e and its approximate field vε[N] as done below.

Theorem 3.1. Let N ∈N and f ∈ C ∞(�\ω). Then there exists a constant C�\ω independent of ε such that

||vε[N] − uε
e ||H 1(�\ω) ≤ C�\ω εN+1.
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Proof. For any N ∈ N , the assumption f ∈ C ∞(�\ω) allows us to ensure higher order local regularity for u

e , with 
 =

0, . . . , N − 1 in the neighborhood of � so that the right-hand side to problems (2.4) belong to H
1
2 (�) and the solution 

satisfies uN
e ∈ H 1

�D
(�\ω).

• We decompose the remainder as vε[N] − uε
e := (vε[N] − uε

e,[N]) + (uε
e,[N] − uε

e ).

• Firstly, we set rε[N] := uε −
N∑

n=0

εnun and we denote by rε
e,[N] and rε

i,[N] the restriction of rε[N] respectively to �\ω and 

to ωε
i . The remainders (rε

e,[N], Rε
i,[N]) solve the thin layer transmission problem with right-hand sides up to O (εN−1). Using 

a judicious rewritting of (rε
e,[N], Rε

i,[N]) (see [2, subsection 2.2] or [10, Subsection 1.3.5]) and a change of variable formula 
for s = εS to evaluate H 1-norms, we get the estimates

‖rε
e,[N]‖H 1(�\ω) ≤ C εN+1 and

√
ε‖rε

i,[N]‖H 1(ωε
i ) ≤ C εN+1, (3.1)

with C depending on N but independent of ε (thanks to the uniform coercivity of the bilinear form associated with the 
transmission problem).

• Secondly, we focus on d[N] := uε
e,[N] − vε[N] . For N = 0, we have uε

e,[0] = u0
e = vε

[0] , i.e. d[0] = 0. Then the estimate is 
deduced from the previous result. To get optimal results, for N ≥ 1, the trick is different than in the Neumann case [2, 
subsection 2.2] and is well explained in [10, page 36]. Indeed, using the bounds provided by the Lax–Milgram theorem 
applied to the variational formulations (2.5) does not lead to optimal estimates due to the factor ε−1 in the right-hand side. 
Instead, we use an asymptotic expansion of the solution vε[N] to the GIBC problems (1.2). We write vε[N] = ∑


≥0
ε
 v


N , where 

the coefficient functions v

N are defined iteratively as the solution to mixed boundary value problems with Dirichlet-type 

condition on �. For example, when N = 1, 2, we have:⎧⎪⎪⎨
⎪⎪⎩

div
(

Aee(v

1)

) = δ0

 f in �\ω

v

1 = 0 on �D

T e(v

1) = δ0


 g on �N

v

1 = −	−1

0 T e v
−1
1 on � ,

(3.2)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div
(

Aee(v

2)

) = δ0

 f in �\ω

v

2 = 0 on �D

T e(v

1) = δ0


 g on �N

v

2 = −	−1

0

(
T e v
−1

2 + 1
2

(
μiH+ (λi + μi)R+ (λi − μi)M

)
v
−1

2

)
on � .

(3.3)

We observe that

∀ 
 = 0, . . . , N, v

N = u


e .

Higher-order coefficient functions v

N , with 
 ≥ N + 1, surely differ from u


e . Thus, by applying the Lax–Milgram theorem to 
the mixed boundary value problem with a Dirichlet-type boundary condition on �, we get the estimates:

‖vε[1] − uε
e,[1]‖H 1(�\ω) = ‖vε[1] − v0

1 − εv1
1‖H 1(�\ω) ≤ C1ε

2,

and

‖vε
[2] − uε

e,[2]‖H 1(�\ω) = ‖vε
[2] − v0

2 − εv1
2 − ε2 v2

2‖H 1(�\ω) ≤ C2ε
3.

And so on, we get for any N ∈N , ‖vε[N] − uε
e,[N]‖H 1(�\ω) ≤ CNεN+1, with CN independent of ε. Using the triangular inequal-

ity and (3.1), we deduce the announced estimates. �
Remark 3.2. The convergence estimates at any order N ∈ N are obtained assuming analyticity of the boundary � and 
smoothness of the data around the thin layer. However, a boundary � of class C 1,1 and f ∈ L2(�\ω) are sufficient to get 
the previous estimates for N = 1.
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