7,593 research outputs found

    Overall and blade element performance of a 1.20 pressure ratio fan stage with rotor blades reset -7 deg

    Get PDF
    A 51-cm-diam model of a fan stage for short haul aircraft was tested in a single stage compressor research facility. The rotor blades were set 7 deg toward the axial direction (opened) from the design setting angle. Surveys of the air flow conditions ahead of the rotor, between the rotor and stator, and behind the stator were made over the stable operating range of the stage. At the design speed and a weight flow of 30.9 kg/sec, the stage pressure ratio and efficiency were 1.205 and 0.85, respectively. The design speed rotor peak efficiency of 0.90 occurred at a flow rate of 32.5 kg/sec

    Aerodynamic performance of 0.5 meter-diameter, 337 meter-per-second tip speed, 1.5 pressure-ratio, single-stage fan designed for low noise aircraft engines

    Get PDF
    Overall and blade-element aerodynamic performance of a 0.271-scale model of QF-1 are presented, examined, and then compared and evaluated with that from similar low noise fan stage designs. The tests cover a wide range of speeds and weight flows along with variations in stator setting angle and stator axial spacing from the rotor. At design speed with stator at design setting angle and a fixed distance between stage measuring stations, there were no significant effects of increasing the axial spacing between rotor stator from 1.0 to 3.5 rotor chords on stage overall pressure ratio, efficiency or stall margin

    Overall and blade-element performance of a 1.20-pressure-ratio fan stage at design blade setting angle

    Get PDF
    A 51-cm-diam. model of a short-haul fan stage was tested. Surveys of the air flow conditions ahead of the rotor, between the rotor and stator, and behind the stator were made over the stable operating range of the stage. At the design speed of 213.3 m/sec and weight flow of 26.7 kg/sec, the stage pressure ratio and efficiency are 1.18 and 0.87, respectively. The rotor peak efficiency of 0.92 occurred at flow rate of 30.5 kg/sec. Peak stage efficiency of 0.09 was obtained at 110 percent speed at a pressure ratio of 1.218 and a weight flow of 30.2 kg/sec. Maximum stage pressure ratio is 1.269 at 120 percent speed

    Aerodynamic performance of a 1.20-pressure ratio fan stage designed for low noise

    Get PDF
    The aerodynamic design and the overall blade element performance of a 51 centimeter diameter fan stage is presented. The stage was designed to minimize the noise generated by rotor stator interactions. The design pressure ratio was 1.20 at a flow of 30.6 kilograms per second and a rotor blade tip speed of 228.6 meters per second. At design speed the rotor peak efficiency was 0.935. The peak efficiency of the stage, however, was 0.824. The radial distribution of rotor performance parameters at peak efficiency and design speed indicated excellent agreement with design values

    Aerodynamic performance of 0.4066-scale model of JT8D refan stage with S-duct inlet

    Get PDF
    A scale model of the JT8D refan stage was tested with a scale model of the S-duct inlet design for the refanned Boeing 727 center engine. Detailed survey data of pressures, temperatures, and flow angles were obtained over a range of flows at speeds from 70 to 97 percent of design speed. Two S-duct configurations were tested; one with a bellmouth inlet and the other with a flight lip inlet. The results indicated that the overall performance was essentially unaffected by the distortion generated by the S-duct inlet. The stall weight flow increased by less than 0.5 kg/sec (approximately 1.5% of design flow) with the S-duct inlet compared with that obtained with uniform flow. The detailed measurements indicated that the inlet guide vane (IGV) significantly reduced circumferential variations. For example, the flow angles ahead of the IGV were positive in the right half of the inlet and negative in the left half. Behind the IGV, the flow angles tended to be more uniform circumferentially

    Performance of a transonic fan stage designed for a low meridional velocity ratio

    Get PDF
    The aerodynamic performance and design parameters of a transonic fan stage are presented. The fan stage was designed for a meridional velocity ratio of 0.8 across the tip of the stage, a pressure ratio of 1.57, a flow of 29.5 kilograms per second, and a tip speed of 426 meters per second. Radial surveys were obtained over the stable operating range from 50 to 100 percent of design speed. The measured, peak efficiency (0.81) of the stage occurred at a pressure ratio of 1.58 and a flow of 28.7 kilograms per second

    Design and performance of a high-pressure-ratio, highly loaded axial-flow transonic compressor space

    Get PDF
    A 50-cm-diam. axial-flow transonic compressor stage with multiple-circular-arc blades was designed and tested. At design speed, a rotor peak efficiency of 0.85 occurred at an equivalent weight flow of 29.3 kg/sec. Stage peak efficiency was 0.79 at 28.6 kg/sec. Stage total pressure ratio at peak efficiency was 1.84. The stall margin at design speed was 5 percent. Rotor and stator losses were higher than predicted. The stator choked at design flow

    Effects of reset stators and a rotating, grooved stator hub on performance of a 1.92-pressure-ratio compressor stage

    Get PDF
    The overall performance and blade-element performance of a transonic fan stage are presented for two modified test configurations and are compared with the unmodified stage. Tests were conducted with reset stators 2 deg open and reset stators with a rotating grooved stator hub. Detailed radial and circumferential (behind stator) surveys of the flow conditions were made over the stable operating range at rotative speeds of 70, 90, and 100 percent of design speed. Reset stator blade tests indicated a small increase in stage efficiency, pressure ratio, and maximum weight flow at each speed. Performance with reset stators and a rotating, grooved stator hub resulted in an additional increase in stage efficiency and pressure ratio at all speeds. The rotating grooved stator hub reduced hub losses considerably

    Performance of inlet stage of transonic compressor

    Get PDF
    The overall and blade-element performances are presented over the stable flow operating range of the stage at the design tip speed of 426 m/sec. Stage peak efficiency of 0.83 was obtained at a weight flow of 28.8 kg/sec and a pressure ratio of 1.52. The stall margin for the stage was 8 percent based on weight flow and pressure ratio at peak efficiency and stall. The rotor appears to be stalling prematurely as evidenced by high rotor tip losses

    Effect of casing treatment on performance of an inlet stage for a transonic multistage compressor

    Get PDF
    An inlet stage of a transonic compressor was tested with three rotor tip casing treatment configurations: blade angle slots, circumferential grooves, and axial skewed slots. Significant increases in both rotor and stage total pressure ratio, total temperature ratio, efficiency, flow range, and very large improvements in stall margin were obtained with all three casing treatment configurations. The greatest improvement in performance was achieved with axial skewed slots
    corecore